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CHEBYSHEV ROOTFINDING VIA COMPUTING EIGENVALUES
OF COLLEAGUE MATRICES: WHEN IS IT STABLE?

VANNI NOFERINI AND JAVIER PEREZ

ABSTRACT. Computing the roots of a scalar polynomial, or the eigenvalues
of a matrix polynomial, expressed in the Chebyshev basis {Tj(z)} is a fun-
damental problem that arises in many applications. In this work, we analyze
the backward stability of the polynomial rootfinding problem solved with col-
league matrices. In other words, given a scalar polynomial p(z) or a matrix
polynomial P(z) expressed in the Chebyshev basis, the question is to deter-
mine whether or not the whole set of computed eigenvalues of the colleague
matrix, obtained with a backward stable algorithm, like the QR algorithm,
are the set of roots of a nearby polynomial. In order to do so, we derive a
first order backward error analysis of the polynomial rootfinding algorithm
using colleague matrices adapting the geometric arguments in [A. Edelman
and H. Murakami, Polynomial roots for companion matriz eigenvalues, Math.
Comp. 210, 763-776, 1995] to the Chebyshev basis. We show that, if the
absolute value of the coefficients of p(z) (respectively, the norm of the coeffi-
cients of P(z)) are bounded by a moderate number, computing the roots of
p(z) (respectively, the eigenvalues of P(z)) via the eigenvalues of its colleague
matrix using a backward stable eigenvalue algorithm is backward stable. This
backward error analysis also expands on the very recent work [Y. Nakatsukasa
and V. Noferini, On the stability of computing polynomial roots via confeder-
ate linearizations, Math. Comp. 85 (2016), no. 301, 2391-2425] that already
showed that this algorithm is not backward normwise stable if the coefficients
of the polynomial p(z) do not have moderate norms.

1. INTRODUCTION

A popular way to compute the roots of a monic polynomial expressed in the
monomial basis is via the eigenvalues of its companion matrix. This is, for in-
stance, the way followed by the MATLAB command roots, that, after balancing
the companion matrix, uses the QR algorithm to get its eigenvalues. The numerical
properties of this method for computing roots of polynomials have been extensively
studied [8Q[I5L25], in particular with respect to conditioning and backward errors.
It has been shown that, in practice, if the companion matrix is balanced [2I], the
rootfinding method using companion matrices is numerically stable, in the sense
that the computed roots are the exact roots of a nearby polynomial. However,
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as it was made famous by Wilkinson [22][26,[27], polynomial roots that lie on a
real interval can be highly sensitive to perturbations in the coefficients when the
monomial basis is used. So, even perturbations in the coefficients of order of the
machine precision may produce a catastrophically large forward error. In practice,
rootfinding on a real interval is a very frequent and important situation, and one
way to circumvent this problem is to use, instead, a polynomial basis such that the
roots of a polynomial expressed in that basis are better conditioned functions of its
coeflicients, like the Chebyshev basis.

Chebyshev polynomials are a family of polynomials, orthogonal with respect to
the weight function w(z) = (1 — 22)~*/2 on the interval [—1,1], which may be
computed using the following recurrence relation [I Chapter 22]:

TQ(.I) = 1,
(1.1) Ty(z) =z, and
Tp(z) = 22T (x) — Tip—o(z), for k> 2.

Moreover, the Chebyshev polynomials To(z), Th(z), .. ., Tn(z) form a basis for the
vector space of polynomials of degree at most n with real coefficients R,,[x]. Hence,
any real polynomial p(z) € R, [z] can be written uniquely as p(z) = Y7 _, axTk(z).

Chebyshev polynomials are widely used in many areas of numerical analysis,
and, in particular, approximation theory [23]. In fact, a common approach, as
done in Chebfun [24], for computing the roots of a nonlinear smooth function f(x)
on an interval is to approximate first f(x) by a polynomial p(x) expressed in the
Chebyshev basis via Chebyshev interpolation and then compute the roots of p(x)
as the eigenvalues of its colleague matrix [II]. Also, computing the eigenvalues of
matrix polynomials in the Chebyshev basis is becoming an important problem [10].

In this paper, we are interested in the backward stability of the rootfinding
problem (or of the matrix polynomial eigenvalue problem) solved via colleague
matrices and a backward stable eigenvalue algorithm. Our work is motivated by
[18], which addresses related issues for confederate matrices (the colleague matrix is
a particular example of a confederate matrix [4l[17]). Also, similar backward error
analysis may be found in [8[I3l[14]. In [8], the authors study the backward stability
of rootfinding methods using Fiedler companion matrices of monic polynomials
expressed in the monomial basis; in [I3], the authors study the backward stability
of rootfinding methods using a suitable companion matrix of polynomials expressed
in barycentric form; in [I4], several bases are analyzed at once, for nonstandard
linearizations of larger size with respect to the colleague or the companion.

Given a p X p monic matriz polynomial in the Chebyshev basis of degree n

n—1
(12) P(x) = L,T(x) + Y AeTk(x), with Ay € R, for k=0,1,...,n—1,
k=0

where by monic in the Chebyshev basis we mean that the coefficient of T),(z) is
equal to I, (the p x p identity matrix), the polynomial eigenvalue problem consists
of finding the eigenvalues of P(z), that is, finding the roots of the scalar polynomial
det (P(x)) (note that the monicity of P(x) implies its regularity, that is, det (P(x))
is not identically zero). For the sake of simplicity of exposition, we focus on poly-
nomials with real coefficients, as they are most common in practice when dealing
with the Chebyshev basis; however, the analysis of this paper can be extended to
the complex case.
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A common approach to solve the polynomial eigenvalue problem for P(z) is to
use the block colleague matrix

(1.3)
__Anfl _An72 + Ip _An73 o _A2 _Al _AO_
I, 0 I, 0 -0 ... 0
X 0 I, 0 I, :
CT i . . . c [Rnpxnp7
2
: . S .0
0 e . 0 I, 0 I,
L0 . . e 0 21, 0 |
since it is known (see [2]) that the eigenvalues of (I3]) coincide with the eigenvalues
of P(z).

The eigenvalues of P(z) may be computed as the eigenvalues of Cr using, for
instance, the QR algorithm. The QR algorithm is a backward stable algorithm;
this means that the computed eigenvalues are the exact eigenvalues of a matrix
Cr + E, where F is a (possibly dense) matrix such that

IE|l = O@)[Crl,
for some matrix norm, where u denotes the machine precision. However, the previ-
ous equation does not guarantee that the computed eigenvalues are the eigenvalues
of a nearby matrix polynomial of P(x) or, in other words, that this polynomial
eigensolver is backward stable. In order for the method to be backward stable (in
a normwise sense), the computed eigenvalues should be the exact eigenvalues of a
polynomial P(z) = LT, (z) + Zz;é ApTi(z), such that

1P - P|
= o),
e - O

for some matrix polynomial norm.

In the scalar polynomial case (p = 1), the backward stability of the polynomial
rootfinding in a degree-graded basis using confederate matrices is studied in [I§].
In particular (see [I8, Theorem 4.2]), the authors prove that if Cp is the colleague
matrix of a polynomial p(z) and E € R"*™ is any matrix, then the eigenvalues of
Cr + E are the exact roots of a polynomial p(x) such that

n—1
(1.4) p(z) —p(x) = Y 8i(p, E)Ti(z) + O(|| E|13),
=0

where, for i = 0,1,...,n — 1, the quantity d;(p, E) is an affine function of the
coefficients of p(x), and, separately, of the entries of E.

Equation ([4)) implies that if the roots of p(z) are computed as the eigenvalues
of its colleague matrix Cr using a backward stable eigenvalue algorithm, then, the
computed roots will be the exact roots of a polynomial p(z) such that

B2 s(motllel.
2l
for some constant k(n). The previous equation shows, first, that this method is
not backward stable if ||p|| > 1, and, second, that this method is backward stable
if the following two conditions are satisfied: (i) the quantity «(n) is a low-degree
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polynomial in n with moderate coefficients; and, (ii) the norm ||p|| is moderate. As
it is observed in [I8], writing d;(p, E) = 3_, ; , BijeacEij, since it is not clear what
exactly are the constants 3;;, involved, in principle it could happen that |3;;,| > 1,
implying that x(n) might not be a polynomial in n with moderate coeflicients.
However, in this work we show that, in fact, |B;;¢| < 4, and, so,

17— pll
ol O(u)]lpll,
holds. The previous equation implies that computing the roots of p(z) via the
eigenvalues of its colleague matrix using a backward stable eigenvalue algorithm is
a backward stable rootfinding algorithm, provided that ||p| < 1.

Moreover, using some arguments inspired by [3L9,15,[16] we will generalize the
previous result to the matrix polynomial case, that is, if the eigenvalues of a matrix
polynomial P(x) are computed as the eigenvalues of its colleague matrix using a
backward stable eigenvalue algorithm, then we prove that the computed eigenvalues
are the exact eigenvalues of a monic matrix polynomial in the Chebyshev basis P (z)
such that

|P-P|
= O(u)||P|-
B = OwlIPl

The previous equation implies that this method is backward stable if || P|| is mod-
erate.

The paper is organized as follows. At the beginning of Section 2] we present
Arnold transversality theorem for colleague matrices, which will be the main tool
used to study the polynomial backward stability of the rootfinding method using
colleague matrices. Then, in Section 2.2l we prove the Arnold transversality theorem
for colleague matrices, and in Section 2.3l we use this theorem to study the backward
stability of the rootfinding method using colleague matrices.

Throughout this paper, for a px p matrix polynomial P(z) = > _, ATk (x), not
necessarily monic, || P|| is the norm on the vector space of p x p matrix polynomials
of degree less than or equal to n defined as

1Pllr = [ D 1Akl
k=0

Notice that, since we are going to deal with monic polynomials in the Chebyshev
basis, A, = I,. Also notice that for a scalar polynomial p(z) = Y, _, axTk(z), that
is, for p = 1, this norm reduces to the usual 2-norm:

IpllF = llplle =

2. ARNOLD TRANSVERSALITY THEOREM FOR COLLEAGUE MATRICES
AND BACKWARD ERROR ANALYSIS

The Arnold transversality theorem will be the main tool in this section used to
study what kind of polynomial backward stability is provided by matrix backward
stability when the roots of scalar polynomials or the eigenvalues of matrix polyno-
mials are computed as the eigenvalues of its colleague matrix with a backward stable
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eigenvalue algorithm. This theorem was first stated in [3] for companion matrices,
and later generalized in [I§] to confederate matrices of scalar polynomials.

Following [3],8,@L15,18], we consider the Euclidian matrix space R™*™ with the
usual Frobenius inner product

(A, B) := tr (AB™T),

where M7 denotes the transpose of M € R™* ™. In this space, the set of matrices
similar to a given matrix A € R"*" is a differentiable manifold in R™*™. This
manifold is called the orbit of A under the action of similarity:

O(A) :={SAS™! : S € R™ " and det(S) # 0}.
A first-order expansion shows that the tangent space of O(A) at A is the set
T4O(A) :={AX — XA for some X € R"*"}.

We also consider the vector subspace of “first block row matrices”, denoted by
BFR,, C R"™*"" which is defined as those n x n block matrices [Xj;], with
Xi; € RP*P_whose block rows are all zero except (possibly) the first:

BFRMP::{X:[]P 0o ... O]T[Xl X, -+ X,] for some

X1, X, ..., X, € RPXP } C RPXP

Note that by taking p = 1 the space BFR,, , reduces to the vector subspace 7R,
of “first row matrices” introduced in [18].

The Arnold transversality theorem for a block colleague matrix Cr of a monic
matrix polynomial P(z) in the Chebyshev basis states that any matrix F € R"P*"P
may be decomposed as

E=Fy+T,

where Fy € BFR,,, is a first block row matrix and T' € T, O(Cr). Notice that
taking p = 1 in the previous decomposition, this “block” version of Arnold transver-
sality theorem reduces to a special case of [I8, Theorem 4.1].

In Section 23] we present a proof of Arnold transversality theorem, different
than the one in [18], extending (for the important case of the Chebyshev basis)
[18, Theorem 4.1] to the more complicated case of matrix polynomials. The new
approach allows us to compute explicitly the matrix Fy. Then, using this explicit
expression, we study the polynomial backward stability of the rootfinding method
using colleague matrices.

2.1. Clenshaw shifts and Clenshaw matrices. In this section we introduce
some matrix polynomials and some matrices, named here as Clenshaw shifts and
Clenshaw matrices, respectively, associated with a monic matrix polynomial in the
Chebyshev basis P(z), that will be used through Section 23] and will be key in the
following developments. Clenshaw shifts are the generalization of the Horner shifts
(see [7]) when the polynomial P(z) is expressed in the Chebyshev basis.
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Associated with the p x p monic matrix polynomial in the Chebyshev basis P(x)
in (L2), we define the following p x p matrix polynomials:

)=ar,

91 Hl({E) = 21‘H0($)—|—2An_1,

(2.1) Hy(z) =2xHp_1(x) — Hy_o(x) + 24, _, fork=23,....n—2,
(

x)=xH, o(x) — Hy_3(x)/2 + A;.

We will refer, for k = 1,2,...,n, to the matrix polynomial Hy(z) as the degree k
Clenshaw shift of P(x), since for p = 1 they coincide with the well-known Clen-
shaw shifts associated with a scalar polynomial expressed in the Chebyshev basis
[6]. Clenshaw shifts are related with the polynomial P(z) through the following
equation [6]:

(2.2) 2P(z) = 2xHp—1(x) — Hy—o(x) + 2A,.

In Theorem[Z] given the Chebyshev polynomial T;,_;(z) and the Clenshaw shift
H,,_i(z), we show how to express T}, («) H,—(x) uniquely as Q;;(z)+7ix(z) P(x),
where Q;;(z) is a p x p matrix polynomial of degree less than or equal to n —1 and
rik(x) is a scalar polynomial. The proof of Theorem 2] is elementary but rather
technical, so we leave it to the appendix. In order to write down a reasonably
simple formula for T,_;(x)H,,_x(x), we define the following quantities

n

Togy1 =Tog-1+24, 90k—1, fork=12..., \‘gJ -1, with 'y =21,

(2.3) N
Top = Dogn) + 240 ok, fork=1,2,..., B] —1, with Ty =24, .

Notice that in Ty only coefficients of P(x) appear with indices of the same parity.

Theorem 2.1. Let P(z) = I,T,,(x) —i—zz;é ATy (x) be a px p monic matriz poly-
nomial in the Chebyshev basis of degree n, let T,,_;(x) and H,_(x) be, respectively,
the degree n —i Chebyshev polynomial and the degree n — k Clenshaw shift of P(x),
with i,k € {1,2,...,n}. Then, there exist a unique p X p matriz polynomial Q;(x)
of degree less than or equal to n—1 and a unique scalar polynomial r;.(x) such that

Ty—i(z)Hp—(2) = Qi (z) + rig(2z) P(z),
where:
o ifi>n—k+1andk>2,
n— 1

k—
(2.4) Qir(z) = Z Lo(Ton—i—k—0(2) + Tgte—i| () + Dok Tn—i(2);
—0

~

e ifi=nand k=1,

Fn—l
2

(2.5) Qir(x) = i ToT—1—¢(x) + To(x);
£=0
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e ifi<n—kandn—1>k>2,

Qik(w Zfz k2 0(t) + Tipgo—i| (2) + Ti1Tp—1 ()

(2‘6) n—k+1—ik—1+¢

Z Z 2Ak71+£77‘1—‘|n7i+17€7r\($);
(=1 r=1

e ifi<n—kandk=1

n—i

14
F
(27) Qlk ZFZTZ 1— l 2 ZA T\n—i+1—€—r|(1’)§

1r=1

where Ty, for £ =10,1,2,..., is defined in [23).

o~
Il

From Theorem 2.1 it is clear that there exists a unique n x n block matrix
My, = [(Mk)”], with (Mk)ij S Rpo, such that, for k=1,2,...,n

Tn,l(fc) Tnfl(x) Tk (LE)
(2.8) Tl.(x) ® Hy—p(x) = My Tl.(x) ® I, + Tn—l.,k(x) ® P(x),
To(x) To(x) Tk ()

where ® denotes the Kronecker product, for some scalar polynomials r1x(z), ...,
rnk(x). We will refer to the matrix My in (Z38) as the kth Clenshaw matriz of
P(x).

By direct multiplication, it may be easily checked that the block colleague matrix
C'r satisfies

Tn—l(z) Tn—l(z)
: : 1
(2.9) x T1 .(l‘) ®I,=Cr T1 .(l‘) ® I, + 3¢ ® P(z).
To(x) To(x)

Equations (2.8) and (29]) shows that the Clenshaw matrices and the colleague
matrix can be interpreted, respectively, as the multiplication-by-Clenshaw shifts
and the multiplication-by-z operators in certain quotient modules (see also [19, Sec.

5)).
Using (28)) and (Z9), in Proposition we show that the Clenshaw matrices
My, Ms, ..., M, in (2.8)) satisfy a simple recurrence relation.

Proposition 2.2. Let P(x) = L,T,(z) + Zz;é ApTr(x) be a p x p monic matrix
polynomial in the Chebyshev basis of degree n, let Cp be the block colleague matriz
of P(x), and let My, Ms, ..., M, be the Clenshaw matrices in ([28]). Then,

M, =1, ® 21,

My =2M,Cr + I, ® 2An—17

MkZQM]H_lCT—M/H_Q—I—In@ZAk, fork=n—-2...,3,2, and

My = MoCr — Ms/2+ 1, ® A;.

(2.10)
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Proof. The proof proceeds backwards from k& = n. First, we prove that the result
is true for kK = n. From (2IJ), we have

Tn—l(x) Tn—l(x) 2[1, Tn_l(x)
L eH@) =] ¢ |e2,= - Lol e,
T1 (.’L‘) T1 (.’L‘) 2Ip T1 (JJ)
TQ(.’L‘) To(.’l}‘) QIp To(.l?)

Comparing the previous equation with ([Z.8)), we deduce that M,, = I, ® 2I,.
Second, we prove that the result is true for £ = n — 1. From (2.1), we have

T’ﬂfl(x) Tnfl(x)
TO(fE) T()(!E)
Tnfl(x) Tnfl(x)
To(x) To(z)

Using [2.8) with & = n, together with (Z3]), we get

Th1() Tp1(7) T1n-1(T)
D |em@) =@M,oriLe24, ) | |+ 1 |eP@.
T1 (il? Tl(x) Tnfl,nfl(x)
To(x) To(x) Tnn—1(2)
for some scalar polynomials r1 ,,—1(2), ..., "n,n—1(x). Comparing the previous equa-

tion with (Z8), we deduce that M,,_1 = 2M,Cr + I,, ® 24,,_1.
Third, we prove that the result is true for n — 2 > k > 2. From (Z1), we have

Tn_l(l‘) Tn—l(«f)
T (x) ® Hn_k(:zz) = T, (x) X (QIEHn_k_l(l‘) — H,L_k_Q(ZE) + 2Ak)
L To(z) | To(x)
_Tn,l(x)_ Tn,l(x) Tn,l(x)
=2 ®Hn7k,1(l‘) — ®Hn,k,2(l’) + ®2Ak.
T (=) T () T ()
| To(z) | To(x) To(x)
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Using ([2.8) with &+ 1 and k + 2, together with ([2.9)), we get

Tnfl(.’[) Tnfl(.’[)
D | @ Hy(2) = (2CrMysr — Myso + I, ©245) |

Ty (z) Ti(x)

To(x) To(x)
rik(z)

+ : ® P(z),
Tn—1,5(2)
T k()
for some scalar polynomials rx(x), ...,k (x). Comparing the previous equation

with (2.8]), we deduce that My = 2Cr M1 — My1o + I, ® 2A;.

Finally, the proof of the last case (k = 1) is similar to the proof for the previous
cases (n —2 > k > 2), but using H,_1(x) = ©H,_o(x) — Hy—3(x)/2 + A1, so we
omit it. (Il

Remark 2.3. Clenshaw matrices are closely related with the so-called Leverrier’s
algorithm for orthogonal polynomial bases [5], which allows the simultaneous de-
termination of the characteristic polynomial of a matrix A and the adjoint matrix
of I — A. Indeed, if we consider a scalar polynomial p(z) = T),(x) +ZZ;3 arpTy(x),
it may be checked that the adjoint of zI — Cr is given by

) 1 n—1
(2.11) adj (2 = Cr) = 5 > My Ti(x),
k=0

where My, Ms, ..., M, are the Clenshaw matrices of p(x).

The Clenshaw matrices My, Ms, ..., M,, have a complicated structure. We illus-
trate this with an example of moderate size. For n = 6 and k = 3, it is easy to
check using (2.I0) that the matrix My is equal to

0 —24> —2A3—-2A7 2[, —2A4—2A>—4A¢ —2A3 —4A7 —2A2 —2Ap
0 0 21, —2A2 2A5 —2A3 —2A1  2I, —2A2 — 4Ag —2A1
0 21, 2As5 2Ip +2A4 — 245 2A5 — 2A1 21, —2A0
2[1) 2As5 QIp +2A4 2A5 + 2A3 4Ip +2A4 2A5
0 21, 2As5 41, + 2A4 4A5 + 2A3 2A4 + 21,
0 0 4Ip 4As5 4Ip + 4A4 2As5 + 2A3

Two observations about the block matrix above are: (i) its first block column is
equal to ep—k41 ® 20,, where e; denotes the ¢th column of the n x n identity
matrix; and, (i) if we set A, := I, each block entry has the form Y7  c;A;,
where |¢;| < 4. In Theorem [24] we show that the two previous observations are
true for any n and k. Property (i) will be key to prove the Arnold transversality
theorem, and property (ii) will be key to study what kind of backward stability of
a linearization-based algorithm for the polynomial eigenvalue problem is provided
by the backward stability of an eigensolver for the linearized problem.

Theorem 2.4. Let P(z) = I,T,(z) + ZZ;& AiTi(x) be a p X p monic matrix
polynomial in the Chebyshev basis of degree n, and let My, for k =1,2,...,n, be
the kth Clenshaw matriz in 2.8). Then, the following statements hold:
(a) The first block column of My, is equal to en—_jy1 ® 21, where ey denotes the
Lth column of the n x n identity matriz.
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(b) For i,j = 1,2,...,n, the (i,j)th block entry of My satisfies (My):; =
Yoo QtijeAr with |oy k| < 4, where we set Ay, = 1T,,.

Proof. From Theorem [21] together with (Z8), we have H,_x(z)T,—:i(z)
= >0 (My)i;Ty—j(x) + rir(x) P(z). Therefore, to prove part (a) it is enough
to show that

(2.12) Tooi(z)Hp—i(x) = 21,151 (z) + - - + rip(x) P(x),
if i=n—k+1, and that
(2.13) Tni(x)Hp—i(x) = (My)iTy(z) + - - - + rip(x) P(2),

with v < n—1,if i # n—k+1, where the dots correspond to Chebyshev polynomials
with lower indices.

First, suppose that i > n — k 4+ 1. We will prove that T,,_;(z) H,_r(x) is of the
form [2I2) when i =n — k+ 1 and it is of the form (2ZI3]) otherwise. We need to
distinguish several cases. First, let k = n. From (24) we get that T,,_;(x)Hp(z) =
ToT,—i(x) = 2L,T,,—;(x). Since the index n—1i is equal to n — 1 if and only if i = 1,
the result is true in this case. Then, consider the case n—1 > k > 2. There are three
kinds of indices of Chebyshev polynomials in ([24]). The first is 2n —i — k — ¢, which
is equal to n — 1 if and only if £ = 0 and i = n — k + 1. This gives a contribution
ToT,—1(x) = 2I,T,_1(z) only when ¢ =n — k + 1. The second one is |k + ¢ — i|.
Taking into account the possible values that k, ¢, and ¢ can take in (2.4)), it may be
easily checked that this index is smaller than or equal to n — 2. The third index is
n — ¢ which necessarily is smaller than or equal to n — 2, and, hence, the result is
true in this case. Finally, consider the case k = 1 and i = n. There are two kinds of
indices of Chebyshev polynomials in (2.8). The first one is n — 1 — ¢, which is equal
ton — 1 if and only if £ = 0. This gives a contribution I'gT},—1(z) = 2I,T,,—1(x).
The second index is 0, which is smaller than n — 2. Therefore, the result is also
true in this case.

Now suppose that i < n — k. We will we prove that T,,_;(z)H,,_r(x) is of the
form (213]). Notice that there are four kinds of indices in (2.6]) when k > 2, namely,
i+k—2—4|k+0—i|l,[n—i+1—¢—r|and k— 1, and three kinds of indices in
@20) when k = 1, namely, i —1—¢, i—1 and |[n—i+1—{¢—r|. Taking into account
the possible values that k, ¢, r, and i can take in [ZI3]), in both cases (k > 2 and
k = 2), it may be checked that these indices do not exceed n — 2.

Now, we proceed to prove part (b). Again, we need to distinguish several cases.
First, suppose that ¢ > n — k + 1 and also assume that k£ > 2 (the argument when
k =1 is similar and simpler, so we omit it), and consider the three kinds of indices
of Chebyshev polynomials that appear in (24]), namely, 2n —i — k — ¢, |k + £ — i,
and n —¢. For ¢ = 0,1,...,n — k, a careful look at these indices reveals that if
k+{¢—1i> 0, then the three of them are different. Therefore, we can write (2.4)) as

-1

n—1
(2.14) S BTy(x)+ Y. BiT(w),
=0

{=—(1-n)

where By is equal to either 0 or I'; for some ¢. It follows that (My);; is equal to
either 0, T'; for some ¢, or I'y, + I'y, for some ¢1,t5. Finally, recall from (23] that
I'; is equal to 21, +2A4,,_o+2A,_4+--- if t is even, or to 24,1 + 24,3+ if
t is odd. Therefore, (My)i; = > 1o QijeAe, with o] < 4.
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Then suppose that i < n — k and also assume that k > 2 (again, the argument
when k = 1 is similar and simpler, so we omit it). First, consider the three kinds
of indices of Chebyshev polynomials that appear in the first summand in (26,
namely, i + k —2— ¢, |k+ ¢ —i|, k—1. For £ = 0,1,...,i — 2, again, it may be
checked that if £k + ¢ — 4 > 0, then these three indices are different. Therefore,
the first summand in (2.6) is also of the form (2I4). Finally, consider the index
of the Chebyshev polynomials and the index of the coefficients A; that appear in
the second summand in (26), namely, n —i+1—¢—r[,and k+1+¢—r. If
n—i+1—/¢—r >0, it may be checked that for any two allowed different pairs
(¢,7) that realize the same value of n — i+ 1 — ¢ — r, then the associate indices
k+ 1+ ¢ —r must be different. Since the same occur whenn—i+1—/¢—17 <0, it
follows that (2.6]) is of the form

n—2 -1 n—2 —1
Z Cng(;v) + Z CgT,g(.’L') -2 Z DzTg(.’L‘) -2 Z DZT,g(x) + Tzk(.’ﬂ)P(ﬂ;‘)
=0 £=0

{=—(2—n) £=2—n

where Cp is equal to either 0 or I'; for some ¢, and Dy is equal to Z‘t”:l A;,, where
it, 7 i1, whenever t1 # to. Then, it follows that

(My)ij = > 00Ar =Y peAs,
=0 =0

where §; and py are equal to either 4, or 2 or 0; therefore (My);; = Y 1o ou,iji At
with |at,ijk| < 4.

If necessary, explicit expressions of the entries of the Clenshaw matrices M7, M,
..., M, may be obtained from Theorem 2.1l However, since Theorem [2.4] is the
only information that we will need about them to prove our main results in the
following section, we do not pursue that idea.

2.2. Proof of the Arnold transversality theorem for colleague matrices.
In this section we prove the Arnold transversality theorem for colleague matrices
of monic polynomials in the Chebyshev basis. That is, we show that any matrix
E € RP"*P™ may be decomposed as

(2.15) E=Fy+T,

where Fy € BFR,,, is a first block row matrix and T' € T, O(Cr), constructing
the matrix F explicitly.

As in the case of the monomial basis, generically, dim (T¢, O(Cr))+dim (BFR,, ;)
=n2p? —np+np? > n?p? (see [916]). In words, the tangent space T¢, O(Cr) and
the vector space of first block row matrices BFR,, , may have a nontrivial intersec-
tion when p > 1. For this reason, following [9[I6] we choose a particular subspace
of the tangent space that will give a unique decomposition ([Z.I5]). This subspace is
denoted by Sub T, O(Cr) and it is given by

Sub Te, O(Cr) = {X € Te,, O(Cr) such that X has 0 first block column}.

In order to get the decomposition ([ZI5) with 7' € Sub T, O(Cr) we will make
use of the Clenshaw matrices My, Mo, ..., M, € R™"*"P defined in (2.3]), of the
matrix polynomial P(z) in (I2). Though the only information that we need about
Clenshaw matrices are those stated in Theorem [2.4] together with the recurrence

relation ([2I0).
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Following [9], we also define the block trace of a np x np block matrix Z = [Z;;],
with Z;; € RP*P, as the p X p matrix

tI'p (Z) = En: Z”
i=1

The block trace is used in Theorem 2.5, which provides a characterization of the
subspace Sub7¢,O(Cr), and is a generalization of [0, Theorem 4.1] when the
matrix polynomial P(z) is expressed in the Chebyshev basis.

Theorem 2.5. For any Z € RP™"*P™,

(2.16) try (My1Z) =0, fork=01,....n—1,

if and only if

(217)  Z=CrX —XCrp  for some X € R"*"P ith 0 first block column.

Moreover, either condition determines the first block row of Z uniquely given the
remaining block rows.

Proof. From part (a) in Theorem 24] the (n — k, 1) block entry of M1 is equal
to 2I,, and the (4,1) block entry of M1, with i # n — k, is equal to 0. Therefore,
21—k, for k=0,1,...,n—1, is uniquely determined from (ZI6]). Also, if X has 0
first block column, it may be easily checked that the map from X to the last n — 1
block rows of Cr X — X C7pr has a trivial nullspace. Thus, Z is uniquely determined
by @2.17).

To finish the proof we need to prove that (2I7) implies (2I6). That is, we need
to show that tr, (Mg+1(CrX — XCr)) = 0 for any block matrix X with 0 first
block column. In order to do this, first we show that if X has 0 first block column,
then tr, (Mg4+1 X Cr) = trp (CrMy4+1X). The proof of the previous equation is not
completely immediate when p > 1 since, in this situation, tr, (AB) = tr, (BA) does
not hold in general. So, consider a block matrix Y that has 0 first block column.
Then,

= Yiitw . Yigo,it1
tr, (CrY) = Z} ( SRR ) +Y, 1, =tr, (YCr).
Therefore, if X has 0 first block column, then tr, (My4+1 X Cr) = tr, (CrMi11X).

Then, we show that tr, (CrMy41X) = tr, (Mi4+1CrX). To do this, note that the
Clenshaw matrix M1 is of the form 2"_]“0}17]@71—!-2?:_1]6_1 (In®Bk)C§Lfk717t, for
some By, Ba,...,B,_;_1 € RP*P (this can be verified by induction using (2I0)).
So, we only need to show that tr, (Cr(I, ® B)CHX) = tr, (I ® B)CHCrX).
Indeed, since the matrix Cp (I, @ B) — (I, ® B)Cr is 0 except the first block row,
and since O X has 0 first block column, it follows that tr, (Cr (I, ® B)CHX —
(I ® B)C3.CrX) = 0. Therefore, tr, (CrMy1X) = tr, (My1CrX). Thus, we
conclude that tr, (M1 XCr) = tr, (Cr M1 X) = trp, (M1 CrX). O

In Theorem we present the proof of Arnold transversality theorem for block
colleague matrices. Part (a) in Theorem 24 will be key here.

Theorem 2.6. Let P(z) = I,T,(z) + Zz;é ATy (z) be a p X p monic matrix
polynomial in the Chebyshev basis of degree m, and let Cp be its block colleague
matriz. Then, any matriz E € R"™*™ can be expressed as

(2.18) E=Fy,+T,
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where Fy € BFR,, ;, is a first block row matriz, and T € Sub T, O(Cr). Moreover,
if the first block row of Fy is written as Fo(”*l) e Fo(l) FO(O)} , then

1
(2.19) FP = 5 (EMiga),  fork=0,1,...,n~1,
where the matriz M1 is the (k4 1)th Clenshaw matriz defined in (2.8]).

Proof. Define Fo(k) = %trp (EMy41), for k=0,1,...,n—1, and let Fy € BFR,,, be
a first block row matrix such that its first block row is [Fo("’l) ... Fél) FO(O)] )

We may write the matrix T' := E — Fy. Then, we have to check that T €
Sub T, O(Cr). From Theorem [ZH] we see that it is sufficient to show that
tr, (TMy41) =0, for k=0,1,...,n — 1. Indeed, using part (a) in Theorem [27]

tr, (TMjyy1) =tr, (EMyiy) — trp (FoMgg) = trp (EMj i) — 2F =
tI‘p (EMkJrl) - tl"p (EMkJrl) = 0,

for k=0,1,...,n— 1. So, we conclude that T' € Sub T, O(Cr). O

The norm of the matrix X in 7' = CrX — XCr in (2I8) has the remarkable
property that it depends only on the matrix E and not on the coefficients of the
matrix polynomial P(z). We prove this fact in the following lemma.

Lemma 2.7. The matriz X in T = CrX — XCrp in 2ZI8) can be bounded as
IX||lF < C|E||F, for some constant C which does not depend on the coefficients of
the matriz polynomial P(z).

Proof. Recall that the matrix X with 0 first block column is uniquely determined
by

2 ... 2
Esy -+ Eop

(2.20) CrX —XCr = . . )
Enl e Enn

where the “?” blocks are not taken into account. Then, notice that the 0O first
block column of X implies that the block entries of the bottom n — 1 block rows of
CrX — XCrp are just linear combinations of the block entries of X. For example,
if n = 5, these block rows are
—X22 Xi2+Xs2—Xoz  Xis+Xszs—Xoo—Xos  Xia+Xsa—Xo3—2Xo5  Xis+Xsg5—Xog
—X32  Xoo+Xuo—X33 Xoz+Xuz—X32— X34 Xoa+Xua—X33—-2X35  Xos+Xa5— X34

—Xa2  Xzo+Xs2—Xaz  Xaz+Xsz3—Xao—Xaa  Xza+Xs54—Xaz—2w45 X35+ Xs55—Xaa
—Xs52  2X42—Xs3 2X43— Xp2—X54 2X44—X53—2X55 2X45—Xs54

Thus, (220) gives rise to a linear system of equations whose solution does not
depend on the coefficients of P(x). This system of equations can be easily solved.
For simplicity, we describe the procedure to obtain its solution for n = 5: it is
immediate to generalize the procedure to any n, and this claim corresponds to the
fact that the matrix of the coeflicients of the linear system is permutation equivalent
to a lower triangular invertible matrix. In this case, the block entries of the matrix



1754 VANNI NOFERINI AND JAVIER PEREZ

X can be obtained in the following order:

0 (Xi2)20 (Xi3)19 (Xwa)is (Xis)ir

0 (X22)1 (Xo3)is (Xoa)is (Xos)a

0 (X32)2 (Xs33)s (X34)13 (Xss)12 |,
(Xaa)s  (Xus)n1

0 (Xa2)3 (Xu3)6
0 (Xs2)2 (Xs3)7  (Xsa)o  (Xs5)10

where the index outside the parenthesis indicates the order in which each block
is obtained while solving the linear system. FEach block entry of X is a linear
combination of block entries of E, and therefore | X||r < C||E||F, for some constant
C independent of the coefficients of P(x). O

2.3. Backward error of the Chebyshev rootfinding method using col-
league matrices. An important consequence of the decomposition in Theorem
and Lemma 2.7 is that if F is a small perturbation of the block colleague
matrix Cr, then

Cr+E=Cr+F+T=Cr+Fy+ (CrX — XCr)
=(I+X)""(Cr + Fo + E1)(I + X),

with || E1||r = O(|| E||%), where we have used that T can be written as Cr X — X Cr,
for some X € R™*"P with 0 first block column and || X||r < C||E||r. Noticing
that C' + Fy is in turn a block colleague matrix of another matrix polynomial, we
deduce that a small perturbation of the block colleague matrix of P(x) is similar,
to first order in the norm of the perturbation, to a block colleague matrix of a
perturbed polynomial ]S(x) This observation allows us to formulate the following
corollary.

Corollary 2.8. Let P(z) = I,T,(z) + Zz;é ApTr(x) be a p X p monic matrix
polynomial in the Chebyshev basis of degree n, and let Cp be its block colleague
matriz. Assume that the eigenvalues of P(x) are computed as the eigenvalues of
Cr with a backward stable algorithm, i.e., an algorithm that computes the exact
eigenvalues of some matrix Cr + E, with ||E|lp = O()||Cr||r, where u is the
machine precision. Then, to first order in u, the computed roots are the exact roots
of a polynomial P(x) such that

P = Pllr
1Pl r

Proof. If a backward stable eigensolver is given Cr as an input, the computed
eigenvalues are the exact eigenvalues of a matrix Cp + E, for some E with ||E|p =
€||Cr||F, where € = uh(n), for some low degree polynomial i with moderate co-
efficients. In other words, the computed eigenvalues are the exact roots of the
polynomial det(zI — Cr — E).

Using Theorem 26, we can write E = Fy + T, where T € Sub T, O(Cr) and
Fj is a first block row matrix with first block row as in (ZI9). Therefore, to first
order in u, we get

Cr+E=Cr+Fy+CrX —XCpr=I+X)Cr + Fy + O(u?)(I + X).
We can apply a similarity transformation so that S(Cr + Fy + O(u?))S~1 is a

colleague matrix Cy + Fy, with ||1:"\0 — Fyllr = O(u?). The construction of this
similarity transformation is constructive and algorithmic, along the same lines as

= O()[|P[|F.
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the proof of [I8, Lemma 3.1]. For simplicity, we describe the procedure to construct
it in a moderate case (n = 5). The general case can be treated similarly. In this
situation, let us write Cr + Fy + O(u?) as

—A 4 B LA+ BY —a,+ BP —A 4+ BV —4+ B
| 0 Iy 0 0
N Ly 9 L o
v v Ly 0 Iy
0 0 0 of, 0

where, following [18], we adopt the following notation. For any matrix A, the
matrix A denotes a matrix such that |A — A|z = O(u?).

The zeros and identity blocks of the matrix above can be recovered via row scal-
ing, and column and row Gaussian operations. The order in which these operations
are performed is indicated in the following matrix:

—A 4 BY LA+ B® —a,+ BP —A 4+ BV —A+ B

L Tra 0(11,0) Ip 11,0 0(11,0) 0(11.0)
5 02.r) Ip (5.6 0(10.0) Ip (10,0) O(oe) |
02, 0 (4,r) Ip (5.s) 0 (9,0) Ip 9.0y
0 (2,r) 0 (ar) 06.r) 21y (7.4s) 0(8.0)

where the first subscript denotes the order in which the O(u?) perturbations to the
zero and identity blocks are annihilated, and the second subscript denotes whether
this is done via a row scaling (rs), or via a row (r) or a column (c) Gaussian opera-
tion. Notice that these row and column operations may be obtained, respectively,
pre and post multiplying by a matrix of the form I 4 .S;. In order to preserve the
eigenvalues, after pre (resp. post) multiplying by I +.5; we need to post (resp. pre)
multiply by (I + S;)~!, but notice in addition, that this inverse operation never
destroys the already recovered zero and identity blocks.

Finally, writing E as a np x np block matrix E = [E;;], with E,;; € RP*P, and
noticing that Cp + ﬁo is the colleague matrix of the matrix polynomial ﬁ(w) =
LT, (z) + EZ;S (A — Fo(k) + O(u?))Tx(x), we have that, to first order in u, the
computed eigenvalues are the exact eigenvalues of a matrix polynomial ﬁ(w) =
LT (@) + 325 AxTi(e), with [|Ax = Aellr = |1F"|r = fJor, (EMier)|lr =
I35 j=1 Eij(Mpg41)jill . Therefore, for k =0,1,...,n — 1, we have

n

14k = Akllr <> 1B eIl (Mira)jille < | Y 112 Y 1M1 %

i,j=1 i,j=1 i,j=1

=[E|rl|My+1| F-
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Then, using part (b) of Theorem 2.4] we have

n n n
IMiialle = | D0 I(Mig)igl3 = | D0 1D anijrsr A3
ij=1 ij=1 t=0
<\ D0 (Z ||04t,ij,k+1At||F> <4, > <Z|At||F>
ij=1 \t=0 ij=1 \t=0

<4n(n+1)"2||P||p,

where we have used Y i [|A¢|lr < (n+ 1)Y/2||P||p. Finally, using that ||E||p =
e||Cr||F, we get that

—Ap1 —Apr - =4 I,
0 0 e 0 I I
€ . . . €
Elr<$ € .
1Bl < & +s |
: : : I, 0 I
0 0 0 s 2117 F
n—1 n—1
€ V2n
<3 Z [Adll% +/2np | <€ 5 Z [A]|F + VP | < ev2n|Plp.

t=0 t=0

Thus, the computed eigenvalues, to first order in u, are the exact eigenvalues of a
monic matrix polynomial in the Chebyshev basis P(x) such that,

n—1 n—1 n—1
IP = Pllr =\ Y 1Ak = Akl <D 1A — Akllr < Y [ Miiallrl| Bl
k=0 k=0 k=0

<4n®(n+1)V2|P|lp| B|lr < €| P,
where € = uﬁ(n), for some low degree polynomial h with moderate coefficients. [

Remark 2.9. When the polynomial is scalar (m = 1), Corollary can be proved
without the use of Arnold transversality theorem, using a different argument that is
sketched in the following lines. Let us suppose that the roots of a scalar polynomial
p(z) = Th(x) + Y p_oaxTk(z) are computed as the eigenvalues of its colleague
matrix Cp with a backward stable algorithm. Then, the computed roots are the
exact eigenvalues of small perturbation of the colleague matrix Cr + E, that is,
they are the exact roots of p(x) = det(zI — Cr — E). In the spirit of [§], combining
[2I1)) with Jacobi’s formula for the derivative of a determinant, we get

px) = p(z) — tr (adj (¢ — M) E) + O (| E| %)
n—1
= Tu(@)+ 3 (ax — tr(Mys1 E)) Ti(2) + O (| EJ3),
k=0
where My, Ms, ..., M, are the Clenshaw matrices of p(x). Finally, using the equa-
tion above, the norm ||p — p||2 may be bounded as we did in the final part of the
proof of Corollary 2.8
In fact, a similar argument may be used when the roots of a nonmonic scalar
polynomial p(z) = ZZ:O a, Tk (x) are computed as the generalized eigenvalues of its
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colleague pencil [18] using, for example, the QZ algorithm, allowing one to recover
the results in [I8, Theorem 3.3]. Unfortunately, unless the leading coefficient is
invertible, this approach does not work in the matrix polynomial case, so we do not
pursue these ideas further.

3. BACKWARD ERROR GROWTH WITH THE NORM AND THE DEGREE
OF THE POLYNOMIAL

In the previous section we have analyzed the backward stability of polynomial
eigenvalue algorithms based on the QR algorithm applied to the colleague matrix
([T3), and we have derived the polynomial backward error upper bound (see Corol-

lary 228)
(3.1) 1P = Pllp < 8en®(n(n + 1)"/?|[P||%,

where € = O(u) is any theoretical bound for the matrix backward error coming
from the QR algorithm. In this section, we provide numerical experiments to show
whether or not the upper bound (BJ) correctly predicts the dependence of the
polynomial backward error on the norm and on the degree of the polynomial. For
simplicity we focus on scalar polynomials (m = 1).

Given a scalar polynomial p(z) = T,(x) + Zz;é arTp—1(x), to examine the
tightness of the bound BI]) we compute its roots by forming its colleague matrix
Cr and computing the eigenvlalues of Cp via the Matlab command eig(Cr). If we
denote by {Z1,Ts,...,T,} the computed eigenvalues of C, we then compute the
backward error by forming p(z) = [[,_, (z —Z)) and expanding it in the Chebyshev
basis with the help of the Chebfun software [24].

In the first set of numerical experiments we study the dependence of the polyno-
mial backward error ||p — pll2 on the norm ||p||2 (recall that according to Corollary
2.8 this dependence should be quadratic). To this end, we proceed as follows. For
each k = 2,3,...,10, we generate 100 random degree-10 polynomials with 2-norm
equal to 10%. The coefficients of these polynomials are generated via the Matlab
commands p=randn(10) and p=10"k*p/norm(p). Then, for each polynomial we
compute the backward error ||p — p|l2 when its roots are computed via the eigen-
values of its colleague matrix.

In Figure [l we plot the maximum backward error obtained for each of the 9 sam-
ples of 100 random polynomials against the norm of the polynomials. In addition,
we also compare them with the O(||p||3) trend predicted by Corollary 28 A linear
fitting of the data gives, more precisely, a growth as ||p|[3-?°, which is consistent
with the theory.

In the second set of numerical experiments we study the dependence of the
polynomial backward error ||p — pl||2 on the degree of p(z), when the norm of the
polynomial is fixed to 1. Writing € = n"u, where w is the unit roundoff, notice that
(1) predicts an upper bound O(n?*7). To examine the tightness of this bound, for
each n =10,12,14,...,100, we generate 100 random degree-n polynomials with 2-
norm equal to 1. The coeflicients of these polynomials are generated via the Matlab
commands p=randn(n) and p=p/norm(p). Then, for each polynomial we compute
the backward error ||p — p||2 when its roots are computed via the eigenvalues of its
colleague matrix.
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FIGURE 1. Maximum backward errors obtained for each of the 9
samples of 100 random degree-10 polynomials with fixed 2-norm
equal to 10%, when their roots are computed as the eigenvalues of
their colleague matrices.

In Figure 2l we plot the maximum backward error obtained for each of the 46
samples of 100 random polynomials against the degree of the polynomials. In addi-
tion, we also compute a linear fitting for the logarithms of the maximum backward
errors to get the asymptotic dependence with n. As can be seen in Figure 2l these
backward errors behave like n'8!, which means that our bound (which accounts for
the worst case scenario) is overestimating the polynomial backward errors in these
cases.
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FIGURE 2. Maximum backward errors obtained for each of the 46
samples of 100 random degree-n polynomials with fixed 2-norm
equal to 1, when their roots are computed as the eigenvalues of
their colleague matrices.
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4. CONCLUSIONS

In this paper, we have analyzed the backward stability of a Chebyshev-basis
polynomial rootfinder (or matrix polynomial eigensolver) based on the solution of
the standard eigenvalue problem for the corresponding colleague matrix. More
precisely, given a monic scalar polynomial in the Chebyshev basis p(x), we have
proved that if the roots of p(x) are computed as the eigenvalues of a colleague
matrix using a backward stable eigenvalue algorithm, like the QR algorithm, then
the computed roots are the exact roots of a monic polynomial in the Chebyshev
basis p(z) such that

1P —pll2
pll2
Similarly, if the eigenvalues of a monic matrix polynomial in the Chebyshev basis
are computed as the eigenvalues of a block colleague matrix using a backward stable
eigenvalue algorithm, then the computed eigenvalues are the exact eigenvalues of a
monic matrix polynomial in the Chebyshev basis Js(x) such that

= O(u)]|pll2-

IP — P

These backward error analyses show that these methods are backward stable when
the norms ||p||2 and || P||F are moderate.

APPENDIX A. PROOF OF THEOREM [2.1]

In this section we present the proof of Theorem 2] that is, given the Clen-
shaw shift H,,_x(x) associated with the matrix polynomial P(x) in (L2), and the
Chebyshev polynomial T}, _;(x), we show that

(A1) Thi(x)Hp—r () = Qir(z) + i () P(x),

for some scalar polynomial r;; (), where Q;x(x) is the matrix polynomial of degree
less than or equal to n—1 in (Z4)—(27). Moreover, we show that the decomposition

(A1) is unique.

Throughout the proof, products of two of the Chebyshev polynomials will often
occur. For this reason, the following formula [I, Chapter 22] is of fundamental
importance here:

(A.2) 2T ()T () = Trngn () 4 Tjp—n) (2).
The first step is to expand the Clenshaw shifts Hy(x), for k=0,1,...,n—1, in
the Chebyshev basis. We will prove

k—1
(A.3) Hy(x) =Y 20 /Th_¢(x) + TyTo(x), for k=0,1,...,n—2,
=0

n—2
1
(A.4) H, i(x) = ; Ty 1 o(z) + 5Fn_lTO(a;),

where I'y is defined in (Z3]). The proof proceeds by induction on k. From (21 we
get Ho(z) = 2I, = T'¢Ty(z) and Hi(x) = 4lpx + 24,1 = 20T (z) + ' To(x), so
the result is true for ¥ = 0 and & = 1. Then, assume that the result is true for
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Ho(z), Hi(x),...,Hy—1(x), with 2 < k < n — 2. Using the induction hypothesis,
together with (Z1I), we have

Hk(:v) = 2$Hk,1(l‘) — kag(l') + 2An7k

k-2
=2 (Z 20Ty 1—¢(z) + Tp1 To (2 ) ZQFeTk 2—¢(x) = Tr—oTo(x)

£=0
+ 24, k.

Using To(z) = 1, Ti(z) = z, and (A2) with m = 1 and n = k, from the previous
equation we get

= Z 21, (Tk,g(l') + Tk,Q,g(l‘)) + 20111 ()
- Z 20 Ty—o—¢(x) — Tp—2To(x) + 24,1 To(x)
= Z 20Ty (x) + 20 —2To(x) 4 211 T (x) — T—oTo(x) + 2A, 1 To(x)

=D 2WTie(x) + Pz + 245 ) To(x ereTk o(@) + TxTo(x),

where in the last equality we have used I'y_s + 2A4,,_ = I'y. Therefore, the result
is also true for Hi(z). Finally, the proof that (A4) holds is similar to the previous
one, but starting with H,_1(x) = vH,_o(z) — H,—3(x)/2 + Ay, so we omit the
details.

Now we proceed to show that (AJ]) holds with Q. () as in ([2.4)—(2.7). In order
to do that, we will proceed in a certain order. To help the reader follow the steps,
we depict all the possible products T,,_;(z)Hy—_r(x) for n = 10 in the following
10 x 10 grid.
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The vertices with triangular shape in the previous grid represent the cases in
which the degree of T, _; (x) H,, i (x) does not exceed n—1, that is, when ¢ > n—k+1.
In this case, the polynomial Q;x(x) coincides with T, _;(x) H,,—x (), so we just need
to expand T;,—;(x)Hy,—j(x) in the Chebyshev basis. Indeed, when i = n and k = 1,
from (A4), we have

n—2
To) By () = Ho1(@) = 30 DeTao(@) + 3T aTol),
£=0

and when n —1 >4 >n—k+ 1, from (A2) and (A3]), we have

n—k—1
Tpi(@)Hyr() = Y 20T i(2)Top—o(x) + T i Toi () To ()
£=0

n—k—1

Z FE(TZTL—i—k—Z(I) + T|k+é—i\ (I)) + 0 kTn—i (:E)
£=0

As can be checked, the two previous equations correspond to ([24) and (2.1), re-
spectively.

Next, we consider the products T;,—;(x)Hp—k(x) with ¢ < n —k+ 1, represented
in the grid by vertices with circular shape. This case is much more involved, since
the degree of T),_;(x) H,,_(x) is larger than or equal to n. We will prove that (A7)
holds, with Qx(x) as in (Z4)—(21), each diagonal in the grid at a time (from left
to right), showing that each product T},—;(z)H,_r(z) can be computed using, at
most, a product represented by a vertex in the same diagonal and two products
represented by vertices in the diagonal on its left.

The first step is to consider the products Ty (z)H,—k(x), for k=1,2,...,n — 1,
that is, products represented by the diagonal with white circular vertices in the
grid. We show that Theorem 2.1 holds for those products from top to bottom. We
start with the white circular vertex labeled with 1 in the grid, that is, with the
product Ty (z)Hp—1(x). From ([Z2) and (A3]), together with T3 (z) = z, we have

Tl(x)Hn,1($) :an,l(x) = %ang(x) — AoTo(x) —+ .

n—3
1
= E LyTh—o—i(x)+ §Fn72T0(iU) — ATo(x) + -+,
=0

where the dots correspond to something of the form r(x)P(x), with r(x) a scalar
polynomial. As can be easily checked, the previous equation corresponds to (2.7)
with i =n — 1.

Then, we consider the white circular vertex labeled with 2 in the grid, that is,
the product Ty (z)H,—2(x). From () and (ZT]), we have

H,_o(x)Ta(z) = Hy—o(x) 22Ty (x) — To(x)) = 22Ty () Hp—o(x) — To(z) Hp—2(x)
= Tl (.T) (2Hn_1(ac) + Hn_g(x) - 2A1) - To(x)Hn_z(J))
= 2T1(3:)Hn_1(:1:) + Tl(I)Hn_g(l‘) — To(I)Hn_Q(.I) — 2A1T1(I)
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As can be seen from the previous equation, the product H,,_o(z)T%(z) may be
computed from products represented by two triangular vertices: Ty (x)H,_3(z) and
To(x)Hy—2(z), and the product T)(z)H,_1(x). Then, using (A3), (A4), and the
result previously obtained for T} (z)H,—1(x), we get

To(x)Hp_o(z) = Z Fo(Tr—2—e(x) + Tjgya—n|())

+I',—3T} (JJ) — 2AOT0(£L‘) —2A1Ty (.’L‘) + e,

where the dots correspond to something of the form r(z)P(x), with r(z) a scalar
polynomial. The previous equation corresponds to (2.6 with ¢ =n — 2 and k = 2.

Finally, we consider the white circular vertices labeled with 3, that is, the prod-
ucts Ty (z)Hy—g(z), for k=3,4,...,n. From (1) and (2], we have

Tio(2)Hn—k(2) = (22T)—1(2) — Th—2(x)) Hp—r(z)
= 22Ty 1 (2)Hp—i(2) — Th—2(x) Hy— i ()
= Ti—1(2) (Hn—k+1(2) + Hnk-1(2) — 24k-1) — Ti—2(x) Hn—i(2)
=Tp1(x)Hp—p11(x) + Tpo1(z) Hymp—1(x) — T—2(z) Hy k()
— 24, 1 Tp—1(x).

As can be seen from the previous equation, Ty (z)H,—_ () may be computed from
Ti—1(x)Hy—g—1(x) and Ty _o(x)H,—k(x), represented in the grid by triangular ver-
tices, and Ty _1(x)Hp—ky1(x), represented in the grid by the white circular vertex
above the white circular vertex corresponding to Ty (x)H,_r(z). Since we have
previously seen that Theorem 2] holds for T (z)H,—1(z) and Ty(z)H,—2(z), and
for products represented by triangular vertices, this shows how to prove induc-
tively (from top to bottom) that Theorem 2.1] holds for products represented by
white circular vertices labeled with 3. Indeed, assuming that the result holds for
Ti—1(2)Hy—p+1(z) and using (24), we get

k
Tk(ﬂ?)Hn—k(.’L') = kal(x)ankfl + Z(_2Ak7T)Tk7T(fL’)
r=2
n—k—2
~ 2451 T = > TeTu-z-e(@) + Tesarn (@)
=0
k
+ T e Th1 (@) + Y (—245- ) Ther(z) + -+
r=1

where the dots correspond to something of the form r(x)P(z), with r(z) a scalar
polynomial. It is immediate to check that the previous equation corresponds to
@38) when i =n — k.

The second step is to consider the products Tyy1(z)H,—i(z), for k = 2,3,...,
n — 2, that is, the diagonal with black circular vertices in the grid. This step is
very similar to the previous one, so we will only sketch the main ideas. We have to
distinguish the cases k = 2, k = 3 and k > 3. When k = 2, using (LI), 2I) and
[22), it may be proved that

To(x)Hp—1(z) = Th () Hp—2(x) — To(2)Hp—1(x) — 2A0Ty (2) + -+,
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where the dots correspond to something of the form r(x)P(z), with r(z) a scalar
polynomial. The previous equation shows that Ty(x)H,_1(z) may be computed
from two products represented by triangular vertices in the grid: T} (x)H,_2(z) and
To(x)Hp—1(z). Since we have seen that Theorem 2Tl holds for products represented
by triangular vertices, it may be proved that (27) holds for Th(z)Hp—1(x).

Then, from (1)) and 21]), it may be proved that, when k = 2,

Tg(.I)Hn_Q(I) = QTQ(I)Hn_l(I) + TQ(I)Hn_3(I) — 2A1T2(I),
and, when k& > 3,

T (2) Hp—pp(2) = T () Hp—po41 (%) + Ti () Hyp—p—1 ()
— Tk_l(I)Hn_k(I) — 2Ak_1Tk(l‘).

These two equations show that Ty11(z)H,—x(x) may be computed from two prod-
ucts represented by triangular vertices, and the product represented by the black
circular vertex above the black circular vertex corresponding to Tyi1(z)Hy—(2).
Assuming that Theorem 2d1holds for T5(z) H,—1(x), the previous observation shows
how to prove inductively (from top to bottom) that Theorem 2T holds for products
corresponding to black circular vertices labeled with 2 and 3.

Now, we address the products represented by circular vertices colored with differ-
ent shades of grey, that is, the products Ty r—1(2)H,—g(z), for r =3,4,...,n — 2
and k = 1,2,...,n — 1 —r. We will show that Theorem 2] holds for products
represented by vertices in the same diagonal (same shade of grey) assuming that
it holds for products represented by (nontriangular) vertices in the diagonal on its
left. Since we have previously proved that Theorem 2] holds for products repre-
sented by the white and black diagonals, this will imply that Theorem 2] holds
for all products represented by grey vertices. For each grey diagonal, we have to
distinguish the products represented by vertices labeled with 1, 2, and 3.

First, we consider the product T).(z)H,_1(x), with r > 3, represented by a grey
vertex labeled with 1. From (L) and ([2.2), we get

Tr(x)Hp1(z) = (22T, 1 (2) = Tr—2(2)) Hn 1 (2) = 20T, 1 (2) Hp -1 ()
= Ty—a(z)Hp—1 ()
=Ty 1(2)Hy—o(x) — Typ—o(x)Hy1(x) — 2A0T—1 () + - -,

where the dots correspond to something of the form r(z)P(x), with r(z) a scalar
polynomial. The previous equation shows that 7T).(x) H,,—1(z) may be computed from
two products represented by vertices in the diagonal on its left: T,._;(x)H,_o(x)
and T, _o(x)Hp—1(z). Assuming that [26) and (Z7) hold for those products, we
have

n—r—1

Trfl(x)Hn72($) = E FE (Tn,»,qu,[(.’l]) + ﬂ47n+r+1|(.’lj)) + I1nfrzjl (:E)
=0

r—24+1

- Z Z 2Al+1*81—‘|7“7£75|(.’15) —+ .. ,

l=1 s=1
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1
§Fn—r+1TO (:E)

r—2 ¢

_ Z Z Agfscr‘r—é—s—ll (LE) +

(=1 s=1

where the dots correspond to something of the form r(z)P(x), with r(z) a scalar

polynomial. Using

n—r—1

Z Th- r+1— Z( )+T|K—n+r+1|(x))+]-—\n rTl ZFéTn r4+1— E )
I To( ZFT ()+1F To(x) — Ap_1To(x)
2 n—r-+1 0 tdn—r—1—0(T 2 n—r—140(T r—140(T),

where we have used (I‘n,rﬂ

r—24+1

n r— 1)/2: r71>and

=D > 240 T (2

(=1 s=1
r—240+1

= - Z Z Aé—i-l—sT’\rfﬁfs\

(=1 s=1
r—24+1

== > App T

=1 s=1
r—140+1

-2 ¢

Z@sﬂ'rfs”()

() - iAmr,z,mx)
/=1

ZAT s,T\s 1\ )+Ar—1TO(z> +A0Tr—1(1')

= - Z Z A€+1—3T\r—é—s\ (1‘) + Ar—lTO(m) + 2A0Tr—1(1')

£=0 s=1

= Z Z Aé—sT\r—i-l—é—s\ (1‘) + Ar—lTO(m) + 2A0Tr—1(x)a

(=1 s=1
we get

Tr,1($)H —

n—r—2

1
Z F[TH,T,1,[($) + §anr71TO(x)

T

14

_ Z Z 2A475T\r+17675\ (x) +

(=1 s=1

where the dots correspond to something of the form r(x)P(z), with r(z) a scalar
polynomial. As can be checked, the previous equation corresponds to (277)) with

k=1landi=n—r.

The proof that Theorem 1] holds for products represented by grey vertices
labeled with 2 is very similar to the previous one, so we omit it.
Finally, consider a product T,,—;(x)H,,—(z) represented by a grey vertex labeled

with 3. From () and 21J), we have
(23:Tn_i_1(ac)

Tn_l(l‘)Hn_k(J?) =

—Th—i—o(x))Hp—p(x) = Tn—i—1(x) Hp— 41 ()
+Toic1(x)Hyp—1(2) = Thi—o(x) Hy—p(2) =245 1T i1 ().
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The previous equation shows that T),_;(x)H,_k(z) may be computed from two
products represented by (nontriangular) vertices in the diagonal on its left:
Tn—ic1(x)Hp—p—1(x) and T),_;_o(x)H,_x(z), and a product represented by a ver-
tex in the same diagonal, above the vertex corresponding to T, —;(x) H,,—x (), that
is, the product Ty,—;—1(x)Hy—g41(x). This observation shows how to prove induc-
tively (from top to bottom) that Theorem 2] holds for the grey vertices labeled
with 3 in the same diagonal. Assuming that (2.6) holds for T,,_;_1(z)Hp—r_1(z),
Tn—i—o(x)Hp—p(x) and Ty —;—o(x)H,—k(z), and using T';11 — T;_1 = 24,,_;_1,

i—1
> Tu(Tiph-2-e(x) + Togr—im2/(x)) + TiTh—2(z)
=0
i—1
+ ) To(Tigr—e(@) + Tiso—iy ()
=0

+ Ty () — Z Lo(Tivk—e(®) + Tgo—i—2(2)) = Tig1Th—1(z)
=0

[ V)

71—

= Di(Tivk—2-0(®) + Tipgo—i)(®)) + Tic1 Th—1(w) — 245 1Tk 1

e
and
n—k+1—i1k—2+¢ n—k—1—1i k+4
= > Y 2o i (@) = DD 24k T i iy ()
=1 =1 =1 r=1

n—k—1—ik—1+¢
+ Z Z 2Ak 10— Ti—ic1—e—r|()
=1 —1

n—k1—i k—14£
=- Z Z 24k 10— Tin—ig1—e—r| (@) + 245 1T 1 (2) + 245 s 1 Th—1 (),
=1 —1

we get

Tn—i(x)Hn—k(I) = Tn—z’—l(l')Hn—k+1(z> + Tn—i—l(x)Hn—k—l(fE)
—Thio(x)Hp—p(x) — 2Ak1Th—i—1(x)

i—2
= Z Lo(Tipn—o—e(x) + Tpgr—i|(2)) + Ti1 T2 ()
=0

n—k+1—ik—144

- Z Z 2Ak71+€7r1—‘|n7i+1fffr\ (il?) +e
=1 =1

where the dots correspond to something of the form r(z)P(x), with r(z) a scalar
polynomial, which shows that (Z6]) holds also for T}, _; () Hp— k().

The final step of the proof consists in proving the uniqueness of r;(x) and Q;x(x)
in (AJ)). For this purpose, assume that there exist two scalar polynomials 7 (z)
and 7% (z), and two matrix polynomials Q () and Qix(z) of degree at most n — 1
such that T,_;(2)Hp_i(z) = Qin(a) + rix(2)P(x) = Qir(a) + Fix(x)P(z). Then,
Qir(%) — Qin(x) = (Fin(x) — ran(a))P(x) is a matrix polynomial of degree at most
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n — 1, but, if r(x) # 7i(z), the matrix polynomial (7 (x) — rik(x))P(x) has
degree larger than or equal to n, hence r;,(x) = 7 (z) and Qix(z) = Qir(x).
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