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AN hp-VERSION LEGENDRE-JACOBI SPECTRAL

COLLOCATION METHOD FOR VOLTERRA

INTEGRO-DIFFERENTIAL EQUATIONS WITH SMOOTH

AND WEAKLY SINGULAR KERNELS

ZHONG-QING WANG, YU-LING GUO, AND LI-JUN YI

Abstract. In this paper, we present an hp-version Legendre-Jacobi spectral
collocation method for Volterra integro-differential equations with smooth and
weakly singular kernels. We establish several new approximation results of
the Legendre/Jacobi polynomial interpolations for both smooth and singular
functions. As applications of these approximation results, we derive hp-version
error bounds of the Legendre-Jacobi collocation method under theH1-norm for
the Volterra integro-differential equations with smooth solutions on arbitrary
meshes and singular solutions on quasi-uniform meshes. We also show the
exponential rates of convergence for singular solutions by using geometric time
partitions and linearly increasing polynomial degrees. Numerical experiments
are included to illustrate the theoretical results.

1. Introduction

In this paper, we consider the numerical solution of the linear Volterra integro-
differential equation (VIDE) of the form

(1.1)

⎧⎨⎩ u′(t) + a(t)u(t) +

∫ t

0

(t− s)−μb(s)u(s)ds = f(t), t ∈ (0, T ],

u(0) = u0,

where μ < 1 (i.e., the kernel is weakly singular if 0 < μ < 1, and in particular, the
kernel is smooth if μ ∈ N

−
0 := {0,−1,−2, · · · }). Moreover, the real functions a(t),

b(t) and f(t) are continuous on I := [0, T ], and u0 is the initial data.
Over the last few decades, various numerical methods have been proposed and

analyzed for linear VIDEs of the form (1.1) with smooth and weakly singular ker-
nels; see, for example, Runge-Kutta methods [1, 25], collocation methods [2, 19],
continuous and discontinuous Galerkin methods [11,12]. We also refer to the mono-
graphs [3, 5] and the references therein.

The works mentioned above are mainly concerned with the so-called h-version
method, which means that the convergence is obtained by decreasing the size of the
time steps at a fixed order of approximation, and usually the resulting error bounds
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do not deal with the explicit dependence of the constant c on the approximation or-
der. To address this issue, some high order methods, for instance, the p-version, the
hp-version and the spectral (element) methods, need to be studied. Such methods
usually approximate the problem under consideration by increasing the approxima-
tion order on a fixed time partition (p-approach) or, alternatively, on variable time
steps (hp-approach). Since the hp-version method allows for locally varying time
steps and approximation orders, it can approximate smooth solutions with possible
local singularities at high algebraic or even exponential rates of convergence. Due
to their high accuracy, the high order methods for integral or integro-differential
equations of Volterra type has received considerable attention in recent years. For
example, the hp-version discontinuous Galerkin time-stepping method has been
developed for VIDEs in [4] and for parabolic VIDEs in [13], and the hp-version
continuous Petrov-Galerkin time-stepping method was recently analyzed for linear
and nonlinear VIDEs in [23, 24]. Meanwhile, the p-version spectral Galerkin and
collocation methods were also studied for integral or integro-differential equations
of Volterra type; see, e.g., [6, 8–10,20, 21] and the references therein. Furthermore,
the hp-version Legendre spectral collocation methods were proposed for nonlinear
Volterra integral equations with smooth kernels in [18] and for nonlinear Volterra
integral equations with smooth kernels and variable delays in [22]. However, to
the best of our knowledge, there are no theoretical results available for the weakly
singular VIDEs by hp-version collocation methods, which are much more difficult
to analyze than spectral Galerkin methods. The main difficulties encountered in
the hp-version of collocation methods for VIDEs include: (i) how to design an ef-
ficient algorithm ensuring the optimal convergence of the hp-version; (ii) how to
analyze the convergence of the hp-version for smooth solutions, on account of the
influence of the weakly singular kernels; (iii) how to analyze the convergence of the
hp-version for singular solutions, and especially, the exponential convergence for
singular solutions under geometric time partitions.

In the present work, we introduce and analyze an hp-version Legendre-Jacobi
spectral collocation method for the VIDE (1.1) with smooth and weakly singular
kernels. The hp-version Legendre-Jacobi spectral collocation scheme is constructed
based on three kinds of polynomial interpolations (see (2.21)), i.e., the Legendre-
Gauss, Legendre-Gauss-Lobatto, and Jacobi-Gauss interpolations. Particularly, in
the numerical scheme (2.21), we choose a special weight (α, β) = (−μ, 0) for the

Jacobi-Gauss interpolation Iα,β
t,Mn

v (see the definition (2.10)), which corresponds to

the kernel (t − s)−μ in the VIDE (1.1). We carry out a rigorous error analysis
of the proposed method for both smooth and singular solutions and present some
numerical experiments to verify the theoretical results. The main features and
contributions of this paper are highlighted as follows.

• For analyzing the numerical errors, we derive several new approximation
results of the Legendre-Jacobi polynomial interpolations for both smooth
and singular functions. These approximation results can also be applied
to pseudo-spectral and spectral collocation methods for other problems,
especially for those with solutions of tν-type singularity.

• The key feature of the hp-version Legendre-Jacobi spectral collocation is
its great flexibility with respect to the size of the time steps and the local
approximation orders, which enable us to cope with problems with non-
smooth solutions. Indeed, our numerical results show that for analytic
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solutions with start-up singularities, exponential rates of convergence can
be achieved for the hp-version collocation method with geometric time steps
and linearly increasing approximation orders.

• We establish a priori error estimate under the H1-norm that is explicit in
the time steps and the approximation orders. In particular, for the VIDE
(1.1) with weakly singular kernel and singular solutions of tν-type, we derive
optimal error bounds under the H1-norm for the hp-version collocation
method with quasi-uniform meshes. It is shown that the p-version gives
twice the rate of convergence as the h-version for singular solutions on
quasi-uniform meshes, which coincides with the well-known phenomenon
in the p-version of the finite element method for elliptic problems with
corner singularities (see, e.g., [16]). We also show the exponential rates of
convergence for singular solutions by using geometric time partitions and
linearly increasing polynomial degrees.

The remainder of the paper is organized as follows. In Section 2, we introduce
some basic properties of the shifted Legendre-Jacobi polynomial interpolations and
propose the hp-version Legendre-Jacobi spectral collocation method for the VIDE
(1.1). In Section 3, we establish some new approximation results of the Legendre-
Jacobi polynomial interpolations for both smooth and singular functions, which
are very useful for the convergence analysis. In Section 4, we derive the hp-version
error bounds of the Legendre-Jacobi collocation methods, for smooth solutions on
an arbitrary mesh and for singular solutions on a quasi-uniform mesh. We also
show the exponential rates of convergence for singular solutions under geometric
time partitions. Our theoretical results are verified by the numerical experiments
in Section 5. Some concluding remarks are given in the last section.

2. The hp-version Legendre-Jacobi spectral collocation method

In this section, we shall introduce some basic properties of the shifted Legendre-
Jacobi polynomial interpolations, and propose an hp-version Legendre-Jacobi spec-
tral collocation method for the VIDE (1.1).

2.1. Preliminaries. Let Ih be a mesh on the interval I,

Ih := {tn : 0 = t0 < t1 < · · · < tN = T}.

We set hn = tn− tn−1, In = (tn−1, tn], and denote by un(t) the solution of (1.1) on
the n-th element, namely,

un(t) := u(t), t ∈ In, 1 ≤ n ≤ N.

From (1.1) we have that for any t ∈ In,
(2.1)

d

dt
un(t)+a(t)un(t)+

n−1∑
k=1

∫
Ik

(t−s)−μb(s)uk(s)ds+

∫ t

tn−1

(t−ξ)−μb(ξ)un(ξ)dξ = f(t).

In order to transfer the integral interval (tn−1, t] to In, we make the following
transformation:

(2.2) ξ = σ(λ, t) := tn−1 +
(λ− tn−1)(t− tn−1)

hn
, λ ∈ In.
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Then equation (2.1) becomes

(2.3)

d

dt
un(t) +a(t)un(t) +

n−1∑
k=1

∫
Ik

(t− s)−μb(s)uk(s)ds

+
( t− tn−1

hn

)1−μ
∫
In

(tn − λ)−μb(σ(λ, t))un(σ(λ, t))dλ = f(t).

Hereafter, for a given interval Λ and a certain weight function χ(x), we define

L2
χ(Λ) = {v | v is measurable and ‖v‖L2

χ(Λ) < ∞}

with the norm ‖v‖L2
χ(Λ) =

( ∫
Λ
|v(x)|2χ(x)dx

) 1
2 . We also denote by Hr

χ(Λ) the usual

weighted Sobolev space.

2.2. The shifted polynomial interpolation on In.

2.2.1. The shifted Jacobi-Gauss interpolation on In. For α, β > −1, let Jα,β
k (x),

x ∈ (−1, 1), be the standard Jacobi polynomial of degree k, and denote the weight
function χα,β(x) = (1− x)α(1 + x)β. The set of Jacobi polynomials is a complete
L2
χα,β (−1, 1)-orthogonal system, i.e.,

(2.4)

∫ 1

−1

Jα,β
k (x)Jα,β

j (x)χα,β(x)dx = γα,β
k δk,j ,

where δk,j is the Kronecker function, and

γα,β
k =

⎧⎪⎪⎨⎪⎪⎩
2α+β+1Γ(α+ 1)Γ(β + 1)

Γ(α+ β + 2)
, k = 0,

2α+β+1

(2k + α+ β + 1)

Γ(k + α+ 1)Γ(k + β + 1)

k!Γ(k + α+ β + 1)
, k ≥ 1.

In particular, Jα,β
0 (x) = 1 and

(2.5)

∫ 1

−1

d

dx
Jα,β
k (x)

d

dx
Jα,β
j (x)χα+1,β+1(x)dx = k(k + α+ β + 1)γα,β

k δk,j .

The shifted Jacobi polynomial of degree k is defined by

(2.6) Jα,β
n,k (t) = Jα,β

k (
2t− tn−1 − tn

hn
), t ∈ In, k ≥ 0.

The set of Jα,β
n,k (t), k ≥ 0, is a complete L2

χα,β
n

(In)-orthogonal system with the

weight function χα,β
n (t) = (tn − t)

α
(t− tn−1)

β, namely,

(2.7)

∫
In

Jα,β
n,k (t)J

α,β
n,j (t)χ

α,β
n (t)dt =

(hn

2

)α+β+1

γα,β
k δk,j .

We now turn to the Jacobi-Gauss interpolation. For any given integer Mn ≥ 0,

we denote by {xα,β
n,j , ω

α,β
n,j }

Mn
j=0 the nodes and the corresponding Christoffel numbers

of the standard Jacobi-Gauss interpolation on the interval (−1, 1). Let PMn
(In) be

the set of polynomials of degree at most Mn on the interval In, and let tα,βn,j be the
shifted Jacobi-Gauss quadrature nodes on the interval In,

tα,βn,j =
1

2
(hnx

α,β
n,j + tn−1 + tn), 0 ≤ j ≤ Mn.
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Due to the property of the standard Jacobi-Gauss quadrature, it follows that for
any φ(t) ∈ P2Mn+1(In),∫

In

φ(t)χα,β
n (t)dt =

(hn

2

)α+β+1
∫ 1

−1

φ(
hnx+ tn−1 + tn

2
)χα,β(x)dx

=
(hn

2

)α+β+1
Mn∑
j=0

φ(
hnx

α,β
n,j + tn−1 + tn

2
)ωα,β

n,j(2.8)

=
(hn

2

)α+β+1
Mn∑
j=0

φ(tα,βn,j )ω
α,β
n,j .

By (2.7) and (2.8), we further obtain that for any 0 ≤ p+ q ≤ 2Mn + 1,

(2.9)

Mn∑
j=0

Jα,β
n,p (t

α,β
n,j )J

α,β
n,q (t

α,β
n,j )ω

α,β
n,j = γα,β

p δp,q.

We denote by Iα,β
t,Mn

: C(In) → PMn
(In) the shifted Jacobi-Gauss interpolation

operator in the t-direction, such that

(2.10) Iα,β
t,Mn

v(tα,βn,j ) = v(tα,βn,j ), 0 ≤ j ≤ Mn.

2.2.2. The shifted Legendre-Gauss interpolation on In. In the special case where
α = β = 0, the shifted Jacobi polynomial J0,0

n,k(t) is reduced to the shifted Legendre

polynomial Ln,k(t). Accordingly, we write tn,j := t0,0n,j and ωn,j := ω0,0
n,j . Moreover,

we denote by It,Mn
:= I0,0

t,Mn
the shifted Legendre-Gauss interpolation operator in

the t-direction. According to the properties of the standard Legendre polynomials,
we have (cf. [22])

(2.11)

∫
In

Ln,k(t)Ln,j(t)dt =
hn

2k + 1
δk,j ,

(2.12)
(k+ 1)Ln,k+1(t)− h−1

n (2k+ 1)(2t− tn−1 − tn)Ln,k(t) + kLn,k−1(t) = 0, k ≥ 1,

(2.13) L′
n,k+1(t)− L′

n,k−1(t) =
4k + 2

hn
Ln,k(t), k ≥ 1.

In particular,

(2.14)

Ln,0(t) = 1, Ln,1(t) =
2t− tn−1 − tn

hn
,

Ln,2(t) =
6t2 − 6(tn−1 + tn)t+ 4tn−1tn + t2n−1 + t2n

h2
n

.

Moreover, by taking α = β = 0 in (2.8) and (2.9), we get that

(2.15)

∫
In

φ(t)dt =
hn

2

Mn∑
j=0

φ(tn,j)ωn,j , ∀ φ ∈ P2Mn+1(In),

and

(2.16)

Mn∑
j=0

Ln,p(tn,j)Ln,q(tn,j)ωn,j =
2

2p+ 1
δp,q, ∀ 0 ≤ p+ q ≤ 2Mn + 1.
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2.2.3. The shifted Legendre-Gauss-Lobatto interpolation on In. For Mn ≥ 0, let
{xL

n,j , ω
L
n,j}Mn+1

j=0 be the nodes and the corresponding Christoffel numbers of the

standard Legendre-Gauss-Lobatto interpolation on the interval [−1, 1], and

tLn,j :=
1

2
(hnx

L
n,j + tn−1 + tn), 0 ≤ j ≤ Mn + 1.

We also denote by IL
t,Mn+1 the shifted Legendre-Gauss-Lobatto interpolation oper-

ator in the t-direction with IL
t,Mn+1v ∈ PMn+1(In) and

(2.17) IL
t,Mn+1v(t

L
n,j) = v(tLn,j), 0 ≤ j ≤ Mn + 1.

According to the properties of the standard Legendre-Gauss-Lobatto quadrature
formulas, we get

(2.18)

∫
In

φ(t)dt =
hn

2

Mn+1∑
j=0

φ(tLn,j)ω
L
n,j , ∀ φ ∈ P2Mn+1(In),

and

(2.19)

Mn+1∑
j=0

Ln,p(t
L
n,j)Ln,q(t

L
n,j)ω

L
n,j =

2

2p+ 1
δp,q, ∀ 0 ≤ p+ q ≤ 2Mn + 1.

As mentioned in [3], due to the presence of the weak singularity (e.g., μ ∈ (0, 1)),
it is natural to consider the weighted interpolatory quadrature formulas whose
weights depend on the weakly singular factor (t − s)−μ in the kernel. For any
φ(s) ∈ PMk+1(Ik), we introduce the weighted interpolatory quadrature formulas,
defined by

(2.20)

∫
Ik

(t− s)−μφ(s)ds =

Mk+1∑
j=0

φ(tLk,j)ω̃
L
k,j(t), t ∈ In, k < n,

where ω̃L
k,j(t) =

∫
Ik

(t−s)−μlk,j(s)ds and {lk,j(s)}Mk+1
j=0 are the Lagrange fundamen-

tal polynomials corresponding to the collocation points {tLk,j}
Mk+1
j=0 . The function

ω̃L
k,j(t) can be calculated precisely according to the properties of Legendre polyno-

mials.

2.3. The hp-version Legendre-Jacobi spectral collocation scheme. The hp-
version Legendre-Jacobi spectral collocation scheme for solving (2.3) is to seek
Un(t) ∈ PMn+1(In), such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

It,Mn

( d

dt
Un(t) + a(t)Un(t) +

n−1∑
k=1

∫
Ik

(t− s)−μIL
s,Mk+1

(
b(s)Uk(s)

)
ds

+
( t− tn−1

hn

)1−μ
∫
In

(tn − λ)−μI−μ,0
λ,Mn+1

(
b(σ(λ, t))Un(σ(λ, t))

)
dλ

)
= It,Mn

f(t), t ∈ In,

Un(tn−1) = Un−1(tn−1), U1(t0) = u0,

(2.21)
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where Uk(t) ∈ PMk+1(Ik) is the numerical solution of uk(t) on the interval Ik. We
now describe the numerical implementations and present an algorithm for scheme
(2.21). To this end, we set

Un(t) =

Mn+1∑
p=0

un
pLn,p(t), =⇒ d

dt
Un(t) =

Mn+1∑
p=1

un
pL

′
n,p(t),

It,Mn

(
a(t)Un(t)

)
=

Mn∑
p=0

anpLn,p(t), It,Mn
f(t) =

Mn∑
p=0

fn
p Ln,p(t),

It,Mn
I−μ,0
λ,Mn+1

(
(t− tn−1)

1−μb(σ(λ, t))Un(σ(λ, t))
)

=

Mn∑
p=0

Mn+1∑
p′=0

dnp,p′Ln,p(t)J
−μ,0
n,p′ (λ),

It,Mn
ω̃L
k,p′(t) =

Mn∑
p=0

ŵ
(k)
p′,pLn,p(t).

(2.22)

Then by (2.22) and (2.13), a direct computation leads to

It,Mn

(
a(t)Un(t)

)
= an0 + hn

Mn∑
p=1

anp
4p+ 2

(L′
n,p+1(t)− L′

n,p−1(t))

= an0 − hna
n
2

10
L′
n,1(t) + hn

Mn−1∑
p=2

(
anp−1

4p− 2
−

anp+1

4p+ 6
)L′

n,p(t)

+
hna

n
Mn−1

4Mn − 2
L′
n,Mn

(t) +
hna

n
Mn

4Mn + 2
L′
n,Mn+1(t)(2.23)

= hn

Mn−1∑
p=1

(
anp−1

4p− 2
−

anp+1

4p+ 6
)L′

n,p(t) +
hna

n
Mn−1

4Mn − 2
L′
n,Mn

(t)

+
hna

n
Mn

4Mn + 2
L′
n,Mn+1(t) =: hn

Mn+1∑
p=1

ânpL
′
n,p(t).

Similarly,

(2.24)

It,Mn
f(t) = hn

Mn−1∑
p=1

(
fn
p−1

4p− 2
−

fn
p+1

4p+ 6
)L′

n,p(t)

+
hnf

n
Mn−1

4Mn−2 L′
n,Mn

(t) +
hnf

n
Mn

4Mn+2L
′
n,Mn+1(t)

=: hn

Mn+1∑
p=1

f̂n
p L

′
n,p(t).
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Moreover, with the aid of (2.20), (2.22) and (2.13), for 1 ≤ k ≤ n− 1, we get
(2.25)

It,Mn

∫
Ik

(t− s)−μIL
s,Mk+1

(
b(s)Uk(s)

)
ds = It,Mn

Mk+1∑
p′=0

b(tLk,p′)Uk(tLk,p′)ω̃L
k,p′(t)

=

Mk+1∑
p′=0

b(tLk,p′)Uk(tLk,p′)It,Mn
ω̃L
k,p′(t) =

Mk+1∑
p′=0

b(tLk,p′)Uk(tLk,p′)

Mn∑
p=0

ŵ
(k)
p′,pLn,p(t)

= hn

Mk+1∑
p′=0

b(tLk,p′)Uk(tLk,p′)
(Mn−1∑

p=1

(
ŵ

(k)
p′,p−1

4p− 2
−

ŵ
(k)
p′,p+1

4p+ 6
)L′

n,p(t)

+
ŵ

(k)
p′,Mn−1

4Mn − 2
L′
n,Mn

(t) +
ŵ

(k)
p′,Mn

4Mn + 2
L′
n,Mn+1(t)

)
=: hn

Mn+1∑
p=1

b̂kpL
′
n,p(t),

where

b̂kp =

Mk+1∑
p′=0

b(tLk,p′)Uk(tLk,p′)
( ŵ(k)

p′,p−1

4p− 2
−

ŵ
(k)
p′,p+1

4p+ 6

)
, 1 ≤ p ≤ Mn − 1,

b̂kMn
=

1

4Mn − 2

Mk+1∑
p′=0

b(tLk,p′)Uk(tLk,p′)ŵ
(k)
p′,Mn−1,

b̂kMn+1 =
1

4Mn + 2

Mk+1∑
p′=0

b(tLk,p′)Uk(tLk,p′)ŵ
(k)
p′,Mn

.

Further, by using (2.22), (2.7) and a similar argument as before, we obtain that∫
In

(tn − λ)
−μIt,Mn

I−μ,0
λ,Mn+1

(
(t− tn−1)

1−μ
b(σ(λ, t))Un(σ(λ, t))

)
dλ

=

Mn∑
p=0

Mn+1∑
p′=0

dnp,p′Ln,p(t)

∫
In

(tn − λ)
−μ

J−μ,0
n,p′ (λ)dλ

=
h1−μ
n

1− μ

Mn∑
p=0

dnp,0Ln,p(t)

=
h2−μ
n

1− μ

(
Mn−1∑
p=1

(
dnp−1,0

4p− 2
−

dnp+1,0

4p+ 6
)L′

n,p(t) +
dnMn−1,0

4Mn − 2
L′
n,Mn

(t)

+
dnMn,0

4Mn + 2
L′
n,Mn+1(t)

)

=:
h2−μ
n

1− μ

Mn+1∑
p=1

d̂np,0L
′
n,p(t).

(2.26)
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Applying (2.11), (2.15), (2.7) and (2.8) (with Mn +1 instead of Mn) to (2.22), one
can verify readily that

anp =
2p+ 1

2

Mn∑
j=0

a(tn,j)U
n(tn,j)Ln,p(tn,j)ωn,j ,

ŵ
(k)
p′,p =

2p+ 1

2

Mn∑
j=0

ω̃L
k,p′(tn,j)Ln,p(tn,j)ωn,j ,

dnp,0 =
(1− μ)(2p+ 1)

22−μ

Mn∑
i=0

Mn+1∑
j=0

(tn,i − tn−1)
1−μb(σ(t−μ,0

n,j , tn,i))

× Un(σ(t−μ,0
n,j , tn,i))Ln,p(tn,i)ωn,iω

−μ,0
n,j ,

fn
p =

2p+ 1

2

Mn∑
j=0

f(tn,j)Ln,p(tn,j)ωn,j .

Next, by using (2.21)–(2.26), we deduce that

Mn+1∑
p=1

un
pL

′
n,p(t) + hn

Mn+1∑
p=1

ânpL
′
n,p(t) + hn

Mn+1∑
p=1

( n−1∑
k=1

b̂kp
)
L′
n,p(t)

+
hn

1− μ

Mn+1∑
p=1

d̂np,0L
′
n,p(t) = hn

Mn+1∑
p=1

f̂n
p L

′
n,p(t).

(2.27)

According to the property of the standard Legendre polynomials, we know that
{L′

n,p(t)}p≥1 are mutually orthogonal with respect to the weight (tn − t)(t− tn−1).
Hence, we compare the expansion coefficients of (2.27) to obtain that

(2.28) un
p = hnf̂

n
p − hnâ

n
p − hn

n−1∑
k=1

b̂kp − hn

1− μ
d̂np,0, 1 ≤ p ≤ Mn + 1.

Furthermore, due to Ln,p(tn−1) = (−1)p, U1(0) = u0 and Un(tn−1) = Un−1(tn−1)
for 2 ≤ n ≤ N , we get from the first formula of (2.22) that

u1
0 = u0 −

Mn+1∑
p=1

(−1)pu1
p, un

0 = Un−1(tn−1)−
Mn+1∑
p=1

(−1)pun
p , n ≥ 2.(2.29)

The system (2.28) can be solved directly, based on matrix factorizations such as
LU decomposition.

3. Some useful approximation results

In this section, we present some approximation results (mainly shown in Theo-
rems 3.1–3.5), which will be useful for convergence analysis. Denote by c a generic
positive constant independent of hk and Mk.

3.1. The Jacobi and Legendre interpolation approximations for smooth
functions. In this subsection, we focus on the interpolation approximations for
smooth functions on the interval In.
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Theorem 3.1. For any v ∈ Hm
χα,β
n

(In) with α, β > −1 and integer 1 ≤ m ≤ Mn+1,

(3.1) ‖v − Iα,β
t,Mn

v‖
L2

χ
α,β
n

(In)
≤ c

√
Γ(Mn + 2−m)

Γ(Mn + 2 +m)
‖∂m

t v‖L2

χ
α+m,β+m
n

(In),

where Hm
χα,β
n

(In) is the weighted Sobolev space with weight

χα,β
n (t) = (tn − t)α(t− tn−1)

β .

In particular, for any fixed m, we further get

‖v − Iα,β
t,Mn

v‖
L2

χ
α,β
n

(In)
≤ c(Mn + 1)−m‖∂m

t v‖L2

χ
α+m,β+m
n

(In)

≤ chm
n (Mn + 1)−m‖∂m

t v‖L2

χ
α,β
n

(In).
(3.2)

Proof. Let πα,β
Mn

, α, β > −1, be the standard Jacobi-Gauss interpolation operator

with respect to the nodes {xα,β
n,j }

Mn
j=0 on the interval (−1, 1). According to Theorem

3.41 and (3.261) of [17], for any function u(x) satisfying ∂k
xu(x) ∈ L2

χα+k,β+k(−1, 1)

with integers 0 ≤ k ≤ m and 1 ≤ m ≤ Mn + 1, we get

‖πα,β
Mn

u− u‖L2

χα,β (−1,1)

≤ c

√
Γ(Mn −m+ 2)

Γ(Mn + 1)
(Mn +m)−(m+1)/2‖∂m

x u‖L2

χα+m,β+m (−1,1)

≤ c

√
Γ(Mn + 2−m)

Γ(Mn + 2 +m)
‖∂m

x u‖L2

χα+m,β+m (−1,1).

(3.3)

Next let u(x) := v(t)
∣∣∣
t=

hnx+tn−1+tn
2

. Then we have

Iα,β
t,Mn

v(tα,βn,j ) = v(tα,βn,j ) = u(xα,β
n,j ) = πα,β

Mn
u(xα,β

n,j ), 0 ≤ j ≤ Mn.

Since Iα,β
t,Mn

v(t)
∣∣∣
t=

hnx+tn−1+tn
2

and πα,β
Mn

u(x) belong to PMn
(−1, 1) in the variable

x, hence

(3.4) Iα,β
t,Mn

v(t)
∣∣∣
t=

hnx+tn−1+tn
2

= πα,β
Mn

u(x).

The above with (3.3) gives

‖v − Iα,β
t,Mn

v‖2L2

χ
α,β
n

(In)

= (
hn

2
)α+β+1

∫ 1

−1

(u(x)− πα,β
Mn

u(x))2(1− x)α(1 + x)βdx

≤ chα+β+1
n

Γ(Mn + 2−m)

Γ(Mn + 2 +m)

∫ 1

−1

(∂m
x u(x))2(1− x)α+m(1 + x)β+mdx

≤ c
Γ(Mn + 2−m)

Γ(Mn + 2 +m)

∫
In

(∂m
t v(t))2(tn − t)α+m(t− tn−1)

β+mdt.

(3.5)

This leads to (3.1). The result (3.2) can be derived easily from (3.1). �

By (3.2) and the triangle inequality, we further obtain the following result.
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Corollary 3.1. For any v ∈ H1
χα,β
n

(In) with α, β > −1,

‖Iα,β
t,Mn

v‖L2

χ
α,β
n

(In) ≤ ‖v‖L2

χ
α,β
n

(In) + c(Mn + 1)−1‖∂tv‖L2

χ
α+1,β+1
n

(In)

≤ ‖v‖L2

χ
α,β
n

(In) + chn(Mn + 1)−1‖∂tv‖L2

χ
α,β
n

(In).
(3.6)

As results of Theorem 3.1 and Corollary 3.1 with α = β = 0, we have the
following two corollaries.

Corollary 3.2 (see also [22]). For any v ∈ Hm(In) with any fixed integer 1 ≤ m ≤
Mn + 1,

‖v − It,Mn
v‖L2(In)

≤ c(Mn + 1)−m‖∂m
t v‖L2

χ
m,m
n

(In)

≤ chm
n (Mn + 1)−m‖∂m

t v‖L2(In),
(3.7)

where Hm(In) is the usual Sobolev space.

Corollary 3.3. For any v ∈ H1(In),

‖It,Mn
v‖L2(In) ≤ ‖v‖L2(In) + c(Mn + 1)−1‖∂tv‖L2

χ
1,1
n

(In)

≤ ‖v‖L2(In) + chn(Mn + 1)−1‖∂tv‖L2(In).
(3.8)

Moreover, one can verify readily that

Theorem 3.2. For any v ∈ Hm(In) with integer 1 ≤ m ≤ Mn + 2 and Mn ≥ 0,

(3.9) ‖v − IL
t,Mn+1v‖L2(In) ≤ chn

√
Γ(Mn + 3−m)

Γ(Mn + 3 +m)
‖∂m

t v‖L2

χ
m−1,m−1
n

(In)

and
(3.10)

‖(v − IL
t,Mn+1v)

′‖L2(In) ≤ c(Mn + 1)

√
Γ(Mn + 3−m)

Γ(Mn + 3 +m)
‖∂m

t v‖L2

χ
m−1,m−1
n

(In).

In particular, for any fixed m, we further get

(3.11)
‖v − IL

t,Mn+1v‖L2(In) ≤ chn(Mn + 1)−m‖∂m
t v‖L2

χ
m−1,m−1
n

(In)

≤ chm
n (Mn + 1)−m‖∂m

t v‖L2(In)

and

(3.12)
‖(v − IL

t,Mn+1v)
′‖L2(In) ≤ c(Mn + 1)1−m‖∂m

t v‖L2

χ
m−1,m−1
n

(In)

≤ chm−1
n (Mn + 1)1−m‖∂m

t v‖L2(In).

Proof. Let Mn ≥ 0 and let πL
Mn+1 be the standard Legendre-Gauss-Lobatto in-

terpolation operator with respect to the nodes {xL
n,j}Mn+1

j=0 on the interval [−1, 1].
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According to Theorem 3.44 and (3.261) of [17], we obtain that for any ∂m
x u ∈

L2
χm−1,m−1(−1, 1) with integer 1 ≤ m ≤ Mn + 2,

‖u− πL
Mn+1u‖L2(−1,1)

≤ c

√
Γ(Mn −m+ 3)

Γ(Mn + 2)

(Mn +m+ 1)(1−m)/2

(Mn + 1)
‖∂m

x u‖L2
χm−1,m−1 (−1,1)

≤ c

√
Γ(Mn + 3−m)

Γ(Mn + 3 +m)
‖∂m

x u‖L2
χm−1,m−1 (−1,1)

(3.13)

and
(3.14)

‖∂x(u− πL
Mn+1u)‖L2(−1,1) ≤ c(Mn + 1)

√
Γ(Mn + 3−m)

Γ(Mn + 3 +m)
‖∂m

x u‖L2
χm−1,m−1 (−1,1).

Next let u(x) = v(t)
∣∣∣
t=

hnx+tn−1+tn
2

. Then we have

IL
t,Mn+1v(t

L
n,j) = v(tLn,j) = u(xL

n,j) = πL
Mn+1u(x

L
n,j), 0 ≤ j ≤ Mn + 1.

Since IL
t,Mn+1v(t)

∣∣∣
t=

hnx+tn−1+tn
2

and πL
Mn+1u(x) belong to PMn+1(−1, 1) in the

variable x, hence

(3.15) IL
t,Mn+1v(t)

∣∣∣
t=

hnx+tn−1+tn
2

= πL
Mn+1u(x).

The above with (3.13) gives

‖v − IL
t,Mn+1v‖2L2(In)

=
hn

2

∫ 1

−1

(
u(x)− πL

Mn+1u(x)
)2
dx

≤ chn
Γ(Mn + 3−m)

Γ(Mn + 3 +m)

∫ 1

−1

(∂m
x u(x))2(1− x2)m−1dx

≤ ch2
n

Γ(Mn + 3−m)

Γ(Mn + 3 +m)

∫
In

(∂m
t v(t))2(tn − t)m−1(t− tn−1)

m−1dt.

(3.16)

Similarly, by (3.14) we obtain
(3.17)

‖∂t(v − IL
t,Mn+1v)‖2L2(In)

=
2

hn

∫ 1

−1

(
∂xu(x)− ∂xπ

L
Mn+1u(x)

)2
dx

≤ ch−1
n (Mn + 1)2

Γ(Mn + 3−m)

Γ(Mn + 3 +m)

∫ 1

−1

(∂m
x u(x))2(1− x2)m−1dx

≤ c(Mn + 1)2
Γ(Mn + 3−m)

Γ(Mn + 3 +m)

∫
In

(∂m
t v(t))2(tn − t)m−1(t− tn−1)

m−1dt.

This leads to the desired results (3.9) and (3.10). Finally, using (3.9) and (3.10)
yields (3.11) and (3.12). �
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Corollary 3.4. For any v ∈ H1(In) and Mn ≥ 0,

(3.18) ‖∂tIL
t,Mn+1v‖L2(In) ≤ c‖∂tv‖L2(In).

3.2. The Jacobi and Legendre interpolation approximations for singular
functions. In this subsection, we focus on the interpolation approximations for
the tν-type singular functions on the interval I. To this end, we first consider the
interpolation approximations for the (1+x)ν-type singular functions on the interval
(−1, 1).

3.2.1. The (1 + x)ν-type singularity on the interval (−1, 1). Let ν be a noninteger
and denote uν(x) = (1 + x)ν .

(i) The Jacobi-Gauss interpolation approximation. Assume that the Jacobi ex-
pansion of uν(x) is

uν(x) =

∞∑
n=0

anJ
α,0
n (x), α > −1.

The following lemma gives the expression for the coefficients of the Jacobi ex-
pansion.

Lemma 3.1. If ν > −1 is a noninteger and α > −1, then

(3.19)

a0 =
2νΓ(α+ 2)Γ(ν + 1)

Γ(ν + α+ 2)
,

an =
2ν(2n+ α+ 1)Γ(ν + 1)Γ(n+ α+ 1)

n!Γ(n+ ν + α+ 2)
×ν(ν − 1)(ν − 2) · · · (ν − n+ 1), n ≥ 1.

Proof. According to (2.4), we have

(3.20) an =
2n+ α+ 1

2α+1

∫ 1

−1

uν(x)J
α,0
n (x)(1− x)αdx.

By the definition of Jacobi polynomial, we know

(1− x)αJα,0
n (x) =

(−1)n

2nn!

dn

dxn

(
(1− x)n+α(1 + x)n

)
,

and hence

(3.21) an =
(−1)n(2n+ α+ 1)

2n+α+1n!

∫ 1

−1

(1 + x)ν
dn

dxn

(
(1− x)n+α(1 + x)n

)
dx.

This, along with (2.4), leads to the expression of a0. Next, owing to

lim
x→±1

(1 + x)ν−k+1 dn−k

dxn−k

(
(1− x)n+α(1 + x)n

)
= 0, ∀ν > −1, 1 ≤ k ≤ n,

we use (3.21), (2.4) and integration by parts to obtain

(3.22)

an =
(2n+ α+ 1)

2n+α+1n!
ν(ν − 1) · · · (ν − n+ 1)

∫ 1

−1

(1− x)n+α(1 + x)νdx

=
2ν(2n+ α+ 1)Γ(ν + 1)Γ(n+ α+ 1)

n!Γ(n+ ν + α+ 2)
×ν(ν − 1)(ν − 2) · · · (ν − n+ 1), ∀n ≥ 1.

This ends the proof. �

By using the Stirling’s formula we can easily prove the following lemma (cf. [7]).
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Lemma 3.2. For n → ∞,

(3.23)
Γ(n+ γ)

Γ(n+ δ)
=

1

nδ−γ

(
1 +O

( 1
n

))
,

where O
(
1
n

)
depends on γ and δ.

The following lemma is concerned with the asymptotic behaviour of the coeffi-
cients obtained in (3.19).

Lemma 3.3. Let an be the coefficients of the Jacobi expansion of (1 + x)ν and let
ν > −1 be a noninteger. Then for n → ∞,

(3.24) an = (−1)n−1C0(ν)

n2ν+1

(
1 +O

( 1
n

))
,

with

C0(ν) =
2ν+1 sin(πν)

π
Γ2(ν + 1).

Proof. Clearly, by Euler’s reflection formula Γ(1− z)Γ(z) =
π

sin(πz)
, we deduce

ν(ν−1)(ν−2) · · · (ν−n+1) = (−1)n
Γ(n− ν)

Γ(−ν)
= (−1)n−1 sin(πν)

π
Γ(n−ν)Γ(ν+1).

Hence, we can rewrite (3.19) as

(3.25) an = (−1)n−1C0(ν)
(
n+

α+ 1

2

) Γ(n− ν)Γ(n+ α+ 1)

Γ(n+ 1)Γ(n+ ν + α+ 2)
, n ≥ 1.

This, along with Lemma 3.2, leads to the desired result. �

Remark 3.1. Gui and Babuška [7] considered the Legendre expansion of uν(x), and
derived some results similar to Lemmas 3.1 and 3.3.

To establish the result of the Jacobi-Gauss interpolation approximation for the
singular function uν(x), we first need to consider the Jacobi orthogonal projection.

For any α > −1 and integer M ≥ 0, the Jacobi orthogonal projection Pα,0
M :

L2
χα,0(−1, 1) → PM (−1, 1) is defined by∫ 1

−1

(Pα,0
M v(x)− v(x))φ(x)(1− x)αdx = 0, ∀φ ∈ PM (−1, 1).

Clearly,

(3.26) Pα,0
M uν(x) =

M∑
n=0

anJ
α,0
n (x).

Lemma 3.4. If ν > − 1
2 is a noninteger, α > −1 and M ≥ 0, then

(3.27) ‖uν − Pα,0
M uν‖L2

χα,0 (−1,1) ≤ c(M + 1)−2ν−1.

If, in addition, ν > 0, then

(3.28) ‖(uν − Pα,0
M uν)

′‖L2
χα+1,1 (−1,1) ≤ c(M + 1)−2ν .
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Proof. According to (3.26) and (2.4), we have
(3.29)∥∥∥uν − Pα,0

M uν

∥∥∥2
L2

χα,0 (−1,1)
=

∥∥∥ ∞∑
n=M+1

anJ
α,0
n

∥∥∥2
L2

χα,0 (−1,1)
=

∞∑
n=M+1

2α+1a2n
2n+ α+ 1

.

This, together with (3.24), gives that for ν > − 1
2 ,

(3.30)∥∥∥uν − Pα,0
M uν

∥∥∥2
L2

χα,0 (−1,1)
=

∞∑
n=M+1

2α+1C2
0 (ν)

(2n+ α+ 1)n4ν+2

(
1 +O

( 1
n

))
≤ c

∞∑
n=M+1

1

n4ν+3
=

c

(M + 1)4ν+3
+ c

∞∑
n=M+2

1

n4ν+3

≤ c

(M + 1)4ν+3
+ c

∫ ∞

M+1

x−4ν−3dx

≤ c(M + 1)−4ν−2.

Similarly, by (3.26), (2.5) and (3.24) we obtain that for ν > 0,
(3.31)∥∥∥(uν − Pα,0

M uν)
′
∥∥∥2
L2

χα+1,1 (−1,1)
=

∞∑
n=M+1

a2n

∥∥∥ d

dx
Jα,0
n

∥∥∥2
L2

χα+1,1 (−1,1)

=

∞∑
n=M+1

n(n+ α+ 1)a2nγ
α,0
n =

∞∑
n=M+1

n(n+ α+ 1)2α+1C2
0 (ν)

(2n+ α+ 1)n4ν+2

(
1 +O

( 1
n

))
≤ c

∞∑
n=M+1

1

n4ν+1
≤ c(M + 1)−4ν .

This leads to the desired result. �

We now consider the Jacobi-Gauss interpolation for the singular function uν(x).

As in the proof of Theorem 3.1, we denote by πα,0
M : C(−1, 1) → PM (−1, 1) the

standard Jacobi-Gauss interpolation operator on the interval (−1, 1).

Lemma 3.5. If ν > 0 is a noninteger and M ≥ 0, then

(3.32) ‖uν − πα,0
M uν‖L2

χα,0 (−1,1) ≤ c(M + 1)−2ν−1, ∀ α > −1.

Proof. Clearly,

‖uν−πα,0
M uν‖L2

χα,0 (−1,1) ≤ ‖uν−Pα,0
M uν‖L2

χα,0 (−1,1)+‖πα,0
M (uν−Pα,0

M uν)‖L2
χα,0 (−1,1).

Moreover, according to Lemma 3.8 of [17],

‖πα,0
M v‖L2

χα,0 (−1,1) ≤ c‖v‖L2
χα,0 (−1,1) + c(M + 1)−1‖v′‖L2

χα+1,1 (−1,1).
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The previous two inequalities, along with (3.27) and (3.28), yield

‖uν − πα,0
M uν‖L2

χα,0 (−1,1) ≤ c‖uν − Pα,0
M uν‖L2

χα,0 (−1,1)

+ c(M + 1)−1‖(uν − Pα,0
M uν)

′‖L2
χα+1,1 (−1,1)

≤ c(M + 1)−2ν−1.

This leads to (3.32). �

(ii). The Legendre-Gauss-Lobatto interpolation approximation. We now con-
sider the Legendre-Gauss-Lobatto interpolation for the singular function uν(x).
As in the proof of Theorem 3.2, for any integer M ≥ 0, we denote by πL

M+1 :
C[−1, 1] → PM+1[−1, 1] the standard Legendre-Gauss-Lobatto interpolation oper-
ator on the interval [−1, 1].

Lemma 3.6. If ν > 0 is a noninteger and M ≥ 0, then

(3.33) ‖uν − πL
M+1uν‖L2(−1,1) ≤ c(M + 1)−2ν−1.

If, in addition, ν > 1
2 , then

(3.34) ‖(uν − πL
M+1uν)

′‖L2(−1,1) ≤ c(M + 1)−2ν+1.

Proof. We first verify the result (3.33). Obviously,
(3.35)

‖uν −πL
M+1uν‖L2(−1,1) ≤ ‖uν −P 0,0

M+1uν‖L2(−1,1)+ ‖πL
M+1(uν −P 0,0

M+1uν)‖L2(−1,1).

Owing to (3.317) of [17], we know that
(3.36)

‖πL
M+1(uν − P 0,0

M+1uν)‖L2(−1,1)

≤ c(M + 1)−1
(∣∣uν(1)− P 0,0

M+1uν(1)
∣∣+ ∣∣uν(−1)− P 0,0

M+1uν(−1)
∣∣)

+c‖uν − P 0,0
M+1uν‖L2(−1,1) + c(M + 1)−1‖(uν − P 0,0

M+1uν)
′‖L2

χ1,1 (−1,1).

Further, by (3.26) with α = 0, we get∣∣uν(1)− P 0,0
M+1uν(1)

∣∣ = ∣∣ ∞∑
n=M+2

anJ
0,0
n (1)

∣∣ = ∣∣ ∞∑
n=M+2

an
∣∣.

This, along with (3.24), leads to

(3.37)
∣∣uν(1)− P 0,0

M+1uν(1)
∣∣ ≤ c

∞∑
n=M+2

1

n2ν+1
≤ c(M + 1)−2ν , ∀ ν > 0.

Similarly,

(3.38) |uν(−1)− P 0,0
M+1uν(−1)| ≤ c(M + 1)−2ν , ∀ ν > 0.

Hence, by (3.35), (3.36), (3.27), (3.28), (3.37) and (3.38), we obtain the result
(3.33).

It remains to estimate (3.34). To this end, we define the following operator:

ΠM+1u(x) :=

∫ x

−1

P 0,0
M u′(ξ)dξ ∈ PM+1(−1, 1).
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Then we have

‖(uν − πL
M+1uν)

′‖L2(−1,1) ≤ ‖(uν −ΠM+1uν)
′‖L2(−1,1)

+ ‖∂xπL
M+1(uν −ΠM+1uν)‖L2(−1,1).

Moreover, by (3.14) with m = 1 we know that for any v ∈ H1(−1, 1),

‖∂xπL
M+1v‖L2(−1,1) ≤ c‖∂xv‖L2(−1,1).

The previous two inequalities imply that
(3.39)

‖(uν − πL
M+1uν)

′‖L2(−1,1) ≤ c‖(uν −ΠM+1uν)
′‖L2(−1,1) = c‖u′

ν − P 0,0
M u′

ν‖L2(−1,1).

The above, together with (3.27), gives that for ν > 1
2 ,

(3.40) ‖(uν − πL
M+1uν)

′‖L2(−1,1) ≤ c(M + 1)−2ν+1.

This leads to (3.34). �

3.2.2. The tν-type singularity on the interval I. We next consider the tν-type sin-
gularity on the interval I.

Theorem 3.3. Let Mn = M ≥ 0 and let Ih be a quasi-uniform mesh (hn ≈ h).
Assume that v(t) = tν with ν > 0 being a noninteger. Then for M ≥ ν − 1,

(3.41) ‖v − Iα,0
t,Mv‖L2

χ
α,0
n

(In) ≤ chν+α+1
2 (M + 1)−2ν−1, ∀ α > −1,

where the weight χα,0
n (t) = (tn − t)α and Iα,0

t,M is the intervalwise Jacobi-Gauss

interpolation operator defined in (2.10) for each subinterval.

Proof. Since v(t) has singularity at the endpoint t = 0 of the first element I1, we

shall first focus on the approximation error of Iα,0
t,Mv in I1. For this purpose, let

(3.42) u(x) := v(t)
∣∣∣
t=

h1(x+1)
2

=
(h1

2

)ν
uν(x) with uν(x) = (x+ 1)ν .

Then by (3.4) we know

(3.43) Iα,0
t,Mv(t)

∣∣∣
t=

h1(x+1)
2

= πα,0
M u(x) =

(h1

2

)ν
πα,0
M uν(x).

This, together with (3.32), gives that for ν > 0,

‖v − Iα,0
t,Mv‖L2

χ
α,0
1

(I1) =
(h1

2

)ν+α+1
2 ‖uν − πα,0

M uν‖L2
χα,0 (−1,1)

≤ chν+α+1
2 (M + 1)−2ν−1,

(3.44)

where χα,0
1 (t) = (t1 − t)α and χα,0(x) = (1− x)α.

We next deal with the approximation error of Iα,0
t,Mv in In with n > 1. Note that

v(t) is analytic in the interval [t1, T ], the regularity exponents m can be chosen
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arbitrarily large. Thereby, we use (3.2) to deduce that for any fixed integer 1 ≤
m ≤ M + 1 and m ≥ ν,

‖v − Iα,0
t,Mv‖L2

χ
α,0
n

(In) ≤ chm(M + 1)−m‖∂m
t v‖L2

χ
α,0
n

(In)

= chm(M + 1)−m
∣∣∣ν(ν − 1) · · · (ν −m+ 1)

∣∣∣( ∫
In

t2ν−2m(tn − t)αdt
) 1

2

≤ chν(M + 1)−m
∣∣∣ν(ν − 1) · · · (ν −m+ 1)

∣∣∣( ∫
In

(tn − t)αdt
) 1

2

≤ chν+α+1
2 (M + 1)−m

∣∣∣ν(ν − 1) · · · (ν −m+ 1)
∣∣∣.

(3.45)

If 2ν ≤ M, we select an integer m satisfying 2ν + 1 ≤ m ≤ M + 1. Then, by (3.45)
we have

(3.46) ‖v − Iα,0
t,Mv‖L2

χ
α,0
n

(In) ≤ chν+α+1
2 (M + 1)−m ≤ chν+α+1

2 (M + 1)−2ν−1.

If ν − 1 ≤ M < 2ν, we take m = M + 1 ≥ ν. Since M is bounded, and hence the
result (3.46) is still satisfied. This ends the proof. �

Theorem 3.4. Let Mn = M ≥ 0 and let Ih be a quasi-uniform mesh (hn ≈ h).
Assume that v(t) = tν with ν > 0 being a noninteger. Then for M > ν − 3

2 ,

(3.47) ‖v − IL
t,M+1v‖L2(I) ≤ chν+ 1

2 (M + 1)−2ν−1.

If, in addition, ν > 1
2 , then

(3.48) ‖(v − IL
t,M+1v)

′‖L2(I) ≤ chν− 1
2 (M + 1)−2ν+1.

Here, IL
t,M+1 is the intervalwise Legendre-Gauss-Lobatto interpolation operator de-

fined in (2.17) for each subinterval.

Proof. We first focus on the approximation error of IL
t,M+1v in I1. Let u(x) be the

same as that in (3.42). Then by (3.15) we know

(3.49) IL
t,M+1v(t)

∣∣∣
t=

h1(x+1)
2

= πL
M+1u(x) =

(h1

2

)ν
πL
M+1uν(x).

This, along with (3.33), gives that for ν > 0,

‖v − IL
t,M+1v‖L2(I1) =

(h1

2

)ν+ 1
2 ‖uν − πL

M+1uν‖L2(−1,1) ≤ chν+ 1
2 (M + 1)−2ν−1.

(3.50)

Similarly, by (3.34) we get that for ν > 1
2 ,

‖(v − IL
t,M+1v)

′‖L2(I1) =
(h1

2

)ν− 1
2 ‖∂x(uν − πL

M+1uν)‖L2(−1,1)

≤ chν− 1
2 (M + 1)−2ν+1.

(3.51)

We next deal with the approximation error of IL
t,M+1v in [t1, T ]. Note that v(t)

is analytic in the interval [t1, T ], we use (3.11) to deduce that for any fixed integer
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1 ≤ m ≤ M + 2 and m > ν + 1
2 ,

‖v − IL
t,M+1v‖2L2(t1,T ) ≤ ch2m(M + 1)−2m‖∂m

t v‖2L2(t1,T )

= ch2m(M + 1)−2m
∣∣∣ν(ν − 1) · · · (ν −m+ 1)

∣∣∣2 ∫ T

t1

t2ν−2mdt

≤ ch2ν+1(M + 1)−2m(m− ν − 1

2
)−1

∣∣∣ν(ν − 1) · · · (ν −m+ 1)
∣∣∣2.

(3.52)

If 2ν − 1 ≤ M, we select an integer m satisfying 2ν + 1 ≤ m ≤ M + 2. Then, by
(3.52) we have

(3.53) ‖v − IL
t,M+1v‖L2(t1,T ) ≤ chν+ 1

2 (M + 1)−m ≤ chν+ 1
2 (M + 1)−2ν−1.

If ν − 3
2 < M < 2ν − 1, we take m = M + 2 > ν + 1

2 . Since M is bounded, the
result (3.53) is still satisfied. A combination of (3.50) and (3.53) leads to (3.47).

Analogously, we use (3.12) to deduce that for any fixed integer 1 ≤ m ≤ M + 2
and m > ν + 1

2 ,

‖(v − IL
t,M+1v)

′‖2L2(t1,T ) ≤ ch2m−2(M + 1)2−2m‖∂m
t v‖2L2(t1,T )

≤ ch2ν−1(M + 1)2−2m(m− ν − 1

2
)−1

∣∣∣ν(ν − 1) · · · (ν −m+ 1)
∣∣∣2.(3.54)

If 2ν − 2 ≤ M, we select an integer m satisfying 2ν ≤ m ≤ M + 2. Then, by (3.54)
we get

(3.55) ‖(v − IL
t,M+1v)

′‖L2(t1,T ) ≤ chν− 1
2 (M + 1)−2ν+1.

If ν − 3
2 < M < 2ν − 2, we take m = M + 2 > ν + 1

2 . Since M is bounded, hence
the result (3.55) is still satisfied. Finally, by (3.51) and (3.55) we obtain the result
(3.48). �

By using a similar argument as in Theorem 3.4, we obtain

Theorem 3.5. Let Mn = M ≥ 0 and let Ih be a quasi-uniform mesh (hn ≈ h).
Assume that v(t) = tν with ν > 0 being a noninteger. Then for M > ν − 1

2 ,

(3.56) ‖v − It,Mv‖L2(I) ≤ chν+ 1
2 (M + 1)−2ν−1,

where It,M is the intervalwise Legendre-Gauss interpolation operator.

4. Error analysis

In this section, we shall analyze and characterize the hp-convergence of scheme
(2.21). We first study the error bounds for smooth solutions on an arbitrary mesh.
Then we consider the error bounds for singular solutions on a quasi-uniform mesh.
Finally, we show the exponential convergence for singular solutions on a geometric
mesh.

To this end, we introduce two lemmas. The first one is about the Poincaré
inequality stated below.

Lemma 4.1. Let α < 1 and κ ≥ tn−1 be any given constants. For any u ∈
H1

ω(0, tn−1) and u(0) = 0 with ω(t) = (κ− t)−α, we have

(4.1)

∫ tn−1

0

u2(t)(κ− t)−αdt ≤ 4

(1− α)2

∫ tn−1

0

(u′(t))2(κ− t)2−αdt.
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Proof. Clearly,

u2(t)(κ− t)1−α =

∫ t

0

∂y

(
u2(y)(κ− y)1−α

)
dy.

Hence, for t ∈ [0, tn−1],

u2(t)(κ− t)1−α + (1− α)

∫ t

0

u2(y)(κ− y)−αdy = 2

∫ t

0

u(y)u′(y)(κ− y)1−αdy

≤ 2
(∫ t

0

u2(y)(κ− y)−αdy
) 1

2
(∫ t

0

(u′(y))2(κ− y)2−αdy
) 1

2

,

(4.2)

which implies that for any α < 1 and t ∈ [0, tn−1],

(4.3)

∫ t

0

u2(y)(κ− y)−αdy ≤ 4

(1− α)2

∫ t

0

(u′(y))2(κ− y)2−αdy.

Letting t → tn−1 in the above inequality leads to the desired result. �
The second one is about Gronwall’s inequality given in [18].

Lemma 4.2. Assume that {kj} and {ρj} (j ≥ 0) are given nonnegative sequences,
and the sequence {εn} satisfies ε0 ≤ ρ0 and

εn ≤ ρn +

n−1∑
j=0

qj +

n−1∑
j=0

kjεj , n ≥ 1,

with qj ≥ 0 (j ≥ 0). Then

εn ≤ ρn +
n−1∑
j=0

(qj + kjρj) exp(
n−1∑
j=0

kj), n ≥ 1.

We now begin with the error analysis. For convenience, we denote

ek(t) := uk(t)− Uk(t), 1 ≤ k ≤ n.

Clearly,

(4.4) ‖e′n(t)‖2L2(In)
≤ 2‖It,Mn

∂tu
n − ∂tU

n‖2L2(In)
+ 2‖∂tun − It,Mn

∂tu
n‖2L2(In)

.

We next estimate the term ‖It,Mn
∂tu

n − ∂tU
n‖2L2(In)

.

Lemma 4.3. The following inequality holds:

(4.5) ‖It,Mn
∂tu

n − ∂tU
n‖2L2(In)

≤ 3
3∑

j=1

‖Bj‖2L2(In)
,

where

B1(t) = It,Mn

(
a(t)(Un(t)− un(t))

)
,

B2(t) =

n−1∑
k=1

It,Mn

∫
Ik

(t− s)−μ
(
IL
s,Mk+1

(
b(s)Uk(s)

)
− b(s)uk(s)

)
ds,

B3(t) = It,Mn

[
(
t− tn−1

hn
)1−μ

∫
In

(tn − λ)−μ
(
I−μ,0
λ,Mn+1

(
b(σ(λ, t))Un(σ(λ, t))

)
− b(σ(λ, t))un(σ(λ, t))

)
dλ

]
.
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Proof. By (2.3) we have

(4.6)
It,Mn

( d

dt
un(t) + a(t)un(t) +

n−1∑
k=1

∫
Ik

(t− s)−μb(s)uk(s)ds

+
( t− tn−1

hn

)1−μ
∫
In

(tn − λ)−μb(σ(λ, t))un(σ(λ, t))dλ
)
= It,Mn

f(t).

By subtracting (2.21) from (4.6), we derive the desired result. �

Lemma 4.4. For a(t) ∈ C[tn−1, tn] and un ∈ H1(In), we have

(4.7) ‖B1‖2L2(In)
≤ c‖en‖2L2(In)

+ ch2
n(Mn + 1)−2‖e′n‖2L2(In)

.

Proof. By (2.15) and (3.8), we deduce that

‖B1‖2L2(In)
=

∫
In

(
It,Mn

(
a(t)(Un(t)− un(t))

))2

dt

=
hn

2

Mn∑
j=0

a2(tn,j)
(
Un(tn,j)− un(tn,j)

)2
ωn,j

≤ chn

Mn∑
j=0

(
Un(tn,j)− un(tn,j)

)2
ωn,j

≤ c‖It,Mn
(Un − un)‖2L2(In)

≤ c‖Un − un‖2L2(In)

+ ch2
n(Mn + 1)−2‖∂t(Un − un)‖2L2(In)

.

(4.8)

This ends the proof. �

Lemma 4.5. Assume that b(t) ∈ C1[tk−1, tk], 1 ≤ k ≤ n − 1, b(t) ∈ H1(0, tn−1)
and u ∈ H1(0, tn−1). Then we have

(4.9) ‖B2‖2L2(In)
≤ chnT

3−2μ
n−1∑
k=1

(
‖ek‖2H1(Ik)

+ ‖
(
IL
s,Mk+1(bu

k)− buk
)′‖2L2(Ik)

)
.

Proof. Let V (s) and W (s) be the global functions defined on [0, tn−1], such that

V (s)
∣∣∣
s∈Ik

:= IL
s,Mk+1

(
b(s)Uk(s)

)
− b(s)uk(s), W (s)

∣∣∣
s∈Ik

:= IL
s,Mk+1

(
b(s)Uk(s)

)
, 1 ≤ k ≤ n− 1.

Clearly, W (s) is a piecewise polynomial. Since IL
s,Mk+1 is the Legendre-Gauss-

Lobatto interpolation operator, we can verify readily that W (s) ∈ C(0, tn−1).
Hence, W (s) ∈ H1(0, tn−1). Accordingly, we have V (s) ∈ H1(0, tn−1) and V (0) =
0. Next, by (2.15), the Cauchy-Schwarz inequality and the definition of B2, we
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obtain that

‖B2‖2L2(In)
=

∥∥∥It,Mn

n−1∑
k=1

∫
Ik

(t− s)−μ
(
IL
s,Mk+1

(
b(s)Uk(s)

)
− b(s)uk(s)

)
ds
∥∥∥2
L2(In)

=
∥∥∥It,Mn

∫ tn−1

0

(t− s)−μV (s)ds
∥∥∥2
L2(In)

=
hn

2

Mn∑
j=0

ωn,j

(∫ tn−1

0

(tn,j − s)−μV (s)ds
)2

≤ hn

2

Mn∑
j=0

ωn,j

∫ tn−1

0

(tn,j − s)−μds

∫ tn−1

0

(tn,j − s)−μV 2(s)ds

≤ chnT
1−μ

Mn∑
j=0

ωn,j

∫ tn−1

0

(tn,j − s)−μV 2(s)ds.

(4.10)

Due to (4.1) and the fact

Mn∑
j=0

ωn,j = 2, we further get

(4.11)

‖B2‖2L2(In)
≤ chnT

1−μ

Mn∑
j=0

ωn,j

∫ tn−1

0

(tn,j − s)2−μ
(
V ′(s)

)2
ds

≤ chnT
3−2μ

∫ tn−1

0

(
V ′(s)

)2
ds.

Hence,
(4.12)

‖B2‖2L2(In)
≤ chnT

3−2μ

n−1∑
k=1

∫
Ik

∣∣∣∂sIL
s,Mk+1

(
b(s)Uk(s)

)
− ∂s

(
b(s)uk(s)

)∣∣∣2ds
≤ chnT

3−2μ

n−1∑
k=1

∫
Ik

∣∣∣∂sIL
s,Mk+1

(
b(s)Uk(s)− b(s)uk(s)

)∣∣∣2ds
+chnT

3−2μ

n−1∑
k=1

∫
Ik

∣∣∣∂sIL
s,Mk+1

(
b(s)uk(s)

)
− ∂s

(
b(s)uk(s)

)∣∣∣2ds.
Applying (3.18) to (4.12), we derive that
(4.13)

‖B2‖2L2(In)
≤ chnT

3−2μ

n−1∑
k=1

∫
Ik

∣∣∣∂s(b(s)Uk(s)− b(s)uk(s)
)∣∣∣2ds

+chnT
3−2μ

n−1∑
k=1

∫
Ik

∣∣∣∂sIL
s,Mk+1

(
b(s)uk(s)

)
− ∂s

(
b(s)uk(s)

)∣∣∣2ds
≤ chnT

3−2μ

n−1∑
k=1

(
‖ek‖2H1(Ik)

+ ‖
(
IL
s,Mk+1(bu

k)− buk
)′‖2L2(Ik)

)
.

This leads to the desired result. �
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Lemma 4.6. Assume that b(t) ∈ C[tn−1, tn] and un ∈ H1(In). Then the following
inequality holds:

‖B3‖2L2(In)
≤ ch2−2μ

n ‖en‖2L2(In)
+ ch4−2μ

n ‖e′n‖2L2(In)

+ ch2−μ
n

Mn∑
j=0

ωn,j

∫
In

(tn − λ)−μ
∣∣∣(I−μ,0

λ,Mn+1 − I)
(
b(σ(λ, tn,j))u

n(σ(λ, tn,j))
)∣∣∣2dλ,

(4.14)

where I is the identity operator.

Proof. By (2.15) we have

‖B3‖2L2(In)
=

hn

2

Mn∑
j=0

ωn,j

∣∣∣( tn,j − tn−1

hn

)1−μ

×
∫
In

(tn − λ)−μ
(
I−μ,0
λ,Mn+1

(
b(σ(λ, tn,j))U

n(σ(λ, tn,j))
)

− b(σ(λ, tn,j))u
n(σ(λ, tn,j))

)
dλ

∣∣∣2r
≤ chn

Mn∑
j=0

ωn,j

∣∣∣ ∫
In

(tn − λ)−μ
(
I−μ,0
λ,Mn+1

(
b(σ(λ, tn,j))U

n(σ(λ, tn,j))
)

− b(σ(λ, tn,j))u
n(σ(λ, tn,j))

)
dλ

∣∣∣2
≤ chn

Mn∑
j=0

ωn,j(D1j +D2j),

where

D1j =
∣∣∣ ∫

In

(tn − λ)−μI−μ,0
λ,Mn+1

(
b(σ(λ, tn,j))

(
Un(σ(λ, tn,j))− un(σ(λ, tn,j))

))
dλ

∣∣∣2,
D2j =

∣∣∣ ∫
In

(tn − λ)−μ(I−μ,0
λ,Mn+1 − I)

(
b(σ(λ, tn,j))u

n(σ(λ, tn,j))
)
dλ

∣∣∣2.
We next estimate the terms D1j and D2j . Clearly, by (2.8) (using Mn+1 instead

of Mn) and the Cauchy-Schwarz inequality, we have
(4.15)

D1j =
∣∣∣(hn

2
)1−μ

Mn+1∑
i=0

b(σ(t−μ,0
n,i , tn,j))

(
Un(σ(t−μ,0

n,i , tn,j))

−un(σ(t−μ,0
n,i , tn,j))

)
ω−μ,0
n,i

∣∣∣2
≤ ch2−2μ

n

Mn+1∑
i=0

(
Un(σ(t−μ,0

n,i , tn,j))− un(σ(t−μ,0
n,i , tn,j))

)2

ω−μ,0
n,i

≤ ch1−μ
n

∫
In

∣∣∣I−μ,0
λ,Mn+1

(
Un(σ(λ, tn,j))− un(σ(λ, tn,j))

)∣∣∣2(tn − λ)−μdλ.
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The above with (3.6) gives that

D1j ≤ ch1−μ
n

∫
In

∣∣∣Un(σ(λ, tn,j))− un(σ(λ, tn,j))
∣∣∣2(tn − λ)−μdλ

+ ch1−μ
n (Mn + 1)−2

∫
In

∣∣∣∂λ(Un(σ(λ, tn,j))

− un(σ(λ, tn,j))
)∣∣∣2(tn − λ)1−μ(λ− tn−1)dλ

≤ ch1−μ
n

∫
In

∣∣∣Un(σ(λ, tn,j))− un(σ(λ, tn,j))

− Un(tn,j) + un(tn,j)
∣∣∣2(tn − λ)−μdλ

+ ch2−2μ
n

∣∣∣Un(tn,j)− un(tn,j)
∣∣∣2

+ ch3−2μ
n (Mn + 1)−2

∫
In

∣∣∣∂λ(Un(σ(λ, tn,j))− un(σ(λ, tn,j))
)∣∣∣2dλ

≤ ch2−μ
n

∫
In

∣∣∣Un(σ(λ, tn,j))− un(σ(λ, tn,j))

− Un(tn,j) + un(tn,j)
∣∣∣2(tn − λ)−μ−1dλ

+ ch2−2μ
n

∣∣∣Un(tn,j)− un(tn,j)
∣∣∣2

+ ch3−2μ
n (Mn + 1)−2

∫
In

∣∣∣∂λ(Un(σ(λ, tn,j))− un(σ(λ, tn,j))
)∣∣∣2dλ.

(4.16)

Owing to (2.2), we assert that

(
Un(σ(λ, tn,j))− un(σ(λ, tn,j))

)∣∣∣
λ=tn

= Un(tn,j)− un(tn,j).

Hence, we use the Hardy inequality to obtain that
(4.17)

D1j ≤ ch2−μ
n

∫
In

∣∣∣∂λ(Un(σ(λ, tn,j))− un(σ(λ, tn,j))
)∣∣∣2(tn − λ)1−μdλ

+ch2−2μ
n

∣∣∣Un(tn,j)− un(tn,j)
∣∣∣2

+ch3−2μ
n (Mn + 1)−2

∫
In

∣∣∣∂λ(Un(σ(λ, tn,j))− un(σ(λ, tn,j))
)∣∣∣2dλ

≤ ch2−2μ
n

∣∣∣Un(tn,j)− un(tn,j)
∣∣∣2

+ch3−2μ
n

∫
In

∣∣∣∂λ(Un(σ(λ, tn,j))− un(σ(λ, tn,j))
)∣∣∣2dλ.
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Finally, by (4.17), (2.15), (2.2) and (3.8) we get

hn

Mn∑
j=0

ωn,jD1j ≤ ch3−2μ
n

Mn∑
j=0

ωn,j

∣∣∣Un(tn,j)− un(tn,j)
∣∣∣2

+ ch4−2μ
n

Mn∑
j=0

ωn,j

∫
In

∣∣∣∂λ(Un(σ(λ, tn,j))− un(σ(λ, tn,j))
)∣∣∣2dλ

≤ ch2−2μ
n

∫
In

∣∣∣It,Mn

(
Un(t)− un(t)

)∣∣∣2dt
+ ch4−2μ

n

Mn∑
j=0

ωn,j
tn,j − tn−1

hn

∫
In

∣∣∣∂ξ(Un(ξ)− un(ξ)
)∣∣∣2dξ

≤ ch2−2μ
n

∫
In

(Un(t)− un(t))2dt

+ ch4−2μ
n (Mn + 1)−2

∫
In

(
∂t(U

n(t)− un(t))
)2

dt

+ ch4−2μ
n

∫
In

(
∂t(U

n(t)− un(t))
)2

dt

≤ ch2−2μ
n ‖en‖2L2(In)

+ ch4−2μ
n ‖e′n‖2L2(In)

.

(4.18)

It remains to estimate D2j . By the Cauchy-Schwarz inequality, we deduce that
(4.19)

D2j ≤ ch1−μ
n

∫
In

(tn − λ)−μ
∣∣∣(I−μ,0

λ,Mn+1 − I)
(
b(σ(λ, tn,j))u

n(σ(λ, tn,j))
)∣∣∣2dλ.

Thereby,

hn

Mn∑
j=0

ωn,jD2j

≤ ch2−μ
n

Mn∑
j=0

ωn,j

∫
In

(tn − λ)−μ
∣∣∣(I−μ,0

λ,Mn+1 − I)
(
b(σ(λ, tn,j))u

n(σ(λ, tn,j))
)∣∣∣2dλ.

(4.20)

This, along with (4.18), leads to the desired result. �

4.1. Error bounds for smooth solutions on an arbitrary mesh.

Theorem 4.1. Assume a(t) ∈ C(I), b(t) ∈H1(I), b(t)|t∈[tn−1,tn] ∈ Cmn [tn−1, tn],

f(t) ∈ C(I), u ∈ H1(I) and u|t∈In ∈ Hmn(In) with 1 ≤ n ≤ N and integers
2 ≤ mn ≤ Mn + 2. Then for hn sufficiently small (cf. (4.27)), we get

‖un − Un‖2H1(In)
≤ ch2mn−2

n (Mn + 1)2−2mn‖u‖2Hmn (In)

+ hn exp(cT
4−2μ)

n−1∑
k=1

h2mk−2
k (Mk + 1)2−2mk‖u‖2Hmk (Ik)

.

(4.21)
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Proof. By (3.7) we get that for integer 2 ≤ mn ≤ Mn + 2,

‖∂tun − It,Mn
∂tu

n‖2L2(In)
≤ ch2mn−2

n (Mn + 1)2−2mn‖∂mn
t un‖2L2(In)

.(4.22)

Moreover, applying (3.12) to (4.9), we derive that for b(t)|t∈[tk−1,tk] ∈ Cmk [tk−1, tk]
and 1 ≤ mk ≤ Mk + 2,
(4.23)

‖B2‖2L2(In)
≤ chnT

3−2μ
n−1∑
k=1

(
‖ek‖2H1(Ik)

+ h2mk−2
k (Mk + 1)2−2mk‖uk‖2Hmk (Ik)

)
.

Further, by (3.2) and (2.2), we obtain that for 1 ≤ mn ≤ Mn + 2,
(4.24) ∫

In

(tn − λ)−μ
∣∣∣(I−μ,0

λ,Mn+1 − I)
(
b(σ(λ, tn,j))u

n(σ(λ, tn,j))
)∣∣∣2dλ

≤ c(Mn + 1)−2mn

∫
In

(tn − λ)mn−μ(λ− tn−1)
mn

×
∣∣∣∂mn

λ

(
b(σ(λ, tn,j))u

n(σ(λ, tn,j))
)∣∣∣2dλ

≤ ch2mn−μ
n (Mn + 1)−2mn

∫ tn,j

tn−1

( tn,j − tn−1

hn

)2mn−1∣∣∣∂mn

ξ

(
b(ξ)un(ξ)

)∣∣∣2dξ
≤ ch2mn−μ

n (Mn + 1)−2mn

∫
In

∣∣∣∂mn

ξ

(
b(ξ)un(ξ)

)∣∣∣2dξ.
Therefore, by (4.24) and (4.14) we have

(4.25)
‖B3‖2L2(In)

≤ ch2−2μ
n ‖en‖2L2(In)

+ ch4−2μ
n ‖e′n‖2L2(In)

+ch2+2mn−2μ
n (Mn + 1)−2mn‖un‖2Hmn (In)

.

Thus, by (4.4), (4.5), (4.7), (4.22), (4.23) and (4.25), we deduce that for 2 ≤ mk ≤
Mk + 2, we get

(4.26)

‖e′n‖2L2(In)

≤ c‖en‖2L2(In)
+ ch2

n(Mn + 1)−2‖e′n‖2L2(In)

+ch2mn−2
n (Mn + 1)2−2mn‖∂mn

t un‖2L2(In)

+chnT
3−2μ

n−1∑
k=1

(
‖ek‖2H1(Ik)

+ h2mk−2
k (Mk + 1)2−2mk‖uk‖2Hmk (Ik)

)
+ch2−2μ

n ‖en‖2L2(In)
+ ch4−2μ

n ‖e′n‖2L2(In)

+ch2+2mn−2μ
n (Mn + 1)−2mn‖un‖2Hmn (In)

.

Assume that hn is sufficiently small such that

(4.27) ch2
n + ch4−2μ

n ≤ η < 1.

Then we may rewrite (4.26) as

(4.28) ‖e′n‖
2
L2(In)

≤ c‖en‖2L2(In)
+ chnT

3−2μ

n−1∑
k=1

‖ek‖2H1(Ik)
+Qn,
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where

Qn = ch2mn−2
n (Mn + 1)2−2mn‖un‖2Hmn (In)

+ chnT
3−2μ

n−1∑
k=1

h2mk−2
k (Mk + 1)2−2mk‖uk‖2Hmk (Ik)

.

It is clear that⎧⎨⎩ e2k(tk)− e2k(tk−1) = 2

∫
Ik

e′k(t)ek(t)dt ≤ ‖ek‖2H1(Ik)
,

ek(tk−1) = ek−1(tk−1), e1(t0) = 0.

Summing up all these inequalities, we obtain

(4.29) e2n−1(tn−1) ≤
n−1∑
k=1

‖ek‖2H1(Ik)
.

Therefore,

‖en‖2L2(In)
=

∫
In

(∫ t

tn−1

e′n(s)ds+ en(tn−1)
)2

dt ≤ 2h2
n‖e′n‖2L2(In)

+ 2hne
2
n(tn−1)

= 2h2
n‖e′n‖2L2(In)

+2hne
2
n−1(tn−1) ≤ 2h2

n‖e′n‖2L2(In)
+2hn

n−1∑
k=1

‖ek‖2H1(Ik)
.

(4.30)

This, along with (4.28) and (4.27), yields

‖en‖2H1(In)
≤ chnT

3−2μ

n−1∑
k=1

‖ek‖2H1(Ik)
+Qn.(4.31)

By taking εk = h−1
k ‖ek‖2H1(Ik)

in Lemma 4.2, we get

‖en‖2H1(In)
≤ ch2mn−2

n (Mn + 1)2−2mn‖u‖2Hmn (In)

+chn exp(cT
4−2μ)

n−1∑
k=1

h2mk−2
k (Mk + 1)2−2mk‖u‖2Hmk (Ik)

.

This leads to the desired result. �

Let U(t) be the global numerical solution of (1.1), which is given by

U(t) := Un(t), t ∈ In, 1 ≤ n ≤ N.

Then, by Theorem 4.1 we further obtain

Theorem 4.2. Assume that μ < 1, a(t) ∈ C(I), b(t) ∈ H1(I), b(t)|t∈[tn−1,tn] ∈
Cmn [tn−1, tn], f(t) ∈ C(I), u ∈ H1(I) and u|t∈In ∈ Hmn(In) with 1 ≤ n ≤ N and
integers 2 ≤ mn ≤ Mn+2. Then for hk sufficiently small (cf. (4.27)), the following
inequality holds:

(4.32) ‖u− U‖2H1(I) ≤ exp(cT 4−2μ)
N∑

k=1

h2mk−2
k (Mk + 1)2−2mk‖u‖2Hmk (Ik)

.
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Remark 4.1. The estimate in Theorem 4.2 shows that the spectral collocation
method converges either as the time-steps hk are decreased or as the degrees of
the polynomials Mk are increased. Moreover, we also observe that the H1-estimate
in Theorem 4.2 is optimal in both hk and Mk.

Remark 4.2. If the exact solution u of (1.1) is analytic on [0, T ], then by (4.21) and
the standard approximation theory for analytic functions, we have the error bound
‖u − U‖H1(I) ≤ c exp(−d(M + 1)), with the degree M = min1≤k≤N Mk ≥ 0 and
the constants c, d > 0.

Remark 4.3. We may also consider the nonlinear VIDE with the weakly singular
kernel,

(4.33)

⎧⎨⎩ u′(t) = f(t, u(t)) +

∫ t

0

(t− s)−μK(t, s, u(s))ds, t ∈
(
0, T

]
,

u(0) = u0,

where 0 < μ < 1, and the functions f(t, y) and K(t, s, u) are continuous.
The Legendre-Jacobi spectral collocation scheme is to seek Un(t) ∈ PMn+1(In),

such that
(4.34)⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d

dt
Un(t) = It,Mn

(
f(t, Un(t)) +

n−1∑
k=1

∫
Ik

(t− s)−μI−μ,0
s,Mk+1K(t, s, Uk(s))ds

+(
t− tn−1

hn
)1−μ

∫
In

(tn − λ)−μI−μ,0
λ,Mn+1K(t, σ(λ, t), Un(σ(λ, t)))dλ

)
,

Un(tn−1) = Un−1(tn−1), U1(t0) = u0.

By using the analysis techniques developed here, we can derive almost the same
convergence property as in Theorem 4.2, stated below:

Let 0 < μ < 1 and integers 2 ≤ mn ≤ Mn + 2. Assume that f(t, y), K(t, s, y(s))
are continuous and satisfy the Lipschitz conditions:

|f(t, u1)− f(t, u2)| ≤ γf |u1 − u2|, γf ≥ 0,

|K(t, s, u1)−K(t, s, u2)| ≤ γK |u1 − u2|, γK ≥ 0.

Then for hn sufficiently small, the following inequality holds:

‖u− U‖2H1(I) �
N∑

k=1

h2mk−2
k (Mk + 1)2−2mk

×
(
‖∂mk

t u‖2L2(Ik)
+
∥∥∥∂mk

s K(t, ·, u(·))
∥∥∥2
L∞(I;L2(Ik))

)
.

4.2. Error bounds for singular solutions on a quasi-uniform mesh. In gen-
eral, the solutions of (1.1) with μ ∈ (0, 1) will not be smooth at t = 0+, even if
one has smooth data. Hence we need to analyze the hp-version convergence of the
Legendre-Jacobi spectral collocation method for nonsmooth solutions. We recall
the following regularity results.

Lemma 4.7 (see [3]). Assume that a, b, f ∈ Cm(I) (m ≥ 1), and let μ ∈ (0, 1).
Then:

(1) The regularity of the solution u of the equation (1.1) is described by

u ∈ C1(I) ∩ Cm+1(0, T ], with |u′′(t)| ≤ ct−μ for t ∈ (0, T ].
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(2) The solution u can be written in the form

u(t) =
∑
(j,k)μ

γj,k(μ)t
j+k(2−μ) + Ym+1(t, μ), t ∈ I,(4.35)

where (j, k)μ := {(j, k) : j, k ∈ N0, j + k(2 − μ) < m + 1}. Moreover,
Ym+1(·, μ) ∈ Cm+1(I), and the coefficients γj,k(μ) are dependent on j, k
and μ.

The following theorem establishes the hp-version convergence of the Legendre-
Jacobi spectral collocation method for singular solutions on a quasi-uniform mesh.

Theorem 4.3. Let Mn = M and let Ih be a quasi-uniform mesh (hn ≈ h). Assume
that μ ∈ (0, 1), the functions a, f ∈ Cm(I) and b ∈ Cm+1(I). Then for 1 ≤ m ≤
M + 1, M > 1

2 − μ and h sufficiently small (cf. (4.46)),

(4.36) ‖u− U‖2H1(I) ≤ exp(cT 4−2μ)
(
h3−2μ(M + 1)4μ−6 + h2m(M + 1)−2m

)
.

Proof. It can be seen from (4.35) that the solution u has tν-type singularity near
t = 0 for noninteger ν. Note that the most singular term in (4.35) is γ0,1(μ)t

2−μ,
which governs the convergence rate. Hence, without loss of generality, we may
assume that u can be written as

u = Cμt
2−μ + Ym+1(t, μ) =: u1(t) + u2(t),

where Ym+1 ∈ Cm+1(I) and Cμ is a constant depending on μ. We will approximate
the functions u1 and u2, respectively. By (3.56) we obtain

‖∂tu1 − It,M∂tu1‖2L2(I) ≤ ch3−2μ(M + 1)4μ−6.(4.37)

Moreover, by (3.7) we know that for 1 ≤ m ≤ M + 1,

‖∂tu2 − It,M∂tu2‖2L2(In)
≤ ch2m(M + 1)−2m‖∂m+1

t u2‖2L2(In)
.(4.38)

Combining (4.37) and (4.38) yields

‖∂tu− It,M∂tu‖2L2(I) ≤ ch3−2μ(M + 1)4μ−6 + ch2m(M + 1)−2m‖∂m+1
t u2‖2L2(I).

(4.39)

Since the most singular term in b(t)u(t) is still u1(t), we use (3.48) and (3.12) to
get that for b ∈ Cm+1(I), 0 ≤ m ≤ M + 1 and M > 1

2 − μ,
(4.40)

n−1∑
k=1

‖
(
IL
s,M+1(bu)− bu

)′‖2L2(Ik)

≤ 2
n−1∑
k=1

(
‖
(
IL
s,M+1(bu1)− bu1

)′‖2L2(Ik)
+ ‖

(
IL
s,M+1(bu2)− bu2

)′‖2L2(Ik)

)
≤ ch3−2μ(M + 1)4μ−6 + ch2m(M + 1)−2m‖∂m+1

t (bu2)‖2L2(I)

≤ ch3−2μ(M + 1)4μ−6 + ch2m(M + 1)−2m‖u2‖2Hm+1(I).

Applying (4.40) to (4.9), we derive that
(4.41)

‖B2‖2L2(In)
≤ chT 3−2μ

n−1∑
k=1

‖ek‖2H1(Ik)

+chT 3−2μ(h3−2μ(M + 1)4μ−6 + h2m(M + 1)−2m‖u2‖2Hm+1(I)).
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Next, by (2.2) and an argument similar to Theorem 3.3 and (4.24), we deduce that
(4.42)∫
In

(tn−λ)−μ
∣∣∣(I−μ,0

λ,M+1−I)
(
b(σ(λ, tn,j))u1(σ(λ, tn,j))

)∣∣∣2dλ ≤ ch5−3μ(M +1)4μ−10.

Further, by (4.24) we have that for 0 ≤ m ≤ M + 1,

(4.43)

∫
In

(tn − λ)−μ
∣∣∣(I−μ,0

λ,M+1 − I)
(
b(σ(λ, tn,j))u2(σ(λ, tn,j))

)∣∣∣2dλ
≤ ch2m−μ+2(M + 1)−2m−2‖∂m+1

t (bu2)‖2L2(In)
.

Therefore, by (4.14), (4.42) and (4.43) we get that for b ∈ Cm+1(I),

‖B3‖2L2(In)
≤ ch2−2μ‖en‖2L2(In)

+ ch4−2μ‖e′n‖2L2(In)

+ ch2−μ
(
h5−3μ(M + 1)4μ−10 + h2m−μ+2(M + 1)−2m−2‖u2‖2Hm+1(In)

)
.

(4.44)

Thus, by (4.4), (4.5), (4.7), (4.41) and (4.44), we deduce that

‖e′n‖2L2(In)

≤ c‖en‖2L2(In)
+ ch2(M + 1)−2‖e′n‖2L2(In)

+ 2‖∂tu− It,M∂tu‖2L2(In)

+ chT 3−2μ
n−1∑
k=1

‖ek‖2H1(Ik)

+ chT 3−2μ(h3−2μ(M + 1)4μ−6 + h2m(M + 1)−2m‖u2‖2Hm+1(I))

+ ch2−2μ‖en‖2L2(In)
+ ch4−2μ‖e′n‖2L2(In)

+ ch2−μ(h5−3μ(M + 1)4μ−10 + h2m−μ+2(M + 1)−2m−2‖u2‖2Hm+1(In)
).

(4.45)

Assume that h is sufficiently small such that

(4.46) ch2 + ch4−2μ ≤ η < 1.

Then we may rewrite (4.45) as

(4.47) ‖e′n‖
2
L2(In)

≤ c‖en‖2L2(In)
+ chT 3−2μ

n−1∑
k=1

‖ek‖2H1(Ik)
+Qn,

where

Qn = 2‖∂tu− It,M∂tu‖2L2(In)

+ chT 3−2μ(h3−2μ(M + 1)4μ−6 + h2m(M + 1)−2m‖u2‖2Hm+1(I))

+ ch2−μ(h5−3μ(M + 1)4μ−10 + h2m−μ+2(M + 1)−2m−2‖u2‖2Hm+1(In)
).

This, along with (4.30) and (4.46), yields

(4.48) ‖en‖2H1(In)
≤ chT 3−2μ

n−1∑
k=1

‖ek‖2H1(Ik)
+Qn.

By taking εk = h−1‖ek‖2H1(Ik)
in Lemma 4.2, we get

‖en‖2H1(In)
≤ Qn + h exp(cT 4−2μ)

n−1∑
j=1

Qj .
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Thereby,

(4.49) ‖u− U‖2H1(I) ≤ exp(cT 4−2μ)
N∑

n=1

Qn.

Finally, by (4.39) and (4.49) we obtain

(4.50) ‖u− U‖2H1(I) ≤ exp(cT 4−2μ)
(
h3−2μ(M + 1)4μ−6 + h2m(M + 1)−2m

)
.

This ends the proof. �

4.3. Exponential convergence for singular solutions on a geometric mesh.
In this subsection, we show that the hp-version of spectral collocation method
with geometrically time partitions and linearly increasing polynomial degrees yields
exponential rates of convergence.

We assume that μ ∈ (0, 1), the data a(t) and b(t) are analytic functions, and
f(t) has the form

f(t) = f1(t) + tβf2(t), β > 1, β �∈ N,(4.51)

where f1 and f2 are analytic functions. Recall that an analytic function g can be
characterized by analyticity constants Cg, dg > 0 and the growth conditions (see
[16, pp. 78-79] for details),

|g(s)(t)| ≤ Cgd
s
gΓ(s+ 1), t ∈ [0, T ], s ≥ 0.

The following result describes the analyticity properties of the exact solution u.

Lemma 4.8 ([4, Theorem 4.1]). Assume that the data a(t), b(t) are analytic func-
tions and f(t) has the form (4.51). Then there exist constants c, d > 0 depending
only on the analyticity constants of a, b, f1 and f2 such that the solution u of (1.1)
satisfies

|u(s)(t)| ≤ cdsΓ(s+ 1)t2−μ−s, t ∈ (0, T ], s ∈ N0.

Definition 4.1. A geometric partition TN,ρ = {In}Nn=1 of (0, T ) with grading factor
ρ ∈ (0, 1) and N levels of refinement is given by

t0 = 0, tn = TρN−n, 1 ≤ n ≤ N.

For 2 ≤ n ≤ N , the time steps hn = tn−tn−1 satisfy hn = λ0tn−1 with λ0 = 1−ρ
ρ .

Definition 4.2. Let TN,ρ be a geometric mesh of (0, T ) as defined in Definition
4.1. An approximation degree vector M on TN,ρ is called linear with slope θ > 0
if M1 = 1, Mn = max{1, θn�}, 2 ≤ n ≤ N, on the geometrically refined elements
{In}Nn=1.

Lemma 4.9. Assume that the data a(t), b(t) are analytic functions and f(t) has
the form (4.51). Let TN,ρ be a geometric mesh with {In}Nn=1 denoting the geometric
refinement of (0, T ). Then the solution u of (1.1) satisfies

‖u‖2W 1,∞(I1)
≤ c,

and for s ≥ 0,

‖u‖2W s+1,∞(In)
≤ cd2sΓ(2s+ 1)ρ2(N−n+1)(1−μ−s), 2 ≤ n ≤ N,

where the constants c, d > 0 are independent of n, N and s.
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Proof. The assertions follow from Lemma 4.8, Definition 4.1 and the property of
the Gamma function. �

The following result establishes the exponential convergence rate of the spectral
collocation method for the VIDE (1.1).

Theorem 4.4. Assume that μ ∈ (0, 1), the data a(t), b(t) are analytic functions
and f(t) has the form (4.51). Let TN,ρ be a geometric mesh of (0, T ). Then there
exists a slope θ1 > 0 solely depending on ρ, μ, β and the constants c and d in
Lemma 4.9 such that for all linear polynomial degree vectors M with slope θ ≥ θ1,
the spectral collocation approximation U of (1.1) obtained by (2.21) satisfies the
error estimate

‖u− U‖H1(I) ≤ ce−b0
√
DOF,(4.52)

where the constants c, b0 > 0 are independent of the degrees of freedom DOF.

Proof. The error bound (4.52) can be proved using similar techniques as in [4,14,15].
For convenience, we select θ ≥ 1

2 such that Mn = θn� ≥ 1 on the geometrically

refined intervals {In}Nn=2. Since β > 1, we have f ∈ C1(I), and hence the results
of Lemma 4.7 with m = 1 hold. Without loss of generality, we may assume that u
can be written as

u = Cμt
2−μ + Y2(t, μ) =: u1(t) + u2(t),

where Y2 ∈ C2(I) and Cμ is a constant depending on μ.
We first estimate the term ‖∂tu − It,Mn

∂tu‖L2(In). By (3.41) with α = 0 we
obtain

‖∂tu1 − It,M1
∂tu1‖2L2(I1)

≤ ch3−2μ
1 (M1 + 1)4μ−6.(4.53)

Moreover, by (3.7) we know that

‖∂tu2 − It,M1
∂tu2‖2L2(I1)

≤ ch2
1(M1 + 1)−2‖∂2

t u2‖2L2(I1)

≤ ch3
1(M1 + 1)−2‖∂2

t u2‖2L∞(I1)
.

(4.54)

Combining (4.53) and (4.54) yields

‖∂tu− It,M1
∂tu‖2L2(I1)

≤ ch3−2μ
1 (M1 + 1)4μ−6 + ch3

1(M1 + 1)−2‖∂2
t u2‖2L∞(I1)

≤ c(ρ(3−2μ)(N−1) + ρ3(N−1)) ≤ cρ(3−2μ)(N−1).

(4.55)

According to Lemma 4.8, the solution u is analytic away from t = 0. Thus, the
regularity exponents mn can be chosen arbitrarily large for 2 ≤ n ≤ N . Therefore,
on the subintervals In for 2 ≤ n ≤ N , we use (3.1) with α = β = 0, Lemma 4.9 and
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the equality hn = λ0tn−1 with tn−1 = TρN−n+1 to obtain that for 1 ≤ mn ≤ Mn+1,

‖∂tu− It,Mn
∂tu‖2L2(In)

≤ ch2mn
n

Γ(Mn + 2−mn)

Γ(Mn + 2 +mn)
‖∂mn+1

t u‖2L2(In)

≤ ch2mn+1
n

Γ(Mn + 2−mn)

Γ(Mn + 2 +mn)
‖∂mn+1

t u‖2L∞(In)

≤ c
(
λ0Tρ

N−n+1
)2mn+1 Γ(Mn + 2−mn)

Γ(Mn + 2 +mn)
d2mnΓ(2mn + 1)ρ2(N−n+1)(1−μ−mn)

≤ cρ(3−2μ)(N−n+1) (λ0T )
2mn+1 Γ(Mn + 2−mn)

Γ(Mn + 2 +mn)
d2mnΓ(2mn + 1)

≤ cρ(3−2μ)(N−n+1) (λ0Td)
2mn

Γ(Mn + 2−mn)

Γ(Mn + 2 +mn)
Γ(2mn + 1).

Now setting mn = εn(Mn + 1) with εn ∈ (0, 1), with Stirling’s formula we get

‖∂tu− It,Mn
∂tu‖2L2(In)

≤ cρ(3−2μ)(N−n+1)(Mn + 1)
1
2

(
(λ0Td)

2εn
(1− εn)

1−εn

(1 + εn)1+εn

)Mn+1

.

Note that the function gλ0,T,d(ε) = (λ0Td)
2ε (1− ε)1−ε

(1 + ε)1+ε
satisfies

0 < inf
0<ε<1

gλ0,T,d(ε) =: gλ0,T,d(εmin) < 1 with εmin =
1√

1 + λ2
0T

2d2
,

and thus, setting gmin =: gλ0,T,d(εmin) and choosing εn = εmin for 2 ≤ n ≤ N , we
conclude that

‖∂tu− It,Mn
∂tu‖2L2(In)

≤ cρ(3−2μ)(N−n+1)(Mn + 1)
1
2 gMn+1

min

≤ cρ(3−2μ)N
(
θN

) 1
2
(
ρ(3−2μ)(1−n)gθnmin

)
.

Next, let

θ0 = max

{
(3− 2μ) log ρ

log(gmin)
,
1

2

}
.

Then, for θ ≥ θ0, we have gθnmin ≤ ρ(3−2μ)n, and hence,
(4.56)

‖∂tu− It,Mn
∂tu‖2L2(In)

≤ cρ(3−2μ)N
(
θN

) 1
2 ρ3−2μ ≤ cρ(3−2μ)N

(
θN

) 1
2 , 2 ≤ n ≤ N.

Combining the estimates in (4.55) and (4.56) leads to

(4.57) ‖∂tu− It,Mn
∂tu‖2L2(In)

≤ ce−b0N , 1 ≤ n ≤ N,

as N → ∞, where we have absorbed the term
(
θN

) 1
2 into the constants c and b0.
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We next estimate the term ‖B2‖L2(In). Since the most singular term in b(t)u(t)
is still u1(t), we use (3.51), (3.12) and a similar argument as in (4.55) to get that

(4.58)

‖
(
IL
s,M1+1(bu)− bu

)′‖2L2(I1)

≤ 2‖
(
IL
s,M1+1(bu1)− bu1

)′‖2L2(I1)
+ 2‖

(
IL
s,M1+1(bu2)− bu2

)′‖2L2(I1)

≤ ch3−2μ
1 (M1 + 1)4μ−6 + ch2

1(M1 + 1)−2‖∂2
t (bu2)‖2L2(I1)

≤ ch3−2μ
1 (M1 + 1)4μ−6 + ch2

1(M1 + 1)−2‖u2‖2H2(I)

≤ cρ(3−2μ)(N−1).

Moreover, by (3.10) and an argument similar to (4.56), we obtain that for 2 ≤ n ≤
N ,

‖
(
IL
s,Mn+1(bu)− bu

)′‖2L2(In)

≤ ch2mn
n (Mn + 1)2

Γ(Mn + 2−mn)

Γ(Mn + 4 +mn)
‖∂mn+1

t (bu)‖2L2(In)

≤ ch2mn
n

Γ(Mn + 2−mn)

Γ(Mn + 2 +mn)
‖u‖2Hmn+1(In)

≤ cρ(3−2μ)N
(
θN

) 1
2 .

(4.59)

Applying (4.58), (4.59) and (4.57) to (4.9), we derive that

(4.60) ‖B2‖2L2(In)
≤ chnT

3−2μ
n−1∑
k=1

‖ek‖2H1(Ik)
+ chne

−b0N .

We now estimate the term ‖B3‖L2(In). By (4.42) we know

∫
I1

(t1 − λ)−μ
∣∣∣(I−μ,0

λ,M1+1 − I)
(
b(σ(λ, t1,j))u1(σ(λ, t1,j))

)∣∣∣2dλ
≤ ch5−3μ

1 (M1 + 1)4μ−10.

(4.61)

Further, by (4.24) we have

(4.62)

∫
I1

(t1 − λ)−μ
∣∣∣(I−μ,0

λ,M1+1 − I)
(
b(σ(λ, t1,j))u2(σ(λ, t1,j))

)∣∣∣2dλ
≤ ch4−μ

1 (M1 + 1)−4‖∂2
t (bu2)‖2L2(I1)

≤ ch4−μ
1 (M1 + 1)−4‖u2‖2H2(I1)

.
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Hence,

(4.63)

∫
I1

(t1 − λ)−μ
∣∣∣(I−μ,0

λ,M1+1 − I)
(
b(σ(λ, t1,j))u(σ(λ, t1,j))

)∣∣∣2dλ
≤ cρ(5−3μ)(N−1) + cρ(4−μ)(N−1) ≤ ce−b0N .

Moreover, by (3.1) and similar arguments as for (4.24) and (4.57), we obtain that

for 2 ≤ n ≤ N and θ ≥ θ1 = max
{

(5−3μ) log ρ
log(gmin)

, 12

}
,

(4.64)

∫
In

(tn − λ)−μ
∣∣∣(I−μ,0

λ,Mn+1 − I)
(
b(σ(λ, tn,j))u(σ(λ, tn,j))

)∣∣∣2dλ
≤ ch2mn−μ+2

n

Γ(Mn + 2−mn)

Γ(Mn + 4 +mn)
‖∂mn+1

t (bu)‖2L2(In)

≤ ch2mn−μ+2
n (Mn + 1)−2Γ(Mn + 2−mn)

Γ(Mn + 2 +mn)
‖u‖2Hmn+1(In)

≤ cρ(5−3μ)N (θN)−
3
2 ≤ ce−b0N .

Therefore, by (4.14), (4.63) and (4.64) we get that for all 1 ≤ n ≤ N,

(4.65) ‖B3‖2L2(In)
≤ ch2−2μ

n ‖en‖2L2(In)
+ ch4−2μ

n ‖e′n‖2L2(In)
+ ch2−μ

n e−b0N .

Thus, by (4.4), (4.5), (4.7), (4.57), (4.60) and (4.65), we deduce that

(4.66)

‖e′n‖2L2(In)
≤ c‖en‖2L2(In)

+ ch2
n(Mn + 1)−2‖e′n‖2L2(In)

+ ce−b0N

+chnT
3−2μ

n−1∑
k=1

‖ek‖2H1(Ik)
+ ch2−2μ

n ‖en‖2L2(In)

+ch4−2μ
n ‖e′n‖2L2(In)

.

Assume that hn is sufficiently small such that

(4.67) ch2
n + ch4−2μ

n ≤ η < 1.

Then we may rewrite (4.66) as

(4.68) ‖e′n‖
2
L2(In)

≤ c‖en‖2L2(In)
+ chnT

3−2μ

n−1∑
k=1

‖ek‖2H1(Ik)
+ ce−b0N .

This, along with (4.30) and (4.67), yields

(4.69) ‖en‖2H1(In)
≤ chnT

3−2μ

n−1∑
k=1

‖ek‖2H1(Ik)
+ ce−b0N .

By taking εk = h−1
k ‖ek‖2H1(Ik)

in Lemma 4.2, we get

‖en‖2H1(In)
≤ ce−b0N + chn exp(cT

4−2μ)Ne−b0N ≤ ce−b0N ,

where we have absorbed the terms hn exp(cT
4−2μ)N into the constants c and b0.

Thereby,

(4.70) ‖u− U‖2H1(I) ≤ ce−b0N .

Since DOF ≤ cN2 for N sufficiently large, we obtain the desired result. �
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5. Numerical results

In this section, we present some numerical results to illustrate the efficiency of
the Legendre-Jacobi spectral collocation method. Consider the linear VIDEs (cf.
[4]):

(5.1)

⎧⎨⎩ u′(t) + u(t) +

∫ t

0

(t− s)−μesu(s)ds = f(t), t ∈ (0, T ],

u(0) = 0.

We choose the right-hand side f such that the solution u of (5.1) is given by
u(t) = t2−μe−t.

5.1. Smooth solution. We start by considering the case μ = −1 so that the
solution u in (5.1) is analytic on [0, T ].

In Figure 5.1, we list the discrete H1-errors of the h-version of the Legendre-
Jacobi spectral collocation method with T = 1. The uniform time partitions are
refined by bisection of each time step at a fixed uniform mode M = 0, 1, 2, 3. In Ta-
ble 5.1, we also list the convergence rates of the discrete H1-errors of the h-version,
which are algebraic and in accordance with the h-version results as predicted by
Theorem 4.2.

In Figure 5.2, we show the discrete H1-errors of the p-version of the Legendre-
Jacobi spectral collocation method with T = 1. The mode M is increased for each
fixed time-step h = 1, 1/2, 1/4, 1/8. The results show that exponential rates of
convergence are achieved, which are in agreement with the comments in Remark
4.2.
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Figure 5.1. h-version: μ = −1.
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Figure 5.2. p-version: μ = −1.

Table 5.1. h-version: μ = −1.

h M H1-errors order M H1-errors order M H1-errors order

1/64 3.50 E-03 1.00 1.93 E-05 2.00 1.22 E-07 3.00
1/128 1.75 E-03 1.00 4.82 E-06 2.00 1.52 E-08 3.00
1/256 0 8.74 E-04 1.00 1 1.21 E-06 2.00 2 1.90 E-09 3.00
1/512 4.37 E-04 1.00 3.01 E-07 2.00 2.38 E-10 3.00
1/1024 2.18 E-04 1.00 7.53 E-08 2.00 2.97 E-11 3.00
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Figure 5.3. h-version: μ = 0.6.
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Figure 5.4. p-version: μ = 0.6.

Table 5.2. h-version: μ = 0.6.

h M H1-errors order M H1-errors order M H1-errors order

1/256 2.57 E-03 0.84 5.53 E-04 0.91 2.70 E-04 0.90
1/512 0 1.43 E-03 0.85 1 2.96 E-04 0.90 2 1.45 E-04 0.90
1/1024 7.87 E-04 0.86 1.58 E-04 0.90 7.75 E-05 0.90
1/2048 4.32 E-04 0.87 8.48 E-05 0.90 4.15 E-05 0.90

5.2. Nonsmooth solution. We next consider the case μ = 0.6 so that the solution
u in (5.1) has a weak singularity at t = 0.

We first test the h-version of the Legendre-Jacobi spectral collocation method
on the uniform partitions as adopted in Subsection 5.1. In Figure 5.3, we present
the discrete H1-errors of the h-version with T = 1 and the fixed uniform mode
M = 0, 1, 2, 3. In Table 5.2, we also list the convergence rates of the discrete
H1-errors of the h-version. It can be observed that almost the same algebraic
convergence rate of order 0.9 for the H1-errors is achieved, which coincides well
with the h-version results as predicted by Theorem 4.3.

In Figure 5.4, we show the discrete H1-errors of the p-version of the Legendre-
Jacobi spectral collocation method with T = 1. The mode M is increased for each
fixed time step h = 1, 1/2, 1/4, 1/8. In Table 5.3, we also list the convergence order
of the discrete H1-errors of the p-version. The order of convergence for the H1-
errors is about 1.8, which is twice as fast as the h-version results. This confirms
the doubling convergence rates for the p-version in Theorem 4.3.

Table 5.3. p-version: μ = 0.6.

M h H1-errors order h H1-errors order
21 1.21 E-03 1.77 3.21 E-04 1.78
22 1.12 E-03 1.79 2.96 E-04 1.80
23 1 1.03 E-03 1.80 1/4 2.74 E-04 1.82
24 9.56 E-04 1.82 2.55 E-04 1.83
25 8.88 E-04 1.84 2.37 E-04 1.85
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Figure 5.5. hp-version: μ = 0.6.
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Figure 5.6. hp-version: μ = 0.6.

To resolve the singular behavior of the solution more efficiently, we shall make
use of geometrically refined steps and linearly increasing degree vectors as described
in Subsection 4.3.

In Figure 5.5, we plot the discrete H1(0, 1)-errors against the square root of the
number of degrees of freedom, with μ = 0.6, θ = 1.5 and various values of ρ. It can
be seen that the exponential convergence is achieved for each ρ. In Figure 5.6, we
present the discrete H1(0, 1)-errors with ρ = 0.1 and various values of θ. The near
straight lines also indicate exponential convergence for each θ. These experimental
results agree well with the theory in Theorem 4.4.

6. Concluding remarks

In this paper we introduced an hp-version Legendre-Jacobi spectral collocation
method for Volterra integro-differential equations with smooth and weakly singular
kernels. We derived a priori error estimates under the H1-norm that are explicit
with respect to the time steps and the approximation orders. These theoretical
results were confirmed by some numerical examples. Furthermore, as shown in
Theorem 4.4 and the numerical examples, for problems with start-up singularities,
the hp-version Legendre-Jacobi spectral collocation method with geometric mesh
refinement and linearly increasing polynomial degrees in the discretization can yield
exponential rate of convergence.
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[7] W. Gui and I. Babuška, The h, p and h-p versions of the finite element method in 1 dimen-
sion. I. The error analysis of the p-version, Numer. Math. 49 (1986), no. 6, 577–612, DOI
10.1007/BF01389733. MR861522

[8] C. Huang, T. Tang, and Z. Zhang, Supergeometric convergence of spectral collocation meth-

ods for weakly singular Volterra and Fredholm integral equations with smooth solutions, J.
Comput. Math. 29 (2011), no. 6, 698–719, DOI 10.4208/jcm.1110-m11si06. MR2869428

[9] Y. Jiang and J. Ma, Spectral collocation methods for Volterra-integro differential equa-
tions with noncompact kernels, J. Comput. Appl. Math. 244 (2013), 115–124, DOI
10.1016/j.cam.2012.10.033. MR3005763

[10] X. Li, T. Tang, and C. Xu, Parallel in time algorithm with spectral-subdomain enhancement
for Volterra integral equations, SIAM J. Numer. Anal. 51 (2013), no. 3, 1735–1756, DOI
10.1137/120876241. MR3066805

[11] T. Lin, Y. Lin, M. Rao, and S. Zhang, Petrov-Galerkin methods for linear Volterra
integro-differential equations, SIAM J. Numer. Anal. 38 (2000), no. 3, 937–963, DOI
10.1137/S0036142999336145. MR1781210

[12] K. Mustapha, A superconvergent discontinuous Galerkin method for Volterra integro-
differential equations, smooth and non-smooth kernels, Math. Comp. 82 (2013), no. 284,
1987–2005, DOI 10.1090/S0025-5718-2013-02689-0. MR3073189

[13] K. Mustapha, H. Brunner, H. Mustapha, and D. Schötzau, An hp-version discontinuous
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