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LOCAL INVERSE ESTIMATES

FOR NON-LOCAL BOUNDARY INTEGRAL OPERATORS

M. AURADA, M. FEISCHL, T. FÜHRER, M. KARKULIK, J. M. MELENK,
AND D. PRAETORIUS

Abstract. We prove local inverse-type estimates for the four non-local bound-
ary integral operators associated with the Laplace operator on a bounded Lips-
chitz domain Ω in Rd for d ≥ 2 with piecewise smooth boundary. For piecewise
polynomial ansatz spaces and d ∈ {2, 3}, the inverse estimates are explicit in
both the local mesh width and the approximation order. An application to
efficiency-type estimates in a posteriori error estimation in boundary element

methods is given.

1. Introduction

Inverse estimates are a frequently used tool in the numerical analysis of dis-
cretizations of partial differential equations (PDEs). They allow one to bound a
stronger (semi)norm of a discrete function by a weaker norm at the expense of
negative powers of the mesh width. For example, in the context of finite element
methods, it is textbook knowledge that

‖h∇Vh‖L2(Ω) ≤ C ‖Vh‖L2(Ω) for all continuous Th-piecewise polynomials Vh.

(1.1)

The constant C > 0 depends only on the shape regularity of the underlying trian-
gulation Th of Ω ⊂ Rd and the polynomial degree of Vh. Here, h ∈ L∞(Ω) is the
local mesh width function defined by h|T := diam(T ) for T ∈ Th. Inverse estimates
have also been derived for fractional order Sobolev spaces [Geo08,GHS05,DFG04].
The usual proof of inverse estimates like (1.1) relies on scaling arguments, i.e., the
powers of h arise by elementwise, i.e., local considerations and transformations to
reference configurations.

In the present work we consider the four classical boundary integral operators
(BIOs) associated with the Laplacian. To be specific in this introduction, we focus
on the 3D simple-layer integral operator

Vφ(x) =
1

4π

∫
∂Ω

1

|x− y| φ(y) dy for x ∈ ∂Ω,(1.2)
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where Ω ⊂ Rd, d ≥ 2, is a bounded Lipschitz domain with piecewise C1-boundary
∂Ω. Let Γ ⊆ ∂Ω be a relatively open subset of the boundary ∂Ω. For d ∈ {2, 3}
and with the surface gradient ∇Γ(·), we show the estimate

‖h1/2(q + 1)−1∇ΓVΦh‖L2(Γ) ≤ C ‖Φh‖ ˜H−1/2(Γ) for all Φh ∈ Pq(Th),(1.3)

where Pq(Th) is the space of Th-piecewise polynomials on Γ of degree q ∈ N0; see
Section 2.4 for a precise definition. The bound (1.3) can be understood as an inverse
estimate: Under appropriate assumptions on Γ, the operator V is an isomorphism

between H̃−1/2(Γ) and H1/2(Γ), so that (1.3) is indeed an inverse estimate for the
finite dimensional space

{
VΦh : Φh ∈ Pq(Th)

}
when considered with the weighted

H1-seminorm and the natural H1/2(Γ)-norm. Inverse estimates of the form (1.3)
will be shown for all four BIOs associated with the Laplacian and discrete spaces
with spatially varying polynomial degree; cf. Corollary 3.2. In fact, in Theorem 3.1
we will show more general results of the form

‖wh∇ΓVφ‖L2(Γ)

≤ C

(∥∥∥ wh

h1/2

∥∥∥
L∞(Γ)

‖φ‖
˜H−1/2(Γ) + ‖whφ‖L2(Γ)

)
for all φ ∈ L2(Γ),

(1.4)

where wh ∈ L∞(Ω) is a fairly general weight function.

Applications. Inverse estimates of the form (1.3) arise naturally in the analysis
of the adaptive BEM (boundary element method) when one generalizes the conver-
gence and quasi-optimality analysis of the adaptive FEM [CKNS08,Ste07,CFPP14]
to the adaptive BEM [FKMP13, Gan13]. Indeed, the present results allow us
to prove quasi-optimality of adaptive BEM for piecewise smooth geometries and
higher (fixed) order discretizations; we refer to [FFK14] and [FFK15], where this
application is worked out in detail for weakly singular and hypersingular integral
equations on polyhedral surfaces, respectively. While the inverse estimate (1.3)
features prominently in the analysis of quasi-optimality of adaptive BEM for sym-
metric problems, it is also a key ingredient for plain convergence in non-symmetric
problems such as FEM-BEM couplings. We refer to [AFF13a] and the precur-
sor preprint [AFF12] of the present work for a convergence proof of the adaptive
coupling of FEM and BEM.

In addition, bounds of the form (1.4) allow us to prove novel weak efficiency
estimates for the weighted residual error estimators for BEM that are discussed
in [Car97,CMS01,CMPS04]. Before detailing this, we emphasize that the optimal
convergence behavior of adaptive BEM does not require efficiency of the error es-
timator, [FFK14,FFK15]; the concept of efficiency is only required to characterize
the approximation classes; cf. [CFPP14]. To fix ideas concerning residual error
estimators, consider again the weakly singular case and suppose that φ ∈ L2(Γ)
solves Vφ = f for some given f ∈ H1(Γ). Let Φh be the Galerkin approximation
of φ, where the ansatz space consists of Th-piecewise polynomials of fixed degree
p ∈ N0. While the reliability estimate

C−1
rel ‖φ− Φh‖ ˜H−1/2(Γ) ≤ ηh,V := ‖h1/2∇Γ(f −VΦh)‖L2(Γ)(1.5)

is well known for the weighted residual error estimator ηh,V (at least for polyhedral
domains Ω), the converse efficiency estimate is not available in the literature (with
the exception of some 2D situations, [AFF13b]). However, as a consequence of (1.4),
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we will see in Corollary 3.4 that

C−1
eff ηh,V ≤ ‖h1/2(φ− Φh)‖L2(Γ),(1.6)

which expresses efficiency of ηh,V with respect to the slightly stronger norm

‖h1/2(φ− Φh)‖L2(Γ) � ‖φ− Φh‖ ˜H−1/2(Γ). We refer to Corollary 3.7 for the case of

the hypersingular operator. These efficiency bounds are specific instances of new
stability estimates for the BIOs in locally weighted L2-norms detailed in Corollar-
ies 3.3 and 3.6.

Novelty. The results of the present work are required for the convergence analysis
of adaptive BEM for both weakly singular and hypersingular integral equations in
[FFK14, FFK15]. The discrete inequality (1.3) was first shown independently in
[FKMP13] and [Gan13], however, under some restrictions: The work [FKMP13]
considers only lowest-order polynomials, i.e., Th-piecewise constants, but works for
polyhedral boundaries Γ. The work [Gan13] proves (1.3) for arbitrary Th-piecewise
polynomials, but its wavelet-based analysis is restricted to C1,1-boundaries Γ and
the constant C > 0 depends on the polynomial degree. Our proof of (1.4) gen-
eralizes the works [FKMP13, Gan13] in the following ways: 1) we generalize the
analysis of [FKMP13] for the simple-layer operator V to all four BIOs associated
with the Laplacian (i.e., the double-layer operator K, its adjoint K′, and the hyper-
singular operator W); 2) we extend our previous analysis from polyhedral domains
to piecewise smooth geometries; 3) we lift the restriction to fixed-order polynomial
ansatz spaces and permit very general ansatz spaces; 4) for ansatz spaces of piece-
wise polynomials of arbitrary order, we make the dependence on the polynomial
degree in the inverse estimates explicit.

The technical difficulty in the proof of (1.4) and (1.3) lies in the non-locality of
the boundary integral operator V, which precludes simple elementwise considera-
tions. We cope with the non-locality of the BIOs by splitting them into near-field
and far-field contributions, each requiring different tools. The analysis of the near-
field part relies on local arguments and stability properties of the BIOs. For the
far-field part, the key observation is that the BIOs are derived from two volume

potentials, namely, the simple-layer potential Ṽ and the double-layer potential K̃
by taking appropriate traces. Since these potentials solve elliptic equations, “inte-
rior regularity” estimates are available for them and trace inequalities imply cor-
responding estimates for the BIOs. Section 4 proves the relevant estimates for

the simple-layer potential Ṽ, whereas Section 5 is concerned with the double-layer

potential K̃. The final Section 6 then combines these results to give the proof of
Theorem 3.1.

Although the present paper considers only the four BIOs associated with the
Laplacian, the scope is wider. As just mentioned, the key tool are interior estimates
for potentials; such estimates are available for many elliptic equations, for example,
the Lamé system, so that we expect that corresponding results can be proved as
well for BIOs associated with these problems.

General notation. We close the introduction by stating that | · | denotes, de-
pending on the context, the absolute value of a real number, the Euclidean norm
of a vector in Rd, the Lebesgue measure of a subset of Rd−1 or Rd or the (d− 1)-
dimensional surface measure of a subset of ∂Ω. The notation a � b abbreviates
a ≤ Cb for some constant C > 0, and we write a 	 b to abbreviate a � b � a.
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We write Br(x) =
{
z ∈ Rd : |x− z| < r

}
or Br(x) =

{
z ∈ Rd−1 : |x− z| < r

}
for the open balls with radius r and center x in Rd or Rd−1.

2. Spaces, operators, and meshes

2.1. Sobolev spaces. Ω is a bounded Lipschitz domain in Rd, d ≥ 2, with piece-
wise C1-boundary ∂Ω, [SS11, Def. 2.2.10], and corresponding exterior domain
Ωext := Rd \ Ω. The exterior unit normal vector field on ∂Ω is denoted by ν.
Throughout, we will assume that either Γ = ∂Ω, or that Γ ⊆ ∂Ω is a non-empty,
relatively open set that stems from a Lipschitz dissection ∂Ω = Γ ∪ ∂Γ ∪ (∂Ω \ Γ)
as described in [McL00, pp. 99].

The non-negative order Sobolev spaces H1/2+s(∂Ω) for s ∈ {−1/2, 0, 1/2} are
defined as in [McL00, pp. 99] by use of Bessel potentials on Rd−1 and liftings via
the bi-Lipschitz maps that describe ∂Ω. We also need the spaces H1/2+s(Γ) and

H̃1/2+s(Γ). In accordance with [McL00], these are defined as follows:

H1/2+s(Γ) := {v|Γ : v ∈ H1/2+s(∂Ω)},(2.1)

H̃1/2+s(Γ) := {v : E0,Γv ∈ H1/2+s(∂Ω)},(2.2)

where E0,Γ denotes the operator that extends a function defined on Γ to a func-
tion on ∂Ω by zero. These spaces are endowed with their natural norms, i.e., the
quotient norm ‖v‖H1/2+s(Γ) := inf{‖V ‖H1/2+s(∂Ω) : V |Γ = v} and ‖v‖

˜H1/2+s(Γ) :=

‖E0,Γv‖H1/2+s(∂Ω). Owing to the assumption that ∂Ω = Γ ∪ ∂Γ ∪ (∂Ω \ Γ) is a

Lipschitz dissection, we have the following facts (see Appendix B for a sketch of
the proof):

Facts 2.1. (i) Since ∂Ω is piecewise C1, the surface gradient ∇Γu of u ∈
H1(∂Ω) is defined pointwise a.e. on each C1 surface piece Γi as follows:

For a C1-parametrization ξi : Γ̂i → Γi of a surface piece Γi the surface
gradient (∇Γu)|Γi

is given by the requirement

(2.3) (∇Γu)|Γi
◦ ξi =

∑
k,�

gk�∂k(u ◦ ξi)∂�ξi,

where the matrix (gk�)d−1
k,�=1 is the inverse of the Gramian matrix G(x) =

Dξi(x)
�Dξi(x).

For s = 1/2, we have the norm equivalences ‖u‖2H1(∂Ω) 	 ‖u‖2L2(∂Ω) +

‖∇Γu‖2L2(∂Ω) and ‖u‖2
˜H1(Γ)

	 ‖u‖2L2(Γ) + ‖∇Γu‖2L2(Γ).

(ii) For s = 0, the norms ‖u‖H1/2(∂Ω) and ‖u‖
˜H1/2(Γ) can equivalently be de-

scribed by the Aronstein-Slobodeckii norms of u and E0,Γu (cf. [McL00,
(3.18)] for the definition of the Aronstein-Slobodeckii norm).

(iii) For s = 0, the spaces H1/2(∂Ω) (respectively H̃1/2(Γ)) are equivalently
obtained by interpolation with the K-method between the cases s = −1/2
(i.e., L2(∂Ω) respectively L2(Γ)) and s = 1/2 (i.e., H1(∂Ω) respectively

H̃1(Γ)).
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Negative order Sobolev spaces are defined by duality, namely, for s ∈
{−1/2, 0, 1/2},

H−1/2(∂Ω) := H1/2(∂Ω)′,

H̃−(1/2+s)(Γ) := H1/2+s(Γ)′,

H−(1/2+s)(Γ) := H̃1/2+s(Γ)′,

(2.4)

where duality pairings 〈·, ·〉 are understood to extend the standard L2-scalar product
on ∂Ω or Γ (indicated by the corresponding index, if necessary). We observe the
continuous inclusions

H̃±(1/2+s)(Γ) ⊆ H±(1/2+s)(Γ) as well as H̃±(1/2+s)(∂Ω) = H±(1/2+s)(∂Ω).

We also note that for ψ ∈ L2(Γ) the zero extension E0,Γψ satisfies E0,Γψ ∈
H−1/2(∂Ω) with

(2.5) ‖ψ‖
˜H−1/2(Γ) = ‖E0,Γψ‖H−1/2(∂Ω).

We denote by γint
0 (·) : H1(Ω) → H1/2(∂Ω) the interior trace operator, i.e., γint

0 u is
the restriction of a function u ∈ H1(Ω) to the boundary ∂Ω. With H1

Δ(Ω) :=
{
u ∈

H1(Ω) : −Δu ∈ L2(Ω)
}
, the interior conormal derivative operator γint

1 : H1
Δ(Ω) →

H−1/2(∂Ω) is defined by the first Green’s formula, viz.,

〈γint
1 u , v〉∂Ω = 〈∇u , ∇v〉Ω − 〈−Δu , v〉Ω for all v ∈ H1(Ω).(2.6)

The exterior trace γext
0 and the exterior conormal derivative operator γext

1 are de-
fined analogously to their interior counterparts. To that end, we fix a bounded Lip-
schitz domain U ⊂ Rd with Ω ⊂ U . The exterior trace operator γext

0 : H1(U \Ω) →
H1/2(∂Ω) is defined by restricting to ∂Ω, and the exterior conormal derivative
γext
1 is defined as usual by 〈γext

1 u , v〉∂Ω = −〈∇u , ∇v〉U\Ω − 〈Δu , v〉U\Ω for all

v ∈ H1(U \ Ω) with γext
0 v = 0 on ∂U .

For a function u that admits both conormal derivatives or both traces, we define
the jumps [γ1u] := γext

1 u− γint
1 u and [u] = γext

0 u− γint
0 u.

Remark 2.2. The operator γint
1 (·) generalizes the classical normal derivative oper-

ator: If u ∈ H1
Δ(Ω) is sufficiently smooth near a boundary point x0, then γint

1 u
can be represented near x0 by a function given by the pointwise defined normal
derivative ∂νu.

For sufficiently smooth functions u, the surface gradient of γint
0 u = γext

0 u on
each C1 surface piece Γi is the tangential component of ∇u; that is, with the outer
normal vector ν one has (∇Γγ

int
0 u)|Γi

= (γint
0 (∇u − ν(ν · ∇u))|Γi

. By smoothness
of u, the operator γint

0 may be replaced with γext
0 in this identity.

2.2. Boundary integral operators. We briefly introduce the pertinent boundary
integral operators and refer to the monographs [McL00, HW08, SS11] for further
details and proofs. Green’s function for the Laplace operator is given by

G(x, y) =

{
− 1

|S1| log |x− y|, for d = 2,

+ 1
|Sd−1| |x− y|−(d−2), for d ≥ 3,

(2.7)

where |Sd−1| denotes the surface measure of the Euclidean sphere in Rd, e.g., |S1| =
2π and |S2| = 4π. The classical simple-layer potential Ṽ and the double-layer



2656 M. AURADA ET AL.

potential K̃ are formally defined by

(Ṽψ)(x) :=

∫
∂Ω

G(x, y)ψ(y) dy,

(K̃v)(x) :=

∫
∂Ω

∂ν(y)G(x, y)v(y) dy, x ∈ Rd \ ∂Ω;

here, ∂ν(y) denotes the (outer) normal derivative with respect to the variable y.
These operators are defined for sufficiently smooth functions ψ, v and can be ex-
tended to bounded linear operators

Ṽ ∈ L
(
H−1/2(∂Ω);H1(U)

)
and K̃ ∈ L

(
H1/2(∂Ω);H1(U \ ∂Ω)

)
.(2.8)

It is well known that ΔṼψ = 0 = ΔK̃v in U \ ∂Ω for all ψ ∈ H−1/2(∂Ω) and
v ∈ H1/2(∂Ω). The simple-layer, double-layer, adjoint double-layer, and the hyper-
singular integral operator are defined as follows:

V = γint
0 Ṽ, K =

1

2
+ γint

0 K̃, K
′ = −1

2
+ γint

1 Ṽ, and W = −γint
1 K̃.(2.9)

These are bounded linear operators for s ∈ {−1/2, 0, 1/2} as follows:

V ∈ L(H−1/2+s(∂Ω);H1/2+s(∂Ω)),(2.10)

K ∈ L(H1/2+s(∂Ω);H1/2+s(∂Ω)),(2.11)

K
′ ∈ L(H−1/2+s(∂Ω);H−1/2+s(∂Ω)),(2.12)

W ∈ L(H1/2+s(∂Ω);H−1/2+s(∂Ω)),(2.13)

The operators Ṽ, V, K′ will often be applied to functions in L2(Γ). Throughout
this paper, we employ the convention that for ψ ∈ L2(Γ) we implicitly extend by
zero, e.g.,

(2.14) Ṽψ means Ṽ(E0,Γψ), Vψ means V(E0,Γψ), and K′ψ means K′(E0,Γψ).

An analogous extension is obviously used when K̃, K, W are applied to a v ∈
H̃1/2(Γ).

Remark 2.3. Ellipticity of V and W is not used in our analysis of Theorem 3.1 and
Corollary 3.2. In particular, there is no need to scale Ω to ensure diam(Ω) < 1 in
2D or to assume that Γ is connected.

2.3. Surface simplices and admissible triangulations. Fix the reference sim-

plex Tref := {x ∈ Rd−1, 0 < x1, . . . , xd−1,
∑d−1

j=1 xj < 1}, which is the open convex

hull of the d vertices {0, e1, . . . , ed−1} (“0-faces”). The convex hull of any j + 1 of
these vertices is called a “j-face” of Tref .

We require the concept of regular, κ-shape regular triangulations Th of Γ.

Definition 2.4 (regular and shape-regular triangulations). A set Th of subsets of
Γ is called a regular triangulation of Γ if the following is true:

(i) The elements T ∈ Th are relatively open subsets of Γ and each T is the
image of Tref under an element map γT : Tref → T . The element map γT is
assumed to be bijective and C1 on Tref .

(ii) The elements cover Γ:
⋃

T∈Th
T = Γ.
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(iii) “no hanging nodes”: For each pair (T, T ′) ∈ Th×Th, the intersection T ∩T ′

is either empty or there are two j-faces f , f ′ ⊆ ∂Tref of Tref with j ∈ {0, . . . ,
d− 2} such that T ∩ T ′ = γT (f) = γT ′(f ′).

(iv) Parametrizations of common boundary parts of neighboring elements are
compatible: If ∅ �= T ∩ T ′ = γT (f) = γT ′(f ′), then γ−1

T ◦ γT ′ : f ′ → f is an
affine isomorphism.

We call the images of vertices of Tref under the element maps nodes of Th and collect
them in the set Nh. The images of the (d−2)-faces of Tref are called facets of Th and
collected in the set Fh. For each T ∈ Th, we set h(T ) := diam(T ) := supx,y∈T |x−y|.

A regular triangulation is called κ-shape regular, if the element maps γT satisfy
the following:

(v) Let GT (x) := DγT (x)
�DγT (x) ∈ R(d−1)×(d−1) be the symmetric Gramian

matrix of γT . The triangulation is called κ-shape regular if for all T ∈ Th
the extremal eigenvalues λmin(GT (x)) and λmax(GT (x)) of GT (x) satisfy

sup
x∈Tref

(
h(T )2

λmin(GT (x))
+

λmax(GT (x))

h(T )2

)
≤ κ.

(vi) If d = 2, we require explicitly that the element sizes of neighboring elements
are comparable:

h(T ) ≤ κh(T ′) for all T, T ′ with T ∩ T ′ �= ∅.
With each triangulation Th, we associate the local mesh size function h ∈ L∞(Γ)

which is defined elementwise by h|T := h(T ) for all T ∈ Th. We note that for a
κ-shape regular triangulation we have

max
T∈Th

h(T )d−1

|T | � 1,(2.15)

where the implied constant depends solely on κ.
If Γ is the union of pieces of (d − 1)-dimensional hyperplanes and the element

maps are affine, then the Gramians are elementwise constants and Definition 2.4
generalizes the classical concept of a κ-shape regular triangulation of Γ. In the
non-affine case, the following example illustrates how triangulations as stipulated
in Definition 2.4 can be created; cf. [SS11, Section 4.1.2]:

Example 2.5. Let Γ ⊆ ∂Ω be an open surface piece and assume Γ = γ(Γ̂) for

some reference configuration Γ̂ ⊆ Rd−1 and some sufficiently smooth map γ. Let

T̂h = {T̂1, . . . , T̂N} be a standard, regular, shape-regular triangulation of Γ̂ with
affine element maps γ̂

̂Ti
, i = 1, . . . , N . Then, the triangulation with elements

T = γ ◦γ
̂Ti
(Tref) and element maps γ ◦γ

̂Ti
satisfies the hypotheses of Definition 2.4.

This concept generalizes to surfaces consisting of several patches; it is worth em-
phasizing that in that case the patch parametrizations need to match at patch
boundaries.

For an element T ∈ Th, we define the element patch ωh(T ) by

ωh(T ) :=
(⋃{

T ′ : T ′ ∈ Th with T ∩ T ′ �= ∅
})◦

.(2.16)

The assumptions on the element maps of a κ-shape regular triangulation imply that
elements of a patch are comparable in size. Furthermore, the fact that Γ results
from a Lipschitz dissection of ∂Ω imposes certain topological restrictions on the
patches.
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Lemma 2.6. Let Th be a regular, κ-shape regular triangulation. Then, there is a
constant C > 0 that depends solely on κ and the Lipschitz character of ∂Ω such
that the following holds:

(i) h(T ) ≤ Ch(T ′) for any two elements T , T ′ with T ∩ T ′ �= ∅.
(ii) The number of elements in an element patch is bounded by C.
(iii) For any two elements T , T ′ in the element patch ωh(T

′′) there is a sequence
T = T0, . . . , Tn = T ′ of elements Ti ∈ T , i = 0, . . . , n, in ωh(T

′′) such that
two successive elements Ti, Ti+1 share a common facet: Ti ∩ Ti+1 ∈ Fh for
i = 0, . . . , n− 1.

Sketch of proof. Statement (iii): We first show (iii) for the node patch

ωh(z) :=
(⋃{

T : T ∈ Th with z ∈ T
})◦

and any node z of T ′′. This follows from the fact that Γ results from a Lipschitz
dissection and considerations in Rd−1 using local charts. Indeed, after a Euclidean
change of coordinates, we may assume that ∂Ω is (locally) a hypograph, i.e., there
is a Lipschitz continuous function Λ : Br(0) → R with r > 0 such that the set
{(x,Λ(x)) : x ∈ Br(0)} ⊂ ∂Ω. Without loss of generality, we assume the Euclidean
coordinate change is such that z = (0,Λ(0)). One may also assume (cf. [Ste70,
Thm. 3, Sect. VI]) that Λ is defined on Rd−1 and Lipschitz continuous so that the

map Λ̃ : Rd → Rd given by (x, t) �→ (x,Λ(x) + t) is bi-Lipschitz.
We distinguish the cases z ∈ Γ and z ∈ ∂Γ. Let z be an interior point of Γ. Then,

the pull-backs T̂ := Λ̃−1(T ), T ⊆ ωh(z), are contained in the hyperplane Rd−1×{0}
and (identifying this hyperplane with Rd−1) completely cover a neighborhood of
0 ∈ Rd−1. This together with (iii) of Definition 2.4 shows the claim. If z ∈ ∂Γ, then
the fact that the elements are contained in Γ and that Γ results from a Lipschitz

dissection implies that near 0 ∈ Rd−1, the pull-backs T̂ are all on one side of a
Lipschitz graph in Rd−1. This together with (iii) of Definition 2.4 again implies the
claim. Since ωh(T

′′) is the union of the d node patches ωh(z) associated with the
d nodes of T ′′, this concludes the proof of (iii).

Statement (ii): Consider the case of an interior point z ∈ Γ. The assumption

(iii) of Definition 2.4 and the fact that the map Λ̃ is bi-Lipschitz implies that the

solid angles of the elements T̂ at 0 are bounded away from zero by a constant that

depends solely on κ and Λ̃. This implies the claim for a node patch ωh(z) and thus
for ωh(T ) with T ∈ Th.

Statement (i): For d = 2, this follows by definition. For d ≥ 3 we first note
that two elements sharing a facet f ∈ Fh have comparable size by (iii)–(v) of
Definition 2.4. We conclude the proof with the aid of statements (iii) and (ii). �

2.4. Admissible weight functions and discrete spaces.

Definition 2.7 (σ-admissible weight functions and polynomial degree distribu-
tions). A function wh ∈ L∞(Γ) is σ-admissible with respect to Th if

‖wh‖L∞(T ) ≤ σ wh(x) for almost all x ∈ ωh(T ).

A function qh ∈ L∞(Γ) is called a σ-admissible polynomial degree distribution with
respect to Th, if qh is σ-admissible with respect to Th and qh(T ) := qh|T ∈ N0 for
all T ∈ Th.
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We write

Pq(Th) :=
{
Ψh ∈ L2(Γ) : ∀T ∈ Th Ψh ◦ γT is a polynomial of degree ≤ qh(T )

}
,

(2.17)

for the space of (discontinuous) piecewise polynomials of local degree qh(T ). More-
over, we introduce spaces of continuous piecewise polynomials of local degree
qh(T ) + 1 by

Sq+1(Th) := Pq+1(Th) ∩H1(Γ),(2.18)

S̃q+1(Th) := Sq+1(Th) ∩ H̃1(Γ).(2.19)

We note the inclusions Pq(Th) ⊂ L2(Γ) ⊂ H̃−1/2(Γ), S̃q+1(Th) ⊂ H̃1(Γ) ⊂
H̃1/2(Γ), and Sq+1(Th) ⊂ H1(Γ), as well as S̃q+1(Th) = Sq+1(Th) in case of
Γ = ∂Ω.

For q ∈ N0, the use of non-boldface superscripts in Pq(Th), Sq+1(Th), and

S̃q+1(Th) indicates that a constant polynomial degree is employed.

Remark 2.8. In Definition 2.4 the conditions on the triangulation are formulated so
as to ensure that the spaces Sq+1(Th) of continuous functions have good approxi-
mation properties. For the spaces Pq(Th) of functions that may be discontinuous
across element boundaries, the conditions (iii) and (iv) in Definition 2.4 could be
relaxed.

3. Main result and applications

3.1. Inverse estimates. The following Theorem 3.1 is the main result of this
work.

Theorem 3.1. Let Th be a regular, κ-shape regular triangulation of Γ and let
wh ∈ L∞(Γ) be a σ-admissible weight function with respect to Th. Then,

‖wh∇ΓVψ‖L2(Γ) + ‖whK
′ψ‖L2(Γ)

≤ Cinv

(
‖wh/h

1/2‖L∞(Γ)‖ψ‖ ˜H−1/2(Γ) + ‖whψ‖L2(Γ)

)
,

(3.1)

‖wh∇ΓKv‖L2(Γ) + ‖whWv‖L2(Γ)

≤ Cinv

(
‖wh/h

1/2‖L∞(Γ)‖v‖ ˜H1/2(Γ) + ‖wh∇Γv‖L2(Γ)

)
,

(3.2)

for all functions ψ ∈ L2(Γ) and all v ∈ H̃1(Γ). The constant Cinv > 0 depends only
on ∂Ω, Γ, the κ-shape regularity of Th, and σ.

In Corollary 3.2 below, we apply the estimates (3.1)–(3.2) of Theorem 3.1 to

discrete functions Ψh ∈ Pq(Th) and Vh ∈ S̃q+1(Th). We mention that the restric-
tion to d ∈ {2, 3} in Corollary 3.2 is due to the fact that the underlying reference
[KMR16] restricts to this setting.

Corollary 3.2. Let d ∈ {2, 3} and let Th be a regular, κ-shape regular triangulation
of Γ. Suppose that qh is a σ-admissible polynomial degree distribution with respect

to Th. Then, there exists a constant C̃inv > 0 such that the following estimates hold
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for all discrete functions Ψh ∈ Pq(Th) and Vh ∈ S̃q+1(Th):

‖h1/2(qh + 1)−1 ∇ΓVΨh‖L2(Γ) + ‖h1/2(qh + 1)−1 K′Ψh‖L2(Γ) ≤ C̃inv‖Ψh‖ ˜H−1/2(Γ),

(3.3)

‖h1/2(qh + 1)−1 ∇ΓKVh‖L2(Γ) + ‖h1/2(qh + 1)−1 WVh‖L2(Γ) ≤ C̃inv‖Vh‖ ˜H1/2(Γ).

(3.4)

The constant C̃inv > 0 depends only on ∂Ω, Γ, the κ-shape regularity of Th, and the
σ-admissibility of qh, but is otherwise independent of the polynomial degrees and
the mesh Th.

Proof. We start with the following two inverse estimates:

‖h1/2(qh + 1)−1Ψh‖L2(Γ) � ‖Ψh‖H−1/2(Γ) for all Ψh ∈ Pq(Th),(3.5)

‖h1/2(qh + 1)−1∇ΓVh‖L2(Γ) � ‖Vh‖ ˜H1/2(Γ) for all Vh ∈ S̃q+1(Th),(3.6)

where the implied constants depend solely on ∂Ω, Γ, the κ-shape regularity of
Th, and the σ-admissibility of qh. The bound (3.5) is essentially taken from
[Geo08, Thm. 3.9]. However, since the non-trivial interpolation argument is not
worked out in [Geo08, Thm. 3.9] and since [Geo08, Thm. 3.9] is not concerned with
open surfaces Γ, we present the details in Lemma A.1. We remark that its proof
employs the characterization of fractional Sobolev norms in terms of the Aronstein-
Slobodeckii norm. The bound (3.6) follows also from polynomial inverse estimates
and an interpolation argument for spaces of piecewise polynomials, which is non-
trivial; see [KMR16] for details. We also refer to [AFF15, Prop. 5] for the h-version
of (3.6), in which the dependence on the polynomial degree qh is left unspecified.

We define a weight function by wh := h1/2(qh+1)−1. Note that ‖wh/h
1/2‖L∞(Γ)

≤ 1 and that wh is τ -admissible, where τ depends only on κ and σ. The combination
of (3.5) with (3.1) leads to (3.3). The bound (3.6) in conjunction with (3.2) yields
(3.4). �
3.2. Application to efficiency of residual error estimation.

3.2.1. Weakly singular integral equations. The next corollary proves that the esti-
mate (3.1) provides stability of V and K′ in weighted norms for subspaces
(1 − Ph)L

2(Γ) ⊆ L2(Γ), where Ph is some projection operator. Note that the fol-
lowing corollary is in particular applicable to the Galerkin projection onto Pq(Th).

Corollary 3.3. Let Th be a regular, κ-shape regular triangulation of Γ, and let
Xh be such that P0(Th) ⊆ Xh ⊂ L2(Γ). Suppose that Xh is a closed subspace of

H̃−1/2(Γ) (and hence also of L2(Γ)). Let ΠXh
: L2(Γ) → Xh be the L2-orthogonal

projection onto Xh and Ph : H̃−1/2(Γ) → Xh ⊆ H̃−1/2(Γ) denote an arbitrary

H̃−1/2(Γ)-stable projection onto Xh. Then, there is a constant C̃inv > 0 depending
only on the κ-shape regularity of Th, the stability constant of Ph, ∂Ω, and Γ, such
that for Ph ∈ {ΠXh

,Ph} and all φ ∈ L2(Γ) we have

‖h1/2∇ΓV(1− Ph)φ‖L2(Γ) + ‖h1/2K′(1− Ph)φ‖L2(Γ) ≤ C̃inv‖h1/2(1− Ph)φ‖L2(Γ).

(3.7)

Proof. Let Πh : L2(Γ) → P0(Th) be the L2(Γ)-orthogonal projection onto P0(Th).
For arbitrary w ∈ H1/2(∂Ω) we get by transformation to the reference element and
standard approximation results that ‖(1 − Πh)w‖2L2(T ) � h(T )‖w‖2

H1/2(T )
, where
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we employ the Aronstein-Slobodeckii norm in the definition of ‖ · ‖H1/2(T ). Hence,
by summation over all T ∈ Th and using the Aronstein-Slobodeckii characterization
of ‖ · ‖H1/2(∂Ω), we obtain ‖h−1/2(1 − Πh)w‖L2(Γ) � ‖w‖H1/2(∂Ω). Next, using the

characterization of the norm ‖ · ‖H1/2(Γ), we arrive at

‖h−1/2(1−Πh)w‖L2(Γ) � ‖w‖H1/2(Γ) for all w ∈ H1/2(Γ).(3.8)

Orthogonality properties of ΠXh
, the inclusion P0(Th) ⊆ Xh, and a duality argu-

ment then shows (see [CP06, Theorem 4.1] for the analogous proof on polygonal
boundaries)

‖(1−ΠXh
)φ‖

˜H−1/2(Γ) � ‖h1/2(1−ΠXh
)φ‖L2(Γ) for all φ ∈ L2(Γ).(3.9)

Combining (3.9) with the inverse estimate (3.1) for ψ = (1−ΠXh
)φ and wh = h1/2,

we get

‖h1/2∇ΓV(1−ΠXh
)φ‖L2(Γ) + ‖h1/2

K
′(1−ΠXh

)φ‖L2(Γ)

� ‖h1/2(1−ΠXh
)φ‖L2(Γ) for all φ ∈ L2(Γ).

For an H̃−1/2(Γ)-stable projection Ph, we start by noting that the choice Xh =
P0(Th) is admissible and then (3.9) takes the form

‖(1−Πh)φ‖ ˜H−1/2(Γ) � ‖h1/2(1−Πh)φ‖L2(Γ) for all φ ∈ L2(Γ).(3.10)

We observe that the projection property of Ph implies (1−Ph)(1−Πh) = (1−Ph).
This and elementwise stability of Πh imply, for all φ ∈ L2(Γ),

‖(1− Ph)φ‖ ˜H−1/2(Γ) � ‖(1−Πh)φ‖ ˜H−1/2(Γ)

(3.10)

� ‖h1/2(1−Πh)φ‖L2(Γ) � ‖h1/2φ‖L2(Γ).

Finally, we use the projection property (1− Ph)
2 = (1− Ph) and argue as for ΠXh

to obtain

‖h1/2∇ΓV(1− Ph)φ‖L2(Γ) + ‖h1/2
K
′(1− Ph)φ‖L2(Γ)

� ‖h1/2(1− Ph)φ‖L2(Γ) for all φ ∈ L2(Γ).

This concludes the proof. �

One immediate consequence of Corollary 3.3 is a weak efficiency of the weighted

residual error estimator ηh,V from [Car97,CMS01]: Suppose that V is H̃−1/2(Γ)-
elliptic (in the case d = 2, this can be enforced, for example, by the scaling require-

ment diam(Ω) < 1). For f ∈ H1(Γ), let φ ∈ H̃−1/2(Γ) be the unique solution of

the weakly singular integral equation Vφ = f . Let Xh ⊂ H̃−1/2(Γ) be a closed
subspace with P0(Th) ⊆ Xh ⊂ L2(Γ), and let Φh ∈ Xh be the unique Galerkin
approximation of φ, i.e.,

〈V(φ− Φh) , Ψh〉Γ = 0 for all Ψh ∈ Xh.(3.11)

Then [CMS01] proves (strictly speaking, only for polyhedral Γ) the reliability esti-
mate

C−1
rel ‖φ− Φh‖ ˜H−1/2(Γ) ≤ ηh,V := ‖h1/2∇Γ(f −VΦh)‖L2(Γ).(3.12)

The constant Crel > 0 depends only on Γ, ∂Ω, and the κ-shape regularity of Th.
The following corollary provides a kind of converse estimate, where the norm is
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the slightly stronger weighted L2-norm. We note that the additional assumption
φ = V−1f ∈ L2(Γ) is in particular satisfied for Γ = ∂Ω.

Corollary 3.4 (Weak efficiency of ηh,V for weakly singular integral equations). Let
Th be a regular, κ-shape regular triangulation of Γ. Assume φ = V−1f ∈ L2(Γ) and

let Xh ⊂ H̃−1/2(Γ) be a closed subspace with P0(Th) ⊆ Xh ⊂ L2(Γ). Let Φh ∈ Xh

be given by (3.11). Then the weighted residual error estimator from (3.12) satisfies

ηh,V ≤ Ceff ‖h1/2(φ− Φh)‖L2(Γ),(3.13)

where Ceff = C̃inv > 0 is the constant from Corollary 3.3.

Proof. With the Galerkin projection Ph : H̃−1/2(Γ) → Xh and Φh = Phφ, Corol-
lary 3.3 yields ηh,V = ‖h1/2∇ΓV(φ− Φh)‖L2(Γ) � ‖h1/2(φ− Φh)‖L2(Γ). �

Remark 3.5 (Stronger efficiency of 2D BEM). While the efficiency estimate (3.13)
involves a slightly stronger norm on the right-hand side, particular situations with
known singularity expansions (as, e.g., the 2D direct BEM formulation of the Dirich-
let problem [AFF13b]) allow us to bound ‖h1/2(φ−Φh)‖L2(Γ) by ‖φ−Φh‖ ˜H−1/2(Γ)

up to higher-order terms. In [AFF13b], this is achieved by decomposing φ in a
singular part associated with the vertices of Ω and a regular part; the higher-order
terms depend only on the regular part of φ.

3.2.2. Hypersingular integral equations. Results similar to Corollary 3.3 also hold
for the double-layer integral operator K and the hypersingular integral operator W.
Here, particularly interesting choices for the projection Ph are Scott-Zhang type

projections onto S̃q+1(Th); see [SZ90] as well as the adaptation to BEM in [AFF15,
Section 3.2].

Corollary 3.6. Let Th be a regular, κ-shape regular triangulation of Γ. Let Xh ⊆
H̃1/2(Γ) be a closed subspace with S̃1(Th) ⊆ Xh ⊆ H̃1(Γ). Let Ph : H̃1/2(Γ) → Xh

be an H̃1/2(Γ)-stable projection onto Xh. Then, for all v ∈ H̃1(Γ),

‖h1/2∇ΓK(1− Ph)v‖L2(Γ) + ‖h1/2W(1− Ph)v‖L2(Γ)

≤ C̃inv‖h1/2∇Γ(1− Ph)v‖L2(Γ).
(3.14)

The constant C̃inv > 0 depends only on the κ-shape regularity of Th, the stability
constant of Ph, and Γ.

Proof. We argue along the lines of the proof of Corollary 3.3.

Step 1: We construct a modified Scott-Zhang projection Jh : L2(Γ) → S̃1(Th)
with the properties

‖(1− Jh)w‖ ˜H1/2(Γ) � ‖h1/2∇Γ(1− Jh)w‖L2(Γ) for all w ∈ H̃1(Γ),(3.15)

‖h1/2∇ΓJhw‖L2(Γ) � ‖h1/2∇Γw‖L2(Γ) for all w ∈ H̃1(Γ).(3.16)

In order to make the proof self-contained, we sketch the main arguments and refer
to [AFF15, Lem. 7] for more details (strictly speaking, [AFF15, Lem. 7] is formu-
lated for polygonal boundaries only, but the proof transfers with minor changes to
the present case). To understand the construction of Jh, let us briefly review the
classical construction from [SZ90]: There, for any vertex ai of the triangulation
with ai ∈ ∂Γ a facet fi with ai ∈ fi ⊂ ∂Γ is selected. For the remaining, interior
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vertices ai of the triangulation, an element Ti with ai ∈ Ti is chosen. The clas-
sical Scott-Zhang projection JSZ

h v ∈ S1(Th) is then determined by the conditions
JSZ
h v(ai) = vi, where vi is a weighted average of v on fi (if ai is a boundary vertex)

or Ti (if ai is an interior vertex); the weight is given by the so-called dual basis.
This ensures the projection property JSZ

h v = v for all v ∈ S1(Th). Moreover, JSZ
h

is then stable in H1(Γ). Note that JSZ
h v ∈ H̃1(Γ) if v ∈ H̃1(Γ) as the contributions

of shape functions associated with vertices ai ∈ ∂Γ vanish. We define Jh in the
same way as JSZ

h , but simply omit the degrees of freedom on the boundary ai ∈ ∂Γ.
It can be checked that Jh is (locally) stable in L2(Γ). Furthermore, Jh = JSZ

h on

H̃1(Γ). Hence, Jh is (locally) stable in H̃1(Γ), and is also a projection onto S̃1(Th).
This proves (3.16). By interpolation Jh is stable in H̃1/2(Γ). The approximation
and projection properties of Jh follow from those of JSZ

h . An interpolation argu-
ment and (1 − Jh)

2 = (1 − Jh) reveals (3.15). The suppressed constant in (3.15)
depends only on Γ, ∂Ω, and the κ-shape regularity of Th.

Step 2: Combining (3.15) with the inverse estimate (3.2) for v = (1− Jh)w and
the weight function wh = h1/2 we arrive at

‖h1/2∇ΓK(1− Jh)w‖L2(Γ) + ‖h1/2W(1− Jh)w‖L2(Γ)

� ‖h1/2∇Γ(1− Jh)w‖L2(Γ) for all w ∈ H̃1(Γ).

Similar arguments apply for any H̃1/2-stable projection Ph : H̃1/2(Γ) → Xh. There,
additionally (1− Ph)v = (1− Ph)(1− Jh)(1− Ph)v, the stability of Ph, and (3.16)
have to be used to bound:

‖(1− Ph)w‖ ˜H1/2(Γ) � ‖(1− Jh)(1− Ph)w‖ ˜H1/2(Γ)

(3.15)

� ‖h1/2∇Γ(1− Jh)(1− Ph)w‖L2(Γ)

(3.16)

� ‖h1/2∇Γ(1− Ph)w‖L2(Γ). �

As in Section 3.2.1, an immediate consequence of Corollary 3.6 is a form of ef-
ficiency of the weighted residual error estimator ηh,W from [Car97, CMPS04] for

the hypersingular integral equation: Suppose that H̃1/2(Γ) does not contain any
non-trivial characteristic function χω with ω � Γ (this is in particular satisfied if

∂Ω is connected and Γ � ∂Ω). Then, W : H̃1/2(Γ) → H−1/2(Γ) is an elliptic

isomorphism. For f ∈ L2(Γ), let u ∈ H̃1/2(Γ) be the unique solution of the hy-

persingular integral equation Wu = f . Let Xh ⊂ H̃1/2(Γ) be a closed subspace

with S̃1(Th) ⊆ Xh ⊂ H̃1(Γ). In addition, let Uh ∈ Xh be the unique Galerkin
approximation of u, i.e.,

〈W(u− Uh) , Vh〉Γ = 0 for all Vh ∈ Xh.(3.17)

Under these assumptions (and, strictly speaking, for polyhedral Γ), [CMPS04]
proves the reliability estimate

C−1
rel ‖u− Uh‖ ˜H1/2(Γ) ≤ ηh,W := ‖h1/2(f −WUh)‖L2(Γ).(3.18)

The constant Crel > 0 depends only on Γ, ∂Ω, and the κ-shape regularity of Th.
The following corollary provides the converse efficiency estimate with respect to
some slightly stronger weighted H1-seminorm.
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Corollary 3.7 (Weak efficiency of ηh,W for hypersingular integral equations). As-

sume that H̃1/2(Γ) does not contain any non-trivial characteristic function χω with

ω � Γ. Assume u = W−1f ∈ H̃1(Γ). Let Xh ⊂ H̃1/2(Γ) be a closed subspace

with S̃1(Th) ⊆ Xh ⊂ H̃1(Γ). Let Uh ∈ Xh be given by (3.17). Then the weighted
residual error estimator from (3.18) satisfies

ηh,W ≤ Ceff ‖h1/2∇Γ(u− Uh)‖L2(Γ),(3.19)

where Ceff = C̃inv > 0 is the constant from Corollary 3.6.

Proof. With the Galerkin projection Ph : H̃1/2(Γ) → Xh and Uh = Phu, Corol-
lary 3.6 yields ηh,W = ‖h1/2W(u− Uh)‖L2(Γ) � ‖h1/2∇Γ(u− Uh)‖L2(Γ). �

Remark 3.8. If Γ = ∂Ω is connected, then the kernel of W is the space of constant

functions on Γ. Therefore, W : H
1/2
� (∂Ω) → H

−1/2
� (∂Ω) is an elliptic isomorphism,

where Hs
�(∂Ω) :=

{
v ∈ Hs(∂Ω) : 〈v , 1〉∂Ω = 0

}
for |s| ≤ 1. Note that W :

Hs
�(∂Ω) → Hs−1

� (∂Ω) is an isomorphism for all 0 ≤ s ≤ 1. For f ∈ H0
� (∂Ω), the

solution u := W−1f thus has additional regularity u ∈ H1
� (∂Ω), and Corollary 3.7

holds verbatim.

3.2.3. Remarks on the extension to hp-BEM. The above efficiency statements are
formulated for the h-version BEM. They do generalize to the hp-version.

Since the corresponding reliability estimates have only been formulated for closed
surfaces Γ = ∂Ω and affine element maps in [KM15], we restrict the following result
to that setting:

Corollary 3.9. Let d ∈ {2, 3}, Γ = ∂Ω, and let Th be a regular, κ-shape regular
triangulation of Γ. Assume that the element maps are affine. Let qh be a σ-
admissible polynomial degree distribution. Then there exists C > 0 depending only
on ∂Ω, the κ-shape regularity of Th, and σ such that the following hold:

(i) Let V : H−1/2(∂Ω) → H1/2(∂Ω) be an isomorphism. Let φ = V−1f for
some f ∈ H1(∂Ω). Set Xh := Pq(Th) and let Φhp ∈ Xh be the Galerkin
solution given by (3.11). Then:

C−1‖φ− Φhp‖H−1/2(∂Ω) ≤ ηhp,V := ‖(h/(1 + qh))
1/2∇Γ(f −VΦhp)‖L2(∂Ω),

(3.20)

ηhp,V ≤ C‖(h/(1 + qh))
1/2(φ− Φhp)‖L2(∂Ω).(3.21)

(ii) Let Γ = ∂Ω be connected and u = W−1f for some f ∈ H0
� (∂Ω). Set

Xh := Sq+1(Th)∩H1
� (∂Ω) and let Uhp ∈ Xh be the Galerkin solution given

by (3.17). Then:

C−1‖u− Uhp‖H1/2(∂Ω) ≤ ηhp,W := ‖(h/(1 + qh))
1/2(f −WUhp)‖L2(∂Ω),(3.22)

ηhp,W ≤ C
[
‖(h/(1 + qh))

1/2∇Γ(u− Uhp)‖L2(∂Ω)(3.23)

+ ‖(h/(1 + qh))
1/2(u− Uhp)‖L2(∂Ω)

]
.

Proof. The reliability bounds (3.20), (3.22) are taken from [KM15, Cor. 3.11,
Cor. 3.14].
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For the proof of (3.21), we let Πhp be the L2(∂Ω)-projection and Php be the
Galerkin projection. We note that the analogue of (3.10) is

‖(1− Php)ψ‖H−1/2(∂Ω) � ‖(1−Πhp)ψ‖H−1/2(∂Ω)

� ‖(h/(1 + qh))
1/2ψ‖L2(∂Ω) for all ψ ∈ L2(∂Ω);

(3.24)

this is shown in the same way as (3.10), but exploits that in a high order context
the estimate (3.8) can be replaced with the improved estimate

‖((qh + 1)/h)1/2(1−Πhp)v‖L2(Γ) � ‖v‖H1/2(Γ).

This latter estimate is obtained from elementwise considerations, uses standard
estimate (see, e.g., [Mel05, Prop. A.2]) for integer order Sobolev spaces, and an
interpolation argument on the reference element. Hence, proceeding as in the proof
of Corollary 3.3 with wh = (h/(1 + qh))

1/2 we get

‖wh∇ΓV(1− Php)φ‖L2(∂Ω)

(3.1)

� ‖(1 + qh)
−1/2‖L∞(∂Ω)‖(1− Php)

2φ‖H−1/2(∂Ω) + ‖wh(1− Php)φ‖L2(∂Ω)

(3.24)

� ‖(1 + qh)
−1/2‖L∞(∂Ω)‖wh(1− Php)φ‖L2(∂Ω) + ‖wh(1− Php)φ‖L2(∂Ω).

The proof of (3.23) proceeds along similar lines. The key is the analog of (3.15).
By [KM15, Lem. 3.12] there exists an operator J ′

hp : H1(∂Ω) → Sq+1(Th) with

‖(1− J ′
hp)v‖H1/2(∂Ω) � ‖(h/(1 + qh))

1/2∇Γv‖L2(∂Ω) + ‖(h/(1 + qh))
1/2v‖L2(∂Ω).

Finally, an operator Jhp : H1
� (∂Ω) → Xh is then obtained by setting Jhpv :=

J ′
hpv − J ′

hpv, where the overbar denotes the average over ∂Ω. It is clear that

‖v − J ′
hpv‖L2(∂Ω) ≤ ‖v − J ′

hpv‖L2(∂Ω), and norm equivalence on finite dimensional

spaces then yields ‖v − J ′
hpv‖H1/2(∂Ω) � ‖(1−J ′

hp)v‖L2(∂Ω). Hence, for v ∈ H1
� (∂Ω),

‖(1− Jhp)v‖H1/2(∂Ω) ≤ ‖(1− J ′
hp)v‖H1/2(∂Ω) + ‖(1− J ′

hp)v‖H1/2(∂Ω)

� ‖(1− J ′
hp)v‖H1/2(∂Ω),

so that Jhp has the same approximation properties as J ′
hp on the space H1

� (∂Ω).
With Php again denoting the Galerkin projection, we have

(1− Php) = (1− Php)(1− Jhp)(1− Php),

and hence

‖(1− Php)u‖H1/2(∂Ω) � ‖(1− Jhp)(1− Php)u‖H1/2(∂Ω)

� ‖(1− J ′
hp)(1− Php)u‖H1/2(∂Ω)

� ‖(h/(1 + qh))
1/2∇Γ(1− Php)u‖L2(∂Ω) + ‖(h/(1 + qh))

1/2(1− Php)u‖L2(∂Ω).

Combining this with (3.22) and the inverse estimate (3.2) shows (3.23). �
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4. Far-field and near-field estimates for the simple-layer potential

The proof of Theorem 3.1 is based on decomposing the pertinent potentials into
“far-field” and “near-field” contributions. In the present section, we analyze the
decomposition for the simple-layer potential and provide inverse estimates for both
components. Section 4.2 is concerned with inverse estimates for the near-field parts,
which essentially follow from scaling arguments, whereas Section 4.3 deals with the
far-field part. Throughout the section, we let

(4.1) ψ ∈ L2(Γ) and assume that ψ is extended by zero to ∂Ω \ Γ,
i.e., we identify ψ with E0,Γψ.

4.1. Decomposition into near-field and far-field. For a parameter δ > 0, we
define for each element T ∈ Th the neighborhood UT of T by

T ⊂ UT :=
⋃
x∈T

B2δh(T )(x).(4.2)

Since ∂Ω is Lipschitz and Γ stems from a Lipschitz dissection and by κ-shape
regularity of Th, we can fix the parameter δ > 0 and find M ∈ N (both δ and M
are independent of Th) such that the following two conditions are satisfied:

(a) Γ ∩ UT is contained in the patch ωh(T ) of T (see (2.16) for the definition
of ωh(T )), i.e.,

Γ ∩ UT ⊆ ωh(T ).(4.3)

(b) The covering Γ ⊆
⋃

T∈Th
UT is locally finite with a uniform bound, i.e.,

sup
x∈Rd

#
{
UT : T ∈ Th and x ∈ UT

}
≤ M.(4.4)

Finally, we fix a bounded domain U ⊂ Rd such that

UT ⊂ U for all T ∈ Th.(4.5)

It will be important that U is chosen independently of Th. To deal with the non-
locality of the integral operators, we define for T ∈ Th the near-field unear

V,T and the

far-field ufar
V,T of the simple-layer potential uV := Ṽψ by

unear
V,T := Ṽ(ψχΓ∩UT

) and ufar
V,T := Ṽ(ψχΓ\UT

),(4.6)

where χω denotes the characteristic function of the set ω ⊆ Rd. We have the
obvious identity

uV = Ṽψ = unear
V,T + ufar

V,T for all T ∈ Th.(4.7)

In our analysis, we will treat unear
V,T and ufar

V,T separately, starting with the simpler
case of unear

V,T .

4.2. Inverse estimates for the near-field part unear
V,T . The near-field parts of a

potential can be treated with local arguments and the stability properties of the
associated boundary integral operators.

Lemma 4.1. There exists a constant C̃near > 0 depending only on ∂Ω, Γ, and
the κ-shape regularity of Th such that for arbitrary T ∈ Th and ΨT

h ∈ P0(Th) with

supp
(
ΨT

h

)
⊆ ωh(T ) it holds that

‖∇ṼΨT
h ‖L2(UT ) ≤ C̃near‖h1/2ΨT

h ‖L2(ωh(T )).
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Proof. We fix an element T ∈ Th. We recall that ΨT
h is piecewise constant and

compute

(∇ṼΨT
h )(x) =

∑
T ′∈ωh(T )

ΨT
h |T ′

∫
T ′

∇xG(x, y) dy for all x ∈ Rd \ Γ.

The number of elements T ′ in the patch ωh(T ) is bounded in terms of the shape
regularity constant κ (cf. Lemma 2.6). With some constant that depends only on
κ and ∂Ω, we estimate

|(∇ṼΨT
h )(x)|2 �

∑
T ′∈ωh(T )

|ΨT
h |T ′ |2

( ∫
T ′

∣∣∇xG(x, y)
∣∣ dy)2

.(4.8)

Next, we show for elements T ′ ⊆ ωh(T )∫
UT

( ∫
T ′

∣∣∇xG(x, y)
∣∣ dy)2

dx � h(T )d.(4.9)

This follows from a local Lipschitz parametrization of ∂Ω. We assume (after a
Euclidean change of coordinates if necessary) that {(x′,Λ(x′)) : x′ ∈ B2r(0)} is a
part of ∂Ω that contains ωh(T ). The function Λ is Lipschitz continuous, and we
remark in passing that by [Ste70, Thm. 3, Sect. VI] we may assume that Λ : Rd−1 →
R is Lipschitz continuous. (If such a local consideration is not possible, then, since
the number of local charts is finite by definition of bounded Lipschitz domains, we
must have diam(ωh(T )) = O(1) so that (4.9) is trivially true.) We may also assume
that UT ⊂ {(x′,Λ(x′) + t) |x′ ∈ B2r(0), t ∈ R}. The key observation is that the

mapping Λ̃ : Rd → Rd given by (x′, t) �→ (x′,Λ(x′)+ t) is bi-Lipschitz. We conclude

for elements T ′ ⊂ ωh(T ) that Λ̃
−1UT =: ŨT and Λ̃−1T ′ =: T̃ ′ ⊆ B2r(0)×{0} satisfy,

for some x0 ∈ B2r(0) and some c > 0, which depends solely on the bi-Lipschitz

mapping Λ̃,

ŨT ⊆ Bch(T )(x0)× [−ch(T ), ch(T )], T̃ ′ ⊆ Bch(T )(x0)× {0}.

Finally, using ∇xG(x, y) 	 |x− y|−(d−1), the definition of the surface integral, and
the change of variables formula for bi-Lipschitz mappings from [EG92, Sec. 3.3.3],
we get∫

x∈UT

( ∫
y∈T ′

|∇xG(x, y)| dy
)2

dx

	
∫
x̃∈˜UT

(∫
ỹ∈˜T ′

|x̃− ỹ|−(d−1) dỹ

)2

dx̃

�
∫
ξ∈Bch(T )(x0)

∫ ch(T )

t=−ch(T )

(∫
η∈Bch(T )(x0)

(
|ξ − η|2 + t2

)−(d−1)/2
dη

)2

dt dξ

	 h(T )d
∫
ξ∈Bc(x0)

∫ c

t=−c

(∫
η∈Bc(x0)

(
|ξ − η|2 + t2

)−(d−1)/2
dη

)2

dt dξ

	 h(T )d,
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where the last estimate follows by a direct estimation of the integrals, which is
independent of h(T ). We have thus shown (4.9). Inserting (4.9) in (4.8) gives∫

UT

|(∇ṼΨT
h )(x)|2 dx �

∑
T ′∈ωh(T )

|ΨT
h |T ′ |2h(T )d 	 ‖h1/2ΨT

h ‖2L2(ωh(T )). �

Proposition 4.2 (Near-field bound for Ṽ). Let wh be a σ-admissible weight func-
tion. There exists a constant Cnear > 0 depending only on ∂Ω, Γ, the κ-shape
regularity of Th, and σ, such that the near-field part unear

V,T satisfies unear
V,T ∈ H1(U)

and γint
0 unear

V,T ∈ H1(Γ) together with∑
T∈Th

‖wh∇Γγ
int
0 unear

V,T ‖2L2(T ) +
∑
T∈Th

‖wh/h
1/2‖2L∞(T )‖∇unear

V,T ‖2L2(UT )

≤ Cnear ‖whψ‖2L2(Γ).

(4.10)

Proof. The stability (2.10) of V : L2(∂Ω) → H1(∂Ω) proved in [Ver84] together
with Fact 2.1(i) gives, for each T ∈ Th,
‖∇Γγ

int
0 unear

V,T ‖L2(T ) ≤ ‖V(ψχUT∩Γ)‖H1(∂Ω) � ‖ψχUT∩Γ‖L2(∂Ω) = ‖ψ‖L2(UT∩Γ).

Summing the last estimate over all T ∈ Th and using (4.3)–(4.4), together with the
σ-admissibility of wh, we arrive at∑

T∈Th

‖wh∇Γγ
int
0 unear

V,T ‖2L2(T ) �
∑
T∈Th

‖wh‖2L∞(T )‖ψ‖2L2(UT∩Γ) 	 ‖whψ‖2L2(Γ),(4.11)

where all estimates depend only on ∂Ω, the κ-shape regularity of Th, and the admis-
sibility constant σ. This bounds the first term on the left-hand side of (4.10). To
bound the second term, let Πh denote the L2(Γ)-orthogonal projection onto P0(Th).
We decompose the near-field as unear

V,T = Ṽ(Πh(ψχΓ∩UT
)) + Ṽ

(
(1 − Πh)ψχΓ∩UT

)
.

The condition supp(ψχΓ∩UT
) ⊆ ωh(T ) implies supp (Πh(ψχΓ∩UT

)) ⊆ ωh(T ) and
therefore, taking ΨT

h = Πh(ψχΓ∩UT
) in Lemma 4.1 we have∑

T∈Th

‖wh/h
1/2‖2L∞(T )‖∇Ṽ(Πh(ψχΓ∩UT

))‖2L2(UT )

�
∑
T∈Th

‖wh/h
1/2‖2L∞(T )‖h1/2Πh(ψχΓ∩UT

)‖2L2(ωh(T ))

� ‖whψ‖2L2(Γ),

(4.12)

where we used the local L2-stability of Πh in the last estimate. Recalling the sta-

bility Ṽ : H−1/2(∂Ω) → H1(U) of (2.8), the equality (2.5), and the approximation
property (3.9) of Πh, we get∑

T∈Th

‖wh/h
1/2‖2L∞(T )‖∇Ṽ

(
(1−Πh)ψχΓ∩UT

)
‖2L2(UT )

(2.8),(2.5)

�
∑
T∈Th

‖wh/h
1/2‖2L∞(T )‖(1− Πh)ψχΓ∩UT

‖2
˜H−1/2(Γ)

(3.9)

�
∑
T∈Th

‖wh/h
1/2‖2L∞(T )‖h1/2(ψχΓ∩UT

)‖2L2(Γ) 	 ‖whψ‖2L2(Γ).

(4.13)

Combining (4.11)–(4.13) gives (4.10). �
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4.3. Estimates for the far-field part ufar
V,T . The following lemma is taken from

[FKMP13]. For the convenience of the reader and since the same argument underlies
the proof of the analogous lemma for the double-layer potential (Lemma 5.3 below),
we recall its proof here.

Lemma 4.3 (Caccioppoli inequality for ufar
V,T ). Let δ > 0 be fixed as in the beginning

of Section 4.1. With Ωext = Rd \Ω, the function ufar
V,T from (4.6) satisfies ufar

V,T |Ω ∈
C∞(Ω), ufar

V,T |Ωext ∈ C∞(Ωext), and ufar
V,T |UT

∈ C∞(UT ). Moreover, there exists a
constant Ccacc > 0 depending only on ∂Ω, Γ, and the κ-shape regularity of Th such
that the Hessian matrix D2ufar

V,T satisfies

‖D2ufar
V,T ‖L2(B3δh(T )/4(x)) ≤ Ccacc

1

h(T )
‖∇ufar

V,T ‖L2(Bδh(T )(x)) ∀x ∈ T ∈ Th.(4.14)

Proof. The statements ufar
V,T |Ω ∈ C∞(Ω) and ufar

V,T |Ωext ∈ C∞(Ωext) are taken from

[SS11, Theorem 3.1.1], and we therefore focus on ufar
V,T |UT

∈ C∞(UT ) and the

estimate (4.14). According to [SS11, Proposition 3.1.7], [SS11, Theorem 3.1.16],
and [SS11, Theorem 3.3.1], the function ufar

V,T ∈ H1
�oc(R

d) :=
{
v ∈ Rd → R : ϕ ·v ∈

H1(Rd) for all ϕ ∈ C∞
0 (Rd)

}
solves the transmission problem

−Δufar
V,T = 0 in Ω ∪ Ωext,

[ufar
V,T ] = 0 in H1/2(∂Ω),

[γ1u
far
V,T ] = −ψχΓ\UT

in H−1/2(∂Ω).

(4.15)

In particular, (4.15) states that the jump of ufar
V,T as well as the jump of the normal

derivative vanish on ∂Ω∩UT . This implies that ufar
V,T is harmonic in UT by the fol-

lowing classical argument: First, we observe that ufar
V,T is distributionally harmonic

in UT , since a two-fold integration by parts that uses these jump conditions shows
for v ∈ C∞

0 (UT ) that 〈ufar
V,T ,−Δv〉Ω = 0. Weyl’s lemma (see, e.g., [Mor08, Theo-

rem 2.3.1]) then implies that ufar
V,T is strongly harmonic and ufar

V,T ∈ C∞(UT ).

The Caccioppoli inequality (4.14) expresses interior regularity for elliptic prob-
lems. Indeed, for each u ∈ H1(Br+ε) such that u ∈ H2(Br) and Δu = f on
Br+ε with balls Br ⊆ Br+ε with radii 0 < r < r + ε and some f ∈ L2(Br+ε),
[Mor08, Lemma 5.7.1] shows

‖D2u‖L2(Br) �
(
‖f‖L2(Br+ε) +

1

ε
‖∇u‖L2(Br+ε) +

1

ε2
‖u‖L2(Br+ε)

)
.(4.16)

The suppressed constant depends solely on the spatial dimension and is independent
of r, ε > 0, and u, f . We apply (4.16) with r = 3δh(T )/4, ε = δh(T )/4, f = 0, and
u = ufar

V,T − cT , where cT = 1
|Bδh(T )(x)|

∫
Bδh(T )(x)

ufar
V,T (y) dy. An additional Poincaré

inequality finally leads to (4.14). Note that δ and hence Ccacc depend only on ∂Ω,
Γ, and the κ-shape regularity of Th. �

The non-local character of the operator Ṽ is represented by the far-field part.
Lemma 4.3 allows us to show a local inverse estimate for the far-field part of the
simple-layer operator.

Lemma 4.4 (Local far-field bound for Ṽ). For all T ∈ Th, it holds that

‖h1/2∇Γγ
int
0 ufar

V,T ‖L2(T ) ≤ ‖h1/2∇ufar
V,T ‖L2(T ) ≤ Cfar ‖∇ufar

V,T ‖L2(UT ).(4.17)

The constant Cfar > 0 depends only on Γ, ∂Ω, and the κ-shape regularity constant
of Th.
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Proof. By Lemma 4.3 we have ufar
V,T ∈ C∞(UT ). The first estimate in (4.17) follows

from the fact that, for smooth functions, the surface gradient∇Γ(·) is the orthogonal
projection of the gradient ∇(·) onto the tangent plane, i.e., ∇Γγ

int
0 u(x) = ∇u(x)−(

∇u(x) · ν(x)
)
ν(x); see [Ver84]. The second estimate in (4.17) is proved with a

trace inequality and the Caccioppoli inequality (4.14) in the following way. We fix
an element T ∈ Th.

Step 1: We provide a trace inequality. Let B = Br(x) be a ball with center
x ∈ T ⊆ ∂Ω and radius r > 0. Let B′ = B3r/2(x) and B′′ = B5r/4(x). We define a

smooth cut-off function χ̃B ∈ C∞
0 (Rd) with supp χ̃B ⊆ B′ and χ̃B ≡ 1 on B by

χ̃B := χB′′ � ρr/4,

where ρε is a standard mollifier of the form ρε(x) = ε−dρ1(x/ε) for a fixed ρ1 ∈
C∞

0 (Rd) with ρ1 ≥ 0, supp ρ1 ⊆ B1(0) and
∫
Rd ρ1(x) dx = 1. We note that for a

C > 0 depending solely on the choice of ρ1, we have

‖∇χ̃B‖L∞(Rd) ≤ Cr−1.

With this cut-off function and the standard multiplicative trace inequality for ∂Ω,
we estimate for sufficiently regular functions v:

‖v‖2L2(B∩∂Ω) ≤ ‖χ̃Bv‖2L2(∂Ω) � ‖χ̃Bv‖2L2(Ω) + ‖χ̃Bv‖L2(Ω)‖∇(χ̃Bv)‖L2(Ω)

� r−1‖v‖2L2(B′) + ‖v‖L2(B′)‖∇v‖L2(B′).(4.18)

Step 2: The set F :=
{
Bδh(T )/2(x) | x ∈ T

}
is a closed cover of T . By Besi-

covitch’s covering theorem (cf. [EG92, Sect. 1.5.2]) there is a constant Nd, which
depends only on the spatial dimension d, as well as countable subsets Gj ⊆ F ,
j = 1, . . . , Nd, the elements of every Gj being pairwise disjoint, such that T ⊆⋃Nd

j=1

⋃
B∈Gj

B. Let Ĝj be the set of balls obtained by doubling the radius of the

balls of Gj , i.e., Ĝj :=
{
Bδh(T )(x) | Bδh(T )/2(x) ∈ Gj

}
. As the elements of Gj are

pairwise disjoint and all balls have the same radius δh(T )/2, there is a constant

N̂d, also depending only on the spatial dimension d, such that each element of Ĝj

intersects at most N̂d other elements of Ĝj . If we abbreviate B = Bδh(T )/2(x),

B′ = B3/4δh(T )(x), and B̂ = Bδh(T )(x), the multiplicative trace inequality (4.18)
and the Caccioppoli inequality (4.14) show that

‖∇ufar
V,T ‖2L2(B∩T )

(4.18)

� 1

h(T )
‖∇ufar

V,T ‖2L2(B′) + ‖∇ufar
V,T ‖L2(B′)‖D2ufar

V,T ‖L2(B′)

(4.14)

� 1

h(T )
‖∇ufar

V,T ‖2L2( ̂B)
.

Step 3: We use the last estimate to get

‖∇ufar
V,T ‖2L2(T ) ≤

Nd∑
j=1

∑
B∈Gj

‖∇ufar
V,T ‖2L2(B∩T ) � 1

h(T )

Nd∑
j=1

∑
̂B∈̂Gj

‖∇ufar
V,T ‖2L2( ̂B)

� NdN̂d

h(T )
‖∇ufar

V,T ‖2L2(UT ).

This concludes the proof of (4.17). �
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Summation of the elementwise estimates of Lemma 4.4 yields the following result.

Proposition 4.5 (Far-field bound for Ṽ). There is a constant Cfar > 0 depending
only on ∂Ω, Γ, the κ-shape regularity of Th, and the σ-admissibility of the weight
function wh such that∑
T∈Th

‖wh∇Γγ
int
0 ufar

V,T ‖2L2(T ) ≤
∑
T∈Th

‖wh∇ufar
V,T ‖2L2(T )

≤ Cfar

(
‖wh/h

1/2‖2L∞(Γ)‖ψ‖2˜H−1/2(Γ)
+ ‖whψ‖2L2(Γ)

)
.

Proof. We use the local far-field bound (4.17) of Lemma 4.4 and ufar
V,T = Ṽψ−unear

V,T

to see

∑
T∈Th

‖wh∇Γγ
int
0 ufar

V,T ‖2L2(T )

(4.19)

≤
∑
T∈Th

‖wh∇ufar
V,T ‖2L2(T )

(4.17)

�
∑
T∈Th

‖wh/h
1/2‖2L∞(T )‖∇ufar

V,T ‖2L2(UT )

(4.7)

�
∑
T∈Th

‖wh/h
1/2‖2L∞(T )‖∇Ṽψ‖2L2(UT ) +

∑
T∈Th

‖wh/h
1/2‖2L∞(T )‖∇unear

V,T ‖2L2(UT ).

The first term on the right-hand side in (4.19) is estimated by stability of Ṽ, the
finite overlap property (4.4), and (2.5):∑

T∈Th

‖wh/h
1/2‖2L∞(T )‖∇Ṽψ‖2L2(UT )

(4.4)

� ‖wh/h
1/2‖2L∞(Γ)‖∇Ṽψ‖2L2(U)

� ‖wh/h
1/2‖2L∞(Γ)‖ψ‖2˜H−1/2(Γ)

.

The second term in (4.19) is bounded with the near-field bound (4.10). �

5. Far-field and near-field estimates for the double-layer potential

Section 4 studied far-field and near-field estimates for the simple-layer poten-
tial. Corresponding results for the double-layer potential are derived in the present
section. Throughout this section, let

v ∈ H̃1(Γ) ⊂ H1(∂Ω).

In particular, v ∈ H̃1/2(Γ) with ‖v‖
˜H1/2(Γ) = ‖v‖H1/2(∂Ω), where we identify v =

E0,Γv. Since functions from H1/2(Γ) may not be discontinuous across element
boundaries, the splitting into near-field and far-field contribution of the double-

layer potential uK := K̃v cannot be achieved by characteristic functions, but requires
smoother cut-off functions and greater technical care.

5.1. Decomposition into near-field and far-field. We use the notation intro-
duced in Section 4.1 concerning the neighborhoods UT . In order to define the
near-field and far-field parts for the double-layer potential, we need appropriate
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cut-off functions: For each T ∈ Th, we define ηT ∈ C∞
0 (Rd) with the aid of the

standard mollifier ρε that was already used in the proof of Lemma 4.4:
(5.1)

ηT := χ
˜UT

� ρδh(T )/4, ŨT :=
⋃
x∈T

Bδh(T )/2(x), U ′
T :=

⋃
x∈T

Bδh(T )/4(x).

This function satisfies:

(5.2) supp ηT ⊆ UT , ηT |U ′
T
≡ 1, ‖ηT ‖L∞(Rd) ≤ 1, ‖∇ηT ‖L∞(Rd) � 1

h(T )
,

where the implied constant depends on the κ-shape regularity of the triangulation
through the parameter δ. We note that the assumptions on UT imply (supp ηT ) ∩
Γ ⊆ ωh(T ).

The following lemma may be viewed as an extension of [DS80, Thm. 7.1] to the
case of curved elements.

Lemma 5.1 (Poincaré-Friedrichs inequality on patches). Let v ∈ H̃1(Γ). For each

T ∈ Th, there is a constant vT ∈ R such that (v−vT )ηT ∈ H̃1(Γ), (v−vT )(1−ηT ) ∈
H1(∂Ω), and

‖v − vT ‖L2(ωh(T )) ≤ C1‖h∇Γv‖L2(ωh(T )),(5.3)

‖(v − vT )ηT ‖H1/2(∂Ω) ≤ C1‖h1/2∇Γv‖L2(ωh(T )),(5.4)

‖(v − vT )ηT ‖H1(∂Ω) ≤ C1‖∇Γv‖L2(ωh(T )).(5.5)

Furthermore, vT = 0 if ∂ωh(T ) ∩ ∂Γ contains a facet of the triangulation. The
constant C1 > 0 depends only on ∂Ω, Γ, and the κ-shape regularity constant of Th.

Proof. It is clear that (v − vT )(1 − ηT ) ∈ H1(∂Ω), since v ∈ H̃1(Γ) and ηT is
smooth. The remaining statements require more care.

Step 1: For v ∈ H̃1(Γ) and a facet f ∈ Fh of the triangulation Th (recall that
facets are images of (d − 2)-faces of Tref under the element map) denote by �f (v)
the average of v on f . As �f (1) = 1, we can use the Deny-Lions lemma on the
reference element, and the assumptions on the element maps then imply

‖v − �f (v)‖L2(T ) � h(T )‖∇Γv‖L2(T ) if f is a facet of T ,(5.6)

|�f1(v)− �f2(v)| � h(T )1−(d−1)/2‖∇Γv‖L2(T ) if f1, f2 are two facets of T .(5.7)

Step 2: Fix an element T ∈ Th.
• If ηT |∂Γ ≡ 0, then select an arbitrary facet fT of the element patch ωh(T ).
• If ηT |∂Γ �≡ 0, then we claim that there exists a facet f of ωh(T ) with f ⊆ ∂Γ.
To see this, let x0 ∈ ∂Γ with ηT (x0) �= 0. By continuity of ηT and since
∂Γ is covered by the closure of facets of the triangulation, we may assume
that x0 is in the interior of a boundary facet fT . This facet belongs to a
unique element Tf of the triangulation; by continuity of ηT , we may assume

supp ηT ∩ Tf �= ∅. Since (supp ηT ) ∩ Γ ⊆ ωh(T ), we conclude Tf ⊆ ωh(T )
and thus the boundary facet fT is a facet of ωh(T ).

Set vT := �fT (v). An immediate consequence of v ∈ H̃1(Γ) is that vT = 0 if ηT
does not vanish on ∂Γ. Since ηT is smooth, we conclude (v − vT )ηT ∈ H̃1(Γ). In
fact, viewed as a function on ∂Ω, we have

(5.8) supp((v − vT )ηT ) ⊆ ωh(T ).
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Step 3: The bounds (5.6), (5.7) in conjunction with Lemma 2.6 and a finite
number of applications of the triangle inequality implies

‖v − vT ‖L2(ωh(T )) � ‖h∇Γv‖L2(ωh(T )),(5.9)

‖∇Γ(v − vT )‖L2(ωh(T )) = ‖∇Γv‖L2(ωh(T )),(5.10)

where (5.9) is already the claim (5.3). The product rule, (5.2), (5.8), the esti-
mate (5.9), the trivial bound h(T ) � |T |1/(d−1) ≤ |Γ|1/(d−1) � 1 yield

‖∇Γ

(
(v − vT )ηT

)
‖L2(∂Ω) ≤ ‖(v − vT )∇ΓηT ‖L2(ωh(T )) + ‖ηT∇Γ(v − vT )‖L2(ωh(T ))

� ‖∇Γv‖L2(ωh(T )),

which proves (5.5). It remains to verify (5.4). To that end, we recall the inter-
polation inequality ‖u‖2

H1/2(∂Ω)
� ‖u‖L2(∂Ω)‖u‖H1(∂Ω) for all u ∈ H1(∂Ω). Since

‖(v − vT )ηT ‖L2(∂Ω) ≤ ‖v − vT ‖L2(ωh(T )), we get

‖(v − vT )ηT ‖H1/2(∂Ω) � ‖(v − vT )ηT ‖1/2L2(∂Ω)‖(v − vT )ηT ‖1/2H1(∂Ω)

� ‖h∇Γv‖1/2L2(ωh(T ))‖∇Γv‖1/2L2(ωh(T ))

	 ‖h1/2∇Γv‖L2(ωh(T )),

where the last estimate hinges on κ-shape regularity of Th (cf. Lemma 2.6(i)). �

Let v ∈ H̃1(Γ). For each T ∈ Th, let vT be the constant from Lemma 5.1.
For each T ∈ Th we define the near-field and the far-field part of the double-layer

potential uK := K̃v by

unear
K,T := K̃

(
(v − vT )ηT

)
and ufar

K,T := K̃
(
(v − vT )(1− ηT )

)
.(5.11)

Note that (v − vT )ηT ∈ H̃1(Γ) ⊆ H1(∂Ω) and (v − vT )(1− ηT ) ∈ H1(∂Ω) so that

unear
K,T , ufar

K,T ∈ H1(U\∂Ω) are well defined. Since K̃1 ≡ −1 in Ω and K̃1 ≡ 0 in Ωext,
we have, for every T ∈ Th, the identities

uK + vT = unear
K,T + ufar

K,T in Ω and uK = unear
K,T + ufar

K,T in Ωext.(5.12)

5.2. Inverse estimates for the near-field part unear
K,T . The following proposition

provides an estimate for the near-field part of the double-layer potential.

Proposition 5.2 (Near-field bound for K̃). Let wh be a σ-admissible weight func-
tion. There exists a constant Cnear > 0 depending only on ∂Ω, Γ, the κ-shape reg-
ularity of Th, and σ such that the near-field part unear

K,T satisfies γint
0 unear

K,T ∈ H1(Γ),

unear
K,T |Ω ∈ H1(Ω), and unear

K,T |U\Ω ∈ H1(U \ Ω) with∑
T∈Th

‖wh/h
1/2‖2L∞(T )

(
‖h1/2∇Γγ

int
0 unear

K,T ‖2L2(T )

+ ‖∇unear
K,T ‖2L2(UT∩Ω) + ‖∇unear

K,T ‖2L2(UT∩Ωext)

)
≤ Cnear ‖wh∇Γv‖2L2(Γ).

(5.13)
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Proof. Recall the stability (2.11) of γint
0 K̃ = K − 1

2 : H1(∂Ω) → H1(∂Ω). Taking
into account (5.2) and the Poincaré-type estimate (5.5), we observe

‖∇Γγ
int
0 unear

K,T ‖L2(T ) ≤ ‖∇Γγ
int
0 unear

K,T ‖L2(Γ)

(2.11)

� ‖(v − vT )ηT ‖H1(∂Ω)

(5.5)

� ‖∇Γv‖L2(ωh(T )).

Summation over all T ∈ Th and σ-admissibility of the weight wh shows that∑
T∈Th

‖wh/h
1/2‖2L∞(T )‖h1/2∇Γγ

int
0 unear

K,T ‖2L2(T ) � ‖wh∇Γv‖2L2(Γ).(5.14)

Next, we use the continuity of K̃ : H1/2(∂Ω) → H1(U \ ∂Ω) from (2.8) and get

‖∇unear
K,T ‖2L2(UT∩Ω) + ‖∇unear

K,T ‖2L2(UT∩Ωext)

(2.8)

� ‖(v − vT )ηT ‖2H1/2(∂Ω)

(5.4)

� ‖h1/2∇Γv‖2L2(ωh(T )).

Summation over all T ∈ Th and σ-admissibility of wh gives∑
T∈Th

‖wh/h
1/2‖2L∞(T )

(
‖∇unear

K,T ‖2L2(UT∩Ω) + ‖∇unear
K,T ‖2L2(UT∩Ωext)

)
� ‖wh∇Γv‖2L2(Γ).

(5.15)

Combining (5.14)–(5.15), we conclude the proof. �
5.3. Estimates for the far-field part ufar

K,T . As for the simple-layer potential,
we have a Caccioppoli inequality for the double-layer potential, which underlies the
analysis of the far-field contribution. For the next result, recall U ′

T from (5.1).

Lemma 5.3 (Caccioppoli inequality for ufar
K,T ). The functions u

far
K,T of (5.11) satisfy

ufar
K,T |Ω ∈ C∞(Ω), ufar

K,T |Ωext ∈ C∞(Ωext), and ufar
K,T |U ′

T
∈ C∞(U ′

T ). Furthermore,

there exists a constant C ′
cacc depending only on ∂Ω, Γ, and the κ-shape regularity

of Th such that the Hessian matrix D2ufar
K,T satisfies

‖D2ufar
K,T ‖L2(Bδh(T )/8(x)) ≤ C ′

cacc

1

h(T )
‖∇ufar

K,T ‖L2(Bδh(T )/4(x)) ∀x ∈ T ∈ Th.

(5.16)

Proof. The proof is very similar to that of Lemma 4.3. One observes that the
far-field ufar

K,T solves the transmission problem

−Δufar
K,T = 0 in Ω ∪ Ωext,

[ufar
K,T ] = (v − vT )(1− ηT ) in H1/2(∂Ω),

[γ1u
far
K,T ] = 0 in H−1/2(∂Ω).

We note that (1 − ηT )|Γ∩U ′
T
= 0 by construction of ηT in (5.2). Hence, the same

reasoning as in the proof of Lemma 4.3 can be applied to reach the conclusion
(5.16). �

Lemma 5.4 (Local far-field bound for K̃). For all T ∈ Th,
‖h1/2∇Γγ

int
0 ufar

K,T ‖L2(T ) ≤ ‖h1/2∇ufar
K,T ‖L2(T ) ≤ Cfar ‖∇ufar

K,T ‖L2(U ′
T ).(5.17)

The constant Cfar > 0 depends only on ∂Ω, Γ, and the κ-shape regularity constant
of Th.
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Proof. The lemma is shown in exactly the same way as the corresponding bound for
the simple-layer potential V in Lemma 4.4, appealing to the Caccioppoli inequality
(5.16) instead of (4.14). �

Proposition 5.5 (Far-field bound for K̃). Let wh be a σ-admissible weight function.
There is a constant Cfar > 0 depending only on ∂Ω, Γ, the κ-shape regularity
constant of Th, and σ, such that

∑
T∈Th

‖wh/h
1/2‖2L∞(T )‖h1/2∇Γγ

int
0 ufar

K,T ‖2L2(T )

≤
∑
T∈Th

‖wh∇ufar
K,T ‖2L2(T )

≤ Cfar

(
‖wh∇Γv‖2L2(Γ) + ‖wh/h

1/2‖2L∞(Γ)‖v‖2˜H1/2(Γ)

)
.

Proof. Lemma 5.4 implies

∑
T∈Th

‖wh∇Γγ
int
0 ufar

K,T ‖2L2(T ) ≤
∑
T∈Th

‖wh∇ufar
K,T ‖2L2(T )

�
∑
T∈Th

‖wh/h
1/2‖2L∞(T )‖∇ufar

K,T ‖2L2(U ′
T )

=
∑
T∈Th

‖wh/h
1/2‖2L∞(T )‖∇ufar

K,T ‖2L2(U ′
T∩Ω)

+
∑
T∈Th

‖wh/h
1/2‖2L∞(T )‖∇ufar

K,T ‖2L2(U ′
T∩Ωext).

(5.18)

With the identities (5.12), our definition uK = K̃v, and a triangle inequality, we
obtain∑

T∈Th

‖wh∇ufar
K,T ‖2L2(T )

(5.18)

�
∑
T∈Th

‖wh/h
1/2‖2L∞(T )

(
‖∇(K̃v + vT )‖2L2(U ′

T∩Ω) + ‖∇K̃v‖2L2(U ′
T∩Ωext)

)
+

∑
T∈Th

‖wh/h
1/2‖2L∞(T )

(
‖∇unear

K,T ‖2L2(U ′
T∩Ω) + ‖∇unear

K,T ‖2L2(U ′
T∩Ωext)

)
.

(5.13)

� ‖wh/h
1/2‖2L∞(Γ)

∑
T∈Th

(
‖∇K̃v‖2L2(U ′

T∩Ω) + ‖∇K̃v‖2L2(U ′
T∩Ωext)

)
+ ‖wh∇Γv‖2L2(Γ)

(2.8), (4.4)

� ‖wh/h
1/2‖2L∞(Γ)‖v‖2˜H1/2(Γ)

+ ‖wh∇Γv‖2L2(Γ),

where we have used additionally ‖v‖
˜H1/2(Γ) = ‖v‖H1/2(∂Ω). �
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6. Proof of Theorem 3.1

We are in position to prove the inverse estimates (3.1), (3.2) of Theorem 3.1.

Proof of the inverse estimate (3.1). Let ψ ∈ L2(Γ), extend ψ by zero to the entire
boundary ∂Ω, and recall the notation from Section 4.1. First, we treat the simple-
layer integral operator V. With the bounds of Propositions 4.2 and 4.5 we get

‖wh∇ΓVψ‖2L2(Γ) =
∑
T∈Th

‖wh∇ΓVψ‖2L2(T )

�
∑
T∈Th

‖wh∇Γγ
int
0 ufar

V,T ‖2L2(T ) +
∑
T∈Th

‖wh∇Γγ
int
0 unear

V,T ‖2L2(T )

� ‖wh/h
1/2‖2L∞(Γ)‖ψ‖2˜H−1/2(Γ)

+ ‖whψ‖2L2(Γ).

(6.1)

The estimate for the adjoint double-layer integral operator K′ follows by similar
arguments. We split the left-hand side into near-field and far-field contributions to
obtain

‖whK
′ψ‖2L2(Γ) �

∑
T∈Th

‖wh‖2L∞(T )‖K′(ψχUT∩Γ)‖2L2(T )

+
∑
T∈Th

‖wh‖2L∞(T )‖K′(ψχΓ\UT
)‖2L2(T ).

(6.2)

The continuity K′ : L2(∂Ω) → L2(∂Ω) stated in (2.12) yields for the near-field
contribution∑

T∈Th

‖wh‖2L∞(T )‖K′(ψχUT∩Γ)‖2L2(T ) ≤
∑
T∈Th

‖wh‖2L∞(T )‖K′(ψχUT∩Γ)‖2L2(∂Ω)

(2.12)

�
∑
T∈Th

‖wh‖2L∞(T )‖ψ‖2L2(UT∩Γ)

� ‖whψ‖2L2(Γ).

For the far-field contribution, we write ufar
V,T = Ṽ(ψχΓ\UT

) and note that K′ =

−1/2 + γint
1 Ṽ and clearly (ψχΓ\UT

)|T = 0. Therefore, on T we have K′(ψχΓ\UT
) =

γint
1 ufar

V,T . Furthermore, by the smoothness of ufar
V,T near T (see Lemma 4.3), we

have γint
1 ufar

V,T = ∂νu
far
V,T on T (cf. Remark 2.2) and get

‖K′(ψχΓ\UT
)‖L2(T ) = ‖γint

1 ufar
V,T ‖L2(T ) = ‖∂νufar

V,T ‖L2(T ) � ‖∇ufar
V,T ‖L2(T ).

The far-field contribution in (6.2) can therefore be bounded by Proposition 4.5 via∑
T∈Th

‖wh‖2L∞(T )‖K′(ψχΓ\UT
)‖2L2(T ) �

∑
T∈Th

‖wh∇ufar
V,T ‖2L2(T )

� ‖whψ‖2L2(Γ) + ‖wh/h
1/2‖2L∞(Γ)‖ψ‖2˜H−1/2(Γ)

.

Altogether, this gives

‖whK
′ψ‖L2(Γ) � ‖whψ‖L2(Γ) + ‖wh/h

1/2‖L∞(Γ)‖ψ‖ ˜H−1/2(Γ). �

Proof of inverse estimate (3.2). First, we treat the double-layer integral operator

K. Let v ∈ H̃1(Γ), extend v by zero to v ∈ H1(∂Ω), and recall the notation from
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Section 5.1. We recall the stability of K = 1
2 + γint

0 K̃ : H1(∂Ω) → H1(∂Ω), from

which we conclude γint
0 K̃v ∈ H1(Γ). Therefore,

‖wh∇ΓKv‖L2(Γ) = ‖wh∇Γ

(
1
2 + γint

0 K̃
)
v‖L2(Γ)

≤ 1

2
‖wh∇Γv‖L2(Γ) + ‖wh∇Γγ

int
0 uK‖L2(Γ)

(6.3)

with uK = K̃v. It holds that uK+ vT = unear
K,T +ufar

K,T in Ω; cf. (5.12). For the second

term on the right-hand side in (6.3), we obtain

‖wh∇Γγ
int
0 uK‖2L2(Γ) ≤

∑
T∈Th

‖wh/h
1/2‖2L∞(T )‖h1/2∇Γγ

int
0 (uK + vT )‖2L2(T )

(5.12)

�
∑
T∈Th

‖wh/h
1/2‖2L∞(T )‖h1/2∇Γγ

int
0 unear

K,T ‖2L2(T )

+
∑
T∈Th

‖wh/h
1/2‖2L∞(T )‖h1/2∇Γγ

int
0 ufar

K,T ‖2L2(T ).

(6.4)

The first sum can be bounded by Proposition 5.2, whereas the second sum can be
bounded by Proposition 5.5. Altogether, this yields

‖wh∇ΓKv‖L2(Γ) � ‖wh/h
1/2‖L∞(Γ)‖v‖ ˜H1/2(Γ) + ‖wh∇Γv‖L2(Γ)

and concludes the first part of the proof.
The result for the hypersingular integral operator W is shown with similar ar-

guments. Again let v ∈ H̃1(Γ) and vT as in Lemma 5.1. Note that WvT = 0. Now
splitting into near-field and far-field yields

‖whWv‖2L2(Γ) =
∑
T∈Th

‖whW(v − vT )‖2L2(T )

�
∑
T∈Th

‖whW((v − vT )ηT )‖2L2(T )

+
∑
T∈Th

‖whW((v − vT )(1− ηT ))‖2L2(T ).

(6.5)

The near-field contribution is bounded by the stability of W : H1(∂Ω) → L2(∂Ω)
stated in (2.13) and the Poincaré-type estimate (5.5):

‖W((v − vT )ηT )‖2L2(T )

(2.13)

� ‖(v − vT )ηT ‖2H1(ωh(T ))

(5.5)

� ‖∇Γv‖2L2(ωh(T )).

The sum over all elements gives∑
T∈Th

‖whW((v − vT )ηT )‖2L2(T ) �
∑
T∈Th

‖wh‖2L∞(T )‖∇Γv‖2L2(ωh(T )) � ‖wh∇Γv‖2L2(Γ).

It remains to bound the second term on the right-hand side in (6.5). In view of the

support properties of ηT , the potential u
far
K,T = K̃((v−vT )(1−ηT )) is smooth near T

(cf. Lemma 5.3) so that γint
1 ufar

K,T = ∂νu
far
K,T on T . Furthermore, since W = −γint

1 K̃

we see

‖W((v − vT )(1− ηT ))‖2L2(T ) = ‖γint
1 ufar

K,T ‖2L2(T ) = ‖∂νufar
K,T ‖2L2(T ) ≤ ‖∇ufar

K,T ‖2L2(T ).
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We use Proposition 5.5 to conclude∑
T∈Th

‖whW((v − vT )(1− ηT ))‖2L2(T )

≤
∑
T∈Th

‖wh∇ufar
K,T ‖2L2(T )

� ‖wh∇Γv‖2L2(Γ) + ‖wh/h
1/2‖2L∞(Γ)‖v‖2˜H1/2(Γ)

.

Altogether, we obtain

‖whWv‖L2(Γ) � ‖wh∇Γv‖L2(Γ) + ‖wh/h
1/2‖L∞(Γ)‖v‖ ˜H1/2(Γ). �

Appendix A. A polynomial inverse estimate

Lemma A.1. Let Th be a regular, κ-shape regular triangulation of Γ. Suppose that
d ≥ 2 and that qh is a σ-admissible polynomial degree distribution with respect to

Th. Then, there exists a constant C̃inv > 0 which depends solely on ∂Ω, the κ-shape
regularity of Th, and σ, such that

‖h1/2(qh + 1)−1 Ψh‖L2(Γ) ≤ C̃inv‖Ψh‖H−1/2(Γ) for all Ψh ∈ Pq(Th).(A.1)

Proof. Step 1: For each T ∈ Th, we claim the existence of a function χ̂T,qh(T ) ∈
C∞(Rd−1) with the following properties for some fixed δ > 0 (see, e.g., the proofs
of [Geo08, Lem. 3.7, Prop. 3.8] or the arguments below):

supp χ̂T,qh(T ) ⊆ {x ∈ Tref : dist(x, ∂Tref) > δ/(qh(T ) + 1)2},(A.2)

0 ≤ χ̂T,qh(T ) ≤ 1 in Tref , ‖∇χ̂T,qh(T )‖L∞(Tref ) � (qh(T ) + 1)−2,(A.3)

χ̂T,qh(T ) ≡ 1 in {x ∈ Tref : dist(x, ∂Tref) > 3δ/(qh(T ) + 1)2},(A.4)

‖π‖L2(Tref ) ≤ C‖πχ̂T,p(T )‖L2(Tref )(A.5)

for all polynomials π of degree qh(T ),

‖πχ̂T,qh(T )‖H1(Tref ) ≤ C(1 + qh(T ))
2‖π‖L2(Tref )(A.6)

for all polynomials π of degree qh(T ).

The function χ̂T,qh(T ) is obtained from a mollification with length-scale

δ/(qh(T + 1))2 of the characteristic function of Tref \ S2δ/(qh(T )+1)2 , where Sε :=
{x ∈ Tref : dist(x, ∂Tref) < ε}. The parameter δ > 0 is dictated by the require-
ment (A.5): For this, we introduce the shorthand ε(δ) = 3δ/(qh(T ) + 1)2. Observe
that the radius of mollification is chosen such that χ̂T,qh(T ) ≡ 1 on Tref \ Sε(δ), so
that we are done once we have established ‖π‖L2(Sε(δ)) � ‖π‖L2(Tref\Sε(δ)).

[LMWZ10, Lemma 2.1] and the polynomial inverse estimate ‖π‖H1(Tref ) �
(qh(T ) + 1)2‖π‖L2(Tref ), yield

‖π‖2L2(Sε(δ))
� ε(δ)‖π‖L2(Tref )‖π‖H1(Tref ) � ε(δ)(qh(T ) + 1)2‖π‖2L2(Tref )

= ε(δ)(qh(T ) + 1)2
[
‖π‖2L2(Tref\Sε(δ))

+ ‖π‖2L2(Sε(δ))

]
= 3δ

[
‖π‖2L2(Tref\Sε(δ))

+ ‖π‖2L2(Sε(δ))

]
.

Taking δ sufficiently small produces ‖π‖L2(Sε(δ)) � ‖π‖L2(Tref\Sε(δ)) as desired.
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Step 2: Define χT,qh(T ) with suppχT,qh(T ) ⊆ T by χT,qh(T ) ◦ γT = χ̂T,qh(T ).
Given Ψh ∈ Pq(Th), define

(A.7) vT |T :=
h(T )

(1 + qh(T ))2
(Ψh|T )χT,qh(T ),

and extend vT by zero to Γ. Note that vT ∈ H̃1(Γ) by the support properties of
χT,qh(T ). An interpolation inequality and the estimates (A.5), (A.6) on the reference
element give

‖vT ‖2
˜H1/2(Γ)

= ‖vT ‖2
˜H1/2(∂Ω)

� ‖vT ‖L2(∂Ω)‖vT ‖H1(∂Ω)

= ‖vT ‖L2(T )‖vT ‖H1(T )

(A.6),(A.5)

� (1 + qh(T ))
2

h(T )
‖vT ‖2L2(T ).

(A.8)

For v :=
∑

T∈Th
vT , there holds v ∈ H̃1(Γ). With supp(vT ) ⊆ T and [SS11,

Lemma 4.1.49], we have

(A.9) ‖v‖2
˜H1/2(Γ)

=

∥∥∥∥∥ ∑
T∈Th

vT

∥∥∥∥∥
2

˜H1/2(Γ)

�
∑
T∈Th

‖vT ‖2
˜H1/2(Γ)

(A.8)

�
∥∥∥∥1 + qh

h1/2
v

∥∥∥∥2

L2(Γ)

.

Finally, we estimate∥∥∥∥ h1/2

1 + qh
Ψh

∥∥∥∥2

L2(Γ)

=
∑
T∈Th

∥∥∥∥ h(T )1/2

1 + qh(T )
Ψh

∥∥∥∥2

L2(T )

=
∑
T∈Th

(vT ,Ψh)L2(T ) = (v,Ψh)L2(Γ)

≤ ‖Ψh‖H−1/2(Γ)‖v‖ ˜H1/2(Γ)

(A.9)

� ‖Ψh‖H−1/2(Γ)

∥∥∥∥1 + qh
h1/2

v

∥∥∥∥
L2(Γ)

(A.7)

� ‖Ψh‖H−1/2(Γ)

∥∥∥∥ h1/2

1 + qh
Ψh

∥∥∥∥
L2(Γ)

. �

Appendix B. Norm equivalences (Proof of Facts 2.1)

B.1. Preliminaries. For an open set ω ⊂ Rn, n ∈ N, and θ ∈ (0, 1), we define the
Aronstein-Slobodeckii norm by

‖u‖2AS,s,ω := ‖u‖2L2(ω) + |u|2AS,s,ω,

|u|2AS,θ,ω :=

∫
x∈ω

∫
y∈ω

|u(x)− u(y)|2
|x− y|2θ+n

dy dx.
(B.1)

Lemma B.1. Let n ∈ N and θ ∈ (0, 1). Introduce for h ∈ Rn the notation
(Δhu)(x) := u(x + h) − u(x). Fix a non-negative function ρ ∈ C∞

0 (Rn) with
supp ρ ⊂ B2(0) \ B1(0) and

∫
Rn ρ(x) dx = 1. Set ρt(x) := t−nρ(x/t). For u ∈

L2(Rn) and t > 0 define the convolution ut := u � ρt ∈ C∞(Rn). Then, for a
constant C > 0 depending solely on ρ, it holds that

k(u, t) := ‖u− ut‖L2(Rn) + t‖ut‖H1(Rn)

≤ C

(∫
t≤|h|≤2t

‖Δhu‖2L2(Rn)|h|−n dh

)1/2

+ t‖u‖L2(Rn).(B.2)
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If θ ∈ (0, 1), then there exists Cθ > 0 (depending only on ρ, θ, and n) such that for
u with ‖u‖AS,θ,Rn < ∞, one has additionally∫ 1

t=0

(
t−θk(u, t)

)2 dt

t
≤ Cθ‖u‖2AS,θ,Rn .(B.3)

Proof. The bound (B.2) follows from inspecting [AF03, Thm. 7.47, proof of (c) ⇒
(a)]. The bound (B.3) follows from (B.2). �

The special feature of Lemma B.1 is that it provides a decomposition u =
(u − ut) + ut that is suitable for use in connection with the K-functional. Ad-
ditional properties of ut can be enforced by judiciously choosing ρ:

Lemma B.2. Let n ∈ N and θ ∈ (0, 1). Let ζ : Rn−1 → R be Lipschitz with
Lipschitz constant L. For ε ≥ 0, define the sets Ω+

ε := {(x′, y) |x′ ∈ Rn−1, y >
ζ(x′)− ε}. Then one can select a function ρ such that the following is true for all
u ∈ {u : ‖u‖AS,θ,Rn < ∞, u|Ω+

0
= 0}:

(i) The estimates of Lemma B.1 hold.
(ii) ut|Ω+

t/2
= 0.

Proof. For x ∈ Rn and c > 0, introduce the (infinite) cones Cx,c := x+{(x′, y) |x′ ∈
Rn−1, c|x′| < y}. Note that, since ζ is Lipschitz, there exists c′ > 0 (depending
solely on L and n) such that Cx,c′ ⊂ Ω+

0 for all x ∈ Ω+
0 . We select the non-

negative function ρ ∈ C∞(Rn) with
∫
Rn ρ(x) dx = 1 with the support property

supp ρ ⊂ (B2(0) \B1(0)) ∩ (−C(0,1/2),c′). For any t > 0 and any x ∈ Ω+
t/2, these

support properties ensure supp ρt(x − ·) ⊂ Ω+
0 . Hence, ut|Ω+

t/2
= 0 if u|Ω+

0
= 0.

This shows (ii). The statement (i) follows directly from Lemma B.1. �
Lemma B.3. Let ω, ω′ ⊂ Rn be open. Let Φ : ω → ω′ be bi-Lipschitz and
u ∈ H1

�oc(ω
′). Then, the composed function v := u ◦ Φ satisfies v ∈ H1

�oc(ω), and
the chain rule (∇v)�(x) = ((∇u)� ◦ Φ(x))DΦ(x) holds almost everywhere in ω.

Proof. We follow essentially [Zie89, Thm. 2.2.2]. First, we note that Φ may be
extended as a Lipschitz function to a function Φ : Rn → Rn, [Ste70, Thm. 3,
Chap. VI]. (This extension may not be invertible as a map Rn → Rn but it suffices
for our purposes that Φ : ω → ω′ is bi-Lipschitz.) We conclude from [Fed69,
Thm. 3.2.5] or [EG92, Thm. 2, Sec. 3.4.3] that for any function g ∈ L1(ω′), it holds
that

(B.4)

∫
ω

(g ◦ Φ)(x)J(x) dx =

∫
ω′

g(y) dy, J(x) = | detDΦ(x)|.

Inspection of the proof of [Zie89, Thm. 2.2.2] shows that (B.4) can take the role of
[Zie89, eqn. (2.2.9)] in the proof of [Zie89, Thm. 2.2.2]. The result then follows. �
B.2. Proof of Facts 2.1. We fix notation, following [McL00, p. 96ff]. The bound-
ary ∂Ω is described by N ∈ N Lipschitz continuous functions ζi : Rd−1 → R and
Euclidean transformations Qi (i.e., translations and rotations). In terms of the
functions ζi, we define functions Zi : Rd → Rd given by (x′, t) �→ Qi(x

′, ζi(x
′) + t),

which are bi-Lipschitz. It is convenient to introduce the maps ζ̂i : Rd−1 → Rd

by ζ̂i(x
′) := Zi(x

′, 0). The setting of [McL00, p. 96ff] is as follows: There are
N domains Ωi that are Lipschitz hypographs described by the maps Zi; in par-

ticular, ζ̂i(Rd−1) = Zi(Rd−1, 0) = ∂Ωi. We note that bi-Lipschitz continuity of
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Zi : Rd → Rd implies that ζ̂i : Rd−1 → ∂Ωi is bi-Lipschitz. The setting of Lipschitz
domains is such that, locally, Ω “coincides” with one of the hypographs Ωi; that is,

there are N Lipschitz domains ω̂i ⊂ Rd−1 such that the sets ωi := ζ̂i(ω̂i) ⊂ ∂Ω are
an open cover of ∂Ω. For any function v ∈ L2(∂Ω), we define its pull-back v̂i to ω̂i

by v̂i := v|ωi
◦ ζ̂i. A key property of Lipschitz domains Ω is that H1(∂Ω)-functions

feature the expected transformation rule under change of charts:

Theorem B.4. Let ∅ �= ω = ωi ∩ ωj for some i, j. Set ω′
i := ζ̂−1

i (ω). Then, for
u ∈ H1(∂Ω), it holds that

ûi = ûj ◦ (ζ̂−1
j ◦ ζ̂i) a.e. on ω′

i,(B.5)

(∇ûi)
� = ((∇ûj)

� ◦ (ζ̂−1
j ◦ ζ̂i))D(ζ̂−1

j ◦ ζ̂i) a.e. on ω′
i.(B.6)

Proof. (B.5) is clear. The transformation rule (B.6) follows from Lemma B.3. �
We employ the partition of unity (ϕi)

N
i=1 associated with the cover (ωi)

N
i=1 that

is described in [McL00, p. 98ff]. With ϕ̂i being the pull-back of ϕi, we note the
compact inclusion supp ϕ̂i ⊂⊂ ω̂i. The Sobolev norms ‖ · ‖Hθ(∂Ω), 0 ≤ θ ≤ 1 are
defined in [McL00, p. 99] as

(B.7) ‖u‖2Hθ(∂Ω) :=
N∑
i=1

‖ϕ̂iûi‖2Hθ(Rd−1),

with the norms on the right-hand side defined by Bessel potentials. According
to [McL00, Thm. 3.16], we can alternatively use the definition by norms of distri-
butional derivatives. Then, by the support properties of the functions ϕ̂i, one may
replace ‖ · ‖Hθ(Rd−1) by ‖ · ‖Hθ(ω̂i) for θ ∈ {0, 1}.

Lemma B.5. For θ ∈ {0, 1} and u ∈ Hθ(∂Ω), one has the norm equivalence

‖u‖2Hθ(∂Ω) 	
∑N

i=1 ‖ûi‖2Hθ(ω̂i)
.

Proof. The estimate ‖u‖2Hθ(∂Ω) �
∑N

i=1 ‖ûi‖2Hθ(ω̂i)
follows readily from the defi-

nition of ‖ · ‖Hθ(∂Ω). The converse estimate results from the fact that (ϕi)
N
i=1 is

a partition of unity on ∂Ω. To see this, fix i and define for j = 1, . . . , N , the

sets ω̂ij := {x ∈ ω̂i : |ϕj(ζ̂i(x))| > 1/(2N)}. Since (ϕj)
N
j=1 is a partition of unity,

we have
⋃N

j=1 ω̂ij = ω̂i. Since |ϕj(ζ̂j(x))| ≥ 1/(2N) for x ∈ (ζ̂−1
j ◦ ζ̂i)(ω̂ij), we

can infer with (B.5) of Theorem B.4 that ‖ûi‖L2(ω̂ij) � ‖ϕ̂j ûj‖L2(ω̂j), and hence
‖ûi‖L2(ω̂i) � ‖u‖L2(∂Ω). For θ = 1, we additionally note ∇(ϕ̂jûj) = ϕ̂j∇ûj +
ûj∇ϕ̂j . With (B.5) and (B.6) of Theorem B.4 we infer that ‖∇ûi‖L2(ω̂ij) �
‖∇(ϕ̂jûj)‖L2(ω̂j) + ‖ûj‖L2(ω̂j). Hence,

‖∇ûi‖L2(ω̂i)�
N∑
j=1

‖ϕ̂j ûj‖H1(ω̂j) + ‖u‖L2(∂Ω). �

Lemma B.6. Let N functions ũi ∈ H̃1(ω̂i), i = 1, . . . , N , be given and let each
function ui be defined on ωi as the push-forward of ũi, i.e., ui is characterized by

ui ◦ ζ̂i = ũi. Then the function u =
∑N

i=1 χωi
ui, where χA denote the characteristic

function of the set A ⊂ ∂Ω, is in H1(∂Ω) and

‖u‖H1(∂Ω) �
N∑
i=1

‖ũi‖H1(ω̂i).
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Proof. It suffices to consider the case of a fixed i and ũj ≡ 0 for j �= i. Let
ũi ∈ C∞

0 (ω̂i). The essential step is to show that the function u (as defined in
the statement of the lemma) is in H1(∂Ω). The stated bound then follows from
Lemma B.5, using also Theorem B.4 and the fact that there are finitely many

domains ω̂i. The general case of ũi ∈ H̃1(ω̂i) follows from that of ũi ∈ C∞
0 (ω̂i) by

a density argument.
The assumption ũi ∈ C∞

0 (ω̂i) implies u ∈ C(∂Ω) and supp u ⊂ ωi. In order to

see u ∈ H1(∂Ω) we write ûj := u◦ ζ̂j and claim ûj ∈ H1(ω̂j). To that end, consider

j with ωji := ωj ∩ ωi �= ∅ and introduce the open set ω̂ji := ζ̂−1
j (ωji) ⊂ ω̂j . By

Lemma B.3, we have ûj ∈ H1
�oc(ω̂ji). Our proof will be complete once we have

shown supp(ûjϕ̂j) ⊂⊂ ω̂ji. This last assertion follows from the above observation

suppu ⊂ ωi, the observation suppϕj ⊂ ωj and supp(ûjϕ̂j) = ζ̂−1
j (supp(uϕj)) ⊂

ζ̂−1
j (suppϕj ∩ supp u) = ζ̂−1

j (ωj ∩ ωi) = ζ−1
j (ωji) = ω̂ji. �

Proposition B.7. Facts 2.1(i) holds with equivalent norms.

Proof. It suffices to consider the case Γ = ∂Ω since u|∂Ω\Γ = 0 implies (∇Γu)|∂Ω\Γ =

0. We exploit that ∂Ω is piecewise C1 as defined in [SS11, Def. 2.2.10]. Recall from
(2.3) the definition of the surface gradient on a surface piece Γ� with parametrization

ξ� : Γ̂� → Γ�. Since the Gramian matrix G = Dξ�� Dξ� and its inverse G−1 are

uniformly symmetric positive definite on Γ̂�, we infer the existence of a constant
C > 0 (depending only ∂Ω, Γ�, and ξ�) such that

(B.8) C−1|(∇Γu)|Γ�
◦ ξ�| ≤ |∇(u ◦ ξ�)| ≤ C|(∇Γu)|Γ�

◦ ξ�| a.e. on Γ̂�.

For each ωi, we get from Theorem B.4 for a constant C̃ (depending only on ∂Ω,
Γ�, and ξ�) that

(B.9) C̃−1|∇(u ◦ ξ�)| ≤ |∇ûi ◦ ζ̂−1
i ◦ ξ�| ≤ C̃|∇(u ◦ ξ�)| a.e. on ξ−1

� (Γ� ∩ ωi).

Since ∂Ω =
⋃

i ωi and ∂Ω =
⋃

� Γ�, the estimates (B.8) and (B.9) and Lemma B.5
imply ‖∇Γu‖2L2(∂Ω) �

∑
� ‖∇Γu‖2L2(Γ�)

�
∑

i ‖∇ûi‖2L2(ω̂i)
� ‖u‖2H1(∂Ω). For the

reverse estimate, we again note that the surface patches Γ� form a partition of ∂Ω,
that is, ωi =

⋃
� Γ� ∩ ωi. Hence, (B.8) and (B.9) imply

|∇ûi ◦ ζ̂−1
i | ≤ C ′|∇Γu| a.e. on ωi

for a constant C ′ > 0 depending only on ∂Ω and the (finitely many) surface
patches Γ� with their parametrizations ξ�. This in turn implies

∑
i ‖∇ûi‖2L2(ω̂i)

�
‖∇Γu‖2L2(∂Ω), and an appeal to Lemma B.5 finishes the proof. �

Proposition B.8. Facts 2.1(ii) holds with equivalent norms.

Proof. The Aronstein-Slobodeckii norm on ∂Ω is defined as in (B.1), where the
integration over ω is replaced with that over the surface ∂Ω and |x − y| in the
denominator is replaced with the Euclidean distance between x and y. (Since ∂Ω
is Lipschitz, the distance could alternatively be taken as the geodesic distance on

∂Ω.) Recall the partition of unity (ϕi)
N
i=1. Using the fact that the maps ζ̂i are

bi-Lipschitz and the equivalence of the Aronstein-Slobodeckii norm to the Sobolev
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norm (cf., e.g., [McL00, Thm. 3.16]), we calculate for θ ∈ (0, 1),

‖u‖AS,θ,∂Ω = ‖
∑N

i=1 ϕiu‖AS,θ,∂Ω ≤
N∑
i=1

‖ϕiu‖AS,θ,∂Ω �
N∑
i=1

‖ϕ̂iûi‖AS,θ,Rd−1

	
(

N∑
i=1

‖ϕ̂iûi‖2Hθ(Rd−1)

)1/2

(B.7)
= ‖u‖Hθ(∂Ω).

For the converse estimate, we compute, using again the equivalence of the Aronstein-

Slobodeckii norm and the Sobolev norm as well as the facts that the ζ̂i are bi-
Lipschitz and that the functions ϕ̂i are Lipschitz continuous with supp ϕ̂i ⊂ ω̂i,

‖u‖2Hθ(∂Ω)

(B.7)
=

N∑
i=1

‖ϕ̂iûi‖2Hθ(Rd−1) 	
N∑
i=1

‖ϕ̂iûi‖2AS,θ,Rd−1

�
N∑
i=1

‖ûi‖2AS,θ,ω̂i
�

N∑
i=1

‖u‖2AS,θ,ωi
≤ N‖u‖2AS,θ,∂Ω. �

Proposition B.9. Facts 2.1(iii) holds with equivalent norms.

Proof. First, we note that [McL00, Thm. B.11] shows for θ ∈ (0, 1) that the in-
terpolation spaces (L2(∂Ω), H1(∂Ω))θ and the Sobolev spaces Hθ(∂Ω) are equal
(with equivalent norms), i.e., (L2(∂Ω), H1(∂Ω))θ = Hθ(∂Ω). We next establish

(L2(Γ), H̃1(Γ))1/2 = H̃1/2(Γ).

Proof of (L2(Γ), H̃1(Γ))1/2 ⊆ H̃1/2(Γ): The operator E0,Γ is a bounded and linear

operator L2(Γ) → L2(∂Ω) and H̃1(Γ) → H1(∂Ω). Interpolation theory provides

that E0,Γ : (L2(Γ), H̃1(Γ))θ → (L2(∂Ω), H1(∂Ω))θ = Hθ(∂Ω) is a bounded linear
operator. In particular, ‖u‖

˜H1/2(Γ) = ‖E0,Γu‖H1/2(∂Ω) � ‖u‖(L2(Γ), ˜H1(Γ))1/2
.

Proof of H̃1/2(Γ) ⊆ (L2(Γ), H̃1(Γ))1/2: We show that for some δ > 0 we can

construct for each t ∈ (0, δ] and each u ∈ H̃1/2(Γ) a function ut ∈ H̃1(Γ) such that
the functional k(u, t) := ‖u− ut‖L2(Γ) + t‖ut‖ ˜H1(Γ) satisfies∫ δ

t=0

(
t−1/2k(u, t)

)2 dt

t
≤ C‖u‖2

˜H1/2(Γ)
.

By definition of the real K-method of interpolation, the latter estimate yields
‖u‖(L2(Γ), ˜H1(Γ))1/2

� ‖u‖
˜H1/2(Γ) and hence concludes this step, since, as it is shown

in [DL93, Chap. 6, Sec. 7], we may replace the integral over (0,∞) by an integral
over (0, δ) for fixed δ > 0 in the definition of the interpolation spaces. We start
with the case Γ = ∂Ω in order to illustrate the main ideas. Using the partition

of unity (ϕi)
N
i=1 we write the function u ∈ H1/2(∂Ω) as u =

∑N
i=1 ϕiu. The pull-

backs ϕ̂iûi satisfy ϕ̂iûi ∈ H1/2(Rd−1) and supp(ϕ̂iûi) ⊂ ω̂i. Select a function ρ as
in Lemma B.1. Set ûi,1,t := (ϕ̂iûi) � ρt and ûi,0,t := ϕ̂iûi − ûi,1,t. Noting that the
function ρ in Lemma B.1 has compact support, we obtain from Lemma B.1 that
for sufficiently small δ and all 0 < t ≤ δ, we have the properties supp ûi,1,t ⊂ ω̂i

and supp ûi,0,t ⊂ ω̂i as well as∫ δ

t=0

(
t−1/2ki(u, t)

)2 dt

t
≤ C‖ϕ̂iûi‖2H1/2(Rd−1),
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where ki(u, t) := ‖ûi,0,t‖L2(Rd−1)+ t‖ûi,1,t‖H1(Rd−1). (The parameter δ > 0 depends
solely on the sets ω̂i and the support properties of the functions ϕ̂i.) Define ui,0,t

and ui,1,t on ωi as the push-forwards of ûi,0,t and ûi,1,t, respectively. Decompose u

as u = (u− ut) + ut =:
∑N

i=1 χωi
ui,0,t +

∑N
i=1 χωi

ui,1,t. In view of Lemma B.6 we
have ut ∈ H1(∂Ω). Furthermore,∫ δ

t=0

{
t−1/2

(
‖u− ut‖L2(∂Ω) + t‖ut‖H1(∂Ω)

)}2 dt

t

�
N∑
i=1

‖ϕ̂iûi‖2H1/2(Rd−1) 	 ‖u‖2H1/2(∂Ω).

This concludes the proof for Γ = ∂Ω. For the case Γ �= ∂Ω, we proceed along the
same lines, but use the more careful choice of the smoothing function ρ given in

Lemma B.2 for those indices i with ωi ∩ ∂Γ �= ∅ so as to ensure ut ∈ H̃1(Γ). For
these indices i, one has to use the fact that Γ stems from a Lipschitz dissection as
discussed in [McL00, p. 99]. Lemma B.2 is formulated so as to be applicable in this
situation. In particular, the mollifier ρ can be selected such that the push-forwards
ui,0,t and ui,1,t satisfy the additional constraints supp ui,1,t ⊂ Γ and suppui,0,t ⊂ Γ

if supp u ⊂ Γ. These support properties are those required to conclude the proof
for the case that Γ � ∂Ω stems from a Lipschitz dissection of ∂Ω. �
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