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ACCURATE INVERSES FOR COMPUTING EIGENVALUES

OF EXTREMELY ILL-CONDITIONED MATRICES

AND DIFFERENTIAL OPERATORS

QIANG YE

Abstract. This paper is concerned with computations of a few smallest eigen-
values (in absolute value) of a large extremely ill-conditioned matrix. It is
shown that a few smallest eigenvalues can be accurately computed for a di-
agonally dominant matrix or a product of diagonally dominant matrices by
combining a standard iterative method with the accurate inversion algorithms
that have been developed for such matrices. Applications to the finite differ-

ence discretization of differential operators are discussed. In particular, a new
discretization is derived for the 1-dimensional biharmonic operator that can
be written as a product of diagonally dominant matrices. Numerical examples
are presented to demonstrate the accuracy achieved by the new algorithms.

1. Introduction

In this paper, we are concerned with accurate computations of a few smallest
eigenvalues (in absolute value) of a large extremely ill-conditioned matrix. Here, we
consider a matrix A extremely ill-conditioned if uκ2(A) is almost of order 1, where u
is the machine roundoff unit, κ2(A) := ‖A‖‖A−1‖ is the spectral condition number
of A, and ‖ · ‖ is the 2-norm. We are mainly interested in large sparse matrices
arising in discretization of differential operators, which may lead to extremely ill-
conditioned matrices when a very fine discretization is used. In that case, existing
eigenvalue algorithms may compute a few smallest eigenvalues (the lower end of
the spectrum) with little or no accuracy owing to roundoff errors in a floating point
arithmetic.

Consider an n × n symmetric positive definite matrix A and let 0 < λ1 ≤ λ2 ≤
· · · ≤ λn be its eigenvalues. Conventional dense matrix eigenvalue algorithms (such
as the QR algorithm) are normwise backward stable, i.e., the computed eigenvalues

{λ̂i} in a floating point arithmetic are the exact eigenvalues of A+ E with ‖E‖ =
O(u)‖A‖; see [38, p. 381]. Here and throughout, O(u) denotes a term bounded
by p(n)u for some polynomial p(n) in n. Eigenvalues of large (sparse) matrices
are typically computed by an iterative method (such as the Lanczos algorithm),

which produces an approximate eigenvalue λ̂i and an approximate eigenvector x̂i

whose residual satisfies ‖Ax̂i − λ̂ix̂i‖/‖x̂i‖ < η for some threshold η. Since the
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roundoff error occurring in computing Ax̂i is of order u‖A‖‖x̂i‖, then this residual
can converge at best to O(u)‖A‖. Then, for both the dense and iterative eigenvalue

algorithms, the error of the computed eigenvalue λ̂i is at best |λ̂i−λi| ≤ O(u)‖A‖ =
O(u)λn. Thus

(1)
|λ̂i − λi|

λi
≤ O(u)

λn

λi
≈

{
O(u) if λi ≈ λn,

O(u)κ2(A) if λi ≈ λ1.

It follows that larger eigenvalues (i.e., those λi ≈ λn) can be computed with a
relative error of order u, but for smaller eigenvalue (i.e., those λi ≈ λ1), we may
expect a relative error of order O(u)κ2(A). Hence, little accuracy may be expected
of these smaller eigenvalues if the matrix A is extremely ill-conditioned. This is the
case regardless of the magnitude of λ1.

Large matrices arising from applications are typically inherently ill-conditioned.
Consider the eigenvalue problems for a differential operator L. Discretization of L
leads to a large and sparse matrix eigenvalue problem. Here it is usually a few small-
est eigenvalues that are of interest and are well approximated by the discretization.
Then, as the discretization meshsize h decreases, the condition number increases
and then the relative accuracy of these smallest eigenvalues as computed by exist-
ing algorithms deteriorates. Specifically, the condition numbers of finite difference
discretization are typically of order O(h−2) for second order differential operators,
but for fourth order operators, it is of order O(h−4). This also holds true for other
discretization methods; see [6, 11, 34, 40, 53] and the references contained therein
for some recent discussions on discretization of fourth order operators. Thus, for a
fourth order operator, little accuracy may be expected of the computed eigenvalues
when h is near 10−4 in the standard double precision (see numerical examples in
§4).

Indeed, computing eigenvalues and eigenvectors of a biharmonic operator Δ2

has been a subject of much discussion; see [5, 7, 11–15, 39, 48]. It has been noted
by Bjorstad and Tjostheim [8] that several earlier numerical results obtained in
[5, 15, 39] based on coarse discretization schemes are inaccurate in the sense that
they either miss or misplace some known nodal lines for the first eigenfunction.
Indeed, to obtain more accurate numerical results that agree with various known
theoretical properties of eigenvalues and eigenfunctions, they had to use the quadru-
ple precision to compute the eigenvalues of the matrix obtained from the spectral
Legendre-Galerkin method with up to 5000 basis functions in [8]. Clearly, the ex-
isting matrix eigenvalue algorithms implemented in the standard double precision
could not provide satisfactory accuracy at this resolution.

The computed accuracy of smaller eigenvalues of a matrix has been discussed
extensively in the context of the dense matrix eigenvalue problems in the last two
decades. Starting with a work by Demmel and Kahan [23] on computing singular
values of bidiagonal matrices, there is a large body of literature on when and how
smaller eigenvalues or singular values can be computed accurately. Many special
classes of matrices have been identified for which the singular values (or eigenvalues)
are determined and can be computed to high relative accuracy (i.e., removing κ2(A)
in (1)); see [4, 18, 19, 21, 22, 24–26, 28, 33, 43] and the recent survey [30] for more
details.
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In this paper, we study a new approach of using an iterative algorithm com-
bined with the inverse (or the shift-and-invert transformation more generally) to
accurately compute a few smallest eigenvalues of a diagonally dominant matrix
or one that admits factorization into a product of diagonally dominant matrices.
A key observation is that those smallest eigenvalues can be accurately computed
from the corresponding largest eigenvalues of the inverse matrix, provided the in-
verse operator can be computed accurately. In light of extreme ill-conditioning
that we assume for the matrix, accurate inversion is generally not possible but,
for diagonally dominant matrices, we can use the accurate LDU factorization that
we recently developed, with which the inverse (or linear systems) can be solved
sufficiently accurately. As applications, we will show that we can compute a few
smallest eigenvalues accurately for most second order self-adjoint differential opera-
tors and some fourth order differential operators in spite of extreme ill-conditioning
of the discretization matrix. Numerical examples will be presented to demonstrate
the accuracy achieved.

We note that using the Lanczos algorithm with the shift-and-invert transforma-
tion is a standard way for solving differential operator eigenvalue problems, where
the lower end of the spectrum is sought but is clustered. The novelty here is the use
of the accurate LDU factorization, that has about the same computational com-
plexity as the Cholesky factorization but yields sufficiently accurate applications of
the inverse operator.

The paper is organized as follows. We discuss in §2 an accurate LDU factoriza-
tion algorithms for diagonally dominant matrices and then in §3, we show how they
can be used to compute a few smallest eigenvalues accurately. We then apply this
to discretization of differential operators together with various numerical examples
in §4. We conclude with some remarks in §5.

Throughout, ‖ · ‖ denotes the 2-norm for vectors and matrices, unless otherwise
specified. Inequalities and absolute value involving matrices and vectors are entry-
wise. u is the machine roundoff unit and O(u) denotes a term bounded by p(n)u
for some polynomial p(n) in n. We use fl(z) to denote the computed result of an
algebraic expression z. R(M) denote the range space of a matrix M and ⊗ is the
Kronecker product.

2. Accurate LDU factorization of diagonally dominant matrices

Diagonally dominant matrices arise in many applications. With such a structure,
it has been shown recently that several linear algebra problems can be solved much
more accurately; see [1,2,18,19,51,52]. In this section, we discuss related results on
the LDU factorization of diagonally dominant matrices, which will yield accurate
solutions of linear systems and will be the key in our method to compute a few
smallest eigenvalues of extremely ill-conditioned matrices.

A key idea that makes more accurate algorithms possible is a representation (or
reparameterization) of diagonally dominant matrices as follows.

Definition 1. Given M = (mij) ∈ R
n×n with zero diagonals and v = (vi) ∈ R

n,
we use D(M, v) to denote the matrix A = (aij) whose off-diagonal entries are the
same as M and whose ith diagonal entry is vi +

∑
j �=i |mij |, i.e.,

aij = mij for i �= j; and aii = vi +
∑
j �=i

|mij |.
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In this notation, for any matrix A = [aij ], let AD be the matrix whose off-
diagonal entries are the same as A and whose diagonal entries are zero and let
vi = aii −

∑
j �=i |aij | and v = (v1, v2, . . . , vn)

T , then we can write A = D(AD, v),
which will be called the representation of A by the diagonally dominant parts v.
Through this equation, we use (AD, v) as the data (parameters) to define the matrix
(operator) A. The difference between using all the entries of A and using (AD, v)
lies in the fact that, under small entrywise perturbations, (AD, v) determines all
entries of A to the same relative accuracy, but not vice versa. Namely, (AD, v)
contains more information than the entries of A do.

In general, a matrix A = (aij) is said to be diagonally dominant if |aii| ≥∑
j �=i |aij | for all i. Throughout this work, we consider a diagonally dominant A

with nonnegative diagonals, i.e., vi = aii −
∑

j �=i |aij | ≥ 0 for all i. Diagonally
dominant matrices with some negative diagonals can be scaled by a negative sign
in the corresponding rows to turn into one with nonnegative diagonals. The need
for scaling in such cases clearly does not pose any difficulties for the problem of
solving linear systems.

In [51], we have developed a variation of the Gaussian elimination to compute
the LDU factorization of an n × n diagonally dominant matrix represented as
A = D(AD, v) with v ≥ 0 such that the diagonal matrix D has entrywise relative
accuracy in the order of machine precision while L and U are well-conditioned
with normwise accuracy (see Theorem 1 below). The algorithm is based on the
observation that the Gaussian elimination can be carried out on AD and v, and
the entries of v can be computed with no subtraction operation, generalizing our
earlier algorithm for diagonally dominant M-matrices [1,2] and the GTH algorithm
[35]. For completeness, we present the algorithm and its roundoff error properties
below.

Algorithm 1 ([51]). LDU factorization of D(AD, v)

1 Input: AD = [aij ] and v = [vi] ≥ 0;
2 Initialize: P = I, L = I, D = 0, U = I.
3 For k = 1 : (n− 1)
4 For i = k : n
5 aii = vi +

∑n
j=k,j �=i |aij |;

6 End For
7 If maxi≥k aii = 0, stop;
8 Choose a permutation P1 for pivoting s.t. A = P1AP1 satisfies one of:
8a a) if diagonal pivoting: akk = maxi≥k aii;
8b b) if column diagonal dominance pivoting: 0 �= akk ≥

∑n
i=k+1 |aik|;

9 P = P1P ; L = P1LP1; U = P1UP1; dk = akk;
10 For i = (k + 1) : n
11 lik = aik/akk; uki = aki/akk; aik = 0;
12 vi = vi + |lik|vk;
13 For j = (k + 1) : n
14 p = sign(aij − likakj);
15 s = sign(aij)p;
16 t = −sign(lik)sign(akj)p;
17 If j = i
18 s = 1; t = sign(lik)sign(aki);
19 End if
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20 vi = vi + (1− s)|aij |+ (1− t)|likakj |;
21 aij = aij − likakj ;
22 End for
23 End For
24 End for
25 ann = vn; dn = ann.

In output, we have PAPT = LDU . We have considered two possible pivot-
ing strategies in line 8. The column diagonal dominance pivoting ensures that L
is column diagonally dominant while U is still row diagonally dominant. These
theoretically guarantee that L and U are well-conditioned with

(2) κ∞(L) := ‖L‖∞‖L−1‖∞ ≤ n2 and κ∞(U) ≤ 2n;

see [47]. In practice, however, the diagonal pivoting (i.e., akk = maxi≥k aii at line
8a) is usually sufficient to result in well-conditioned L and U , but for the theoretical
purpose, we assume that the column diagonal dominance pivoting will be used so
that (2) holds.

The following theorem characterizes the accuracy achieved by Algorithm 1.

Theorem 1. Let L̂ = [l̂ik], D̂ = diag{d̂i} and Û = [ûik] be the computed factors
of LDU-factorization of D(AD, v) by Algorithm 1 and let L = [lik], D = diag{di}
and U = [uik] be the corresponding factors computed exactly. We have

‖L̂− L‖∞ ≤
(
nνn−1u+O(u2)

)
‖L‖∞,

|d̂i − di| ≤
(
ξn−1u+O(u2)

)
di, for 1 ≤ i ≤ n,

‖Û − U‖∞ ≤
(
νn−1u+O(u2)

)
‖U‖∞,

where νn−1 ≤ 14n3 and ξn−1 ≤ 6n3.

The above theorem was originally proved in [51, Theorem 3] with νn−1 ≤ 6 ·
8n−1 − 2 and ξn−1 ≤ 5 · 8n−1 − 5

2 but improved to the polynomial bound above
in [27, Theorem 4]. The bounds demonstrate that the computed L and U are
normwise accurate and D is entrywise accurate, regardless of the condition number
of the matrix. Since the permutation P for pivoting does not involve any actual
computations and roundoff errors, for the ease of presentation, we will assume from
now on that P = I; that is the permutation has been applied to A.

The above accurate factorization was used in [51] to accurately compute all
singular values of A. Based on the Jacobi algorithm, the algorithm there is suitable
for small matrices only. Here, we will show that the accurate LDU factorization
can also be used to solve a linear system more accurately. Specifically, with the

factorization A = L̂D̂Û , we solve Ax = b by the standard procedure:

(3) L̂y = b; D̂z = y; and Ûx = z,

where the systems involving L̂ and Û are solved with forward and backward sub-
stitutions respectively, and the diagonal system is solved by zi = yi/dii.

The accuracy of the computed solution x̂ from (3) has been investigated by
Dopico and Molera [29] in the context of a rank revealing factorization. A factor-
ization A = XDY is said to be rank revealing if X and Y are well conditioned

and D is diagonal. Let X̂, D̂, and Ŷ be the computed factors of a rank revealing
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factorization A = XDY . We say it is an accurate rank revealing factorization of A

(see [22]) if X̂ and Ŷ are normwise accurate and D̂ is entrywise accurate, i.e.,

(4)
‖X̂ −X‖

‖X‖ ≤ up(n);
‖Ŷ − Y ‖

‖Y ‖ ≤ up(n); and |D̂ −D| ≤ up(n)|D|,

where p(n) is a polynomial in n. By (2), the LDU factorization defined by Algo-
rithm 1 is a rank revealing factorization. Furthermore, it follows from Theorem 1
that the computed factors by Algorithm 1 form an accurate rank revealing factor-
ization. The following theorem describes the accuracy of the computed solution of
Ax = b. In the theorem below, the norm ‖ · ‖ can be any matrix operator norm
satisfying ‖diag{di}‖ = maxi |di|.

Theorem 2 ([29, Theorem 4.2]). Let X̂, D̂, and Ŷ be the computed factors of a
rank revealing factorization of A = XDY and assume that they satisfy (4) where
p(n) is a polynomial of n and X,D, and Y are the corresponding exact factors.
Assume also that the systems Xs = b and Y x = w are solved with a backward stable
algorithm that when applied to any linear system Bz = c, computes a solution ẑ that
satisfies (B+ΔB)ẑ = c; with ‖ΔB‖ ≤ uq(n)‖B‖ where q(n) is a modestly growing

function of n such that q(n) ≥ 4
√
2/(1−12u). Let g(n) := p(n)+ q(n)+up(n)q(n).

Then, if x̂ is the computed solution of Ax = b through solving

X̂y = b; D̂z = y; and Ẑx = z,

and if ug(n)κ(Y ) < 1 and ug(n)(2 + ug(n))κ(X) < 1, then

‖x̂− x‖
‖x‖ ≤ ug(n)

1− ug(n)κ(Y )

(
κ(Y ) +

1 + (2 + ug(n))κ(X)

1− ug(n)(2 + ug(n))κ(X)

‖A−1‖‖b‖
‖x‖

)
=

(
ug(n) +O(u2)

)
max{κ(X), κ(Y )}‖A

−1‖‖b‖
‖x‖ .

Applying the above theorem to A = LDU with the infinity norm and using the

bounds on L̂, D̂ and Û in Theorem 1, we have that the computed solution x̂ by (3)
satisfies the bound above with p(n) = 14n4, q(n) = n2. Hence, further using (2),
we obtain

(5)
‖x̂− x‖∞
‖x‖∞

≤
(
un2g(n) +O(u2)

) ‖A−1‖∞‖b‖∞
‖x‖∞

,

where g(n) = 14n6+n4. We note that this worst-case bound with a large coefficient
n2g(n) is derived for a dense matrix from combining the bounds for the LDU
factorization, for solving linear systems, and for the condition numbers, each of
which is pessimistic. For a large sparse matrix that has O(n) nonzero entries, the
coefficient can be significantly reduced if we assume the L and U factors also have
O(n) nonzero entries. In any case, the bound can be expected to be too pessimistic
to be useful for deriving a numerical bound in a practical setting. The main interest
of the bound is to demonstrate the independence of the error on any conditioning
of the problem.

For the convenience of later use, we rewrite (5) in the 2-norm as

(6) ‖x̂− x‖ ≤ O(u)‖A−1‖‖b‖.
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3. Smaller eigenvalues of extremely ill-conditioned matrices

In this section, we discuss computations of a few smallest eigenvalues of an
extremely ill-conditioned matrix A, namely we assume that κ(A)u is of order 1.
For simplicity, we consider a symmetric positive definite matrix A. Many of the
discussions are applicable to nonsymmetric problems, although there may be ad-
ditional difficulties associated with sensitivity of individual eigenvalues caused by
nonnormality of the matrix.

Let 0 < λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of A and suppose we are
interested in computing the smallest eigenvalue λ1. For an ill-conditioned matrix,
λ1 is typically clustered; namely the relative spectral gap

(7)
λ2 − λ1

λn − λ2
=

λ2 − λ1

λ1

1

λn/λ1 − λ2/λ1
≈ λ2 − λ1

λ1

1

κ(A)

is small unless λ2 ≈ λn. Therefore, although one can compute λ1 using the Lanczos
algorithm, its speed of convergence is determined by the relative spectral gap, and
then a direct application to A will result in slow or no convergence. An efficient
way to deal with the clustering is to apply the Lanczos method to the inverse A−1,

which has a much better relative spectral gap
λ−1
1 −λ−1

2

λ−1
2 −λ−1

n
> λ2−λ1

λ1
.

Consider using the Lanczos method on A−1 or simply inverse iteration and com-
pute its largest eigenvalue μ1 = λ−1

1 . One may argue that, by (1), since μ1 is the
largest eigenvalue, it can be computed accurately, from which λ1 = μ−1

1 can be
recovered accurately. However, we can compute μ1 accurately only if A−1 is explic-
itly available or the matrix-vector multiplication A−1v can be accurately computed,
which is not the case if A is ill-conditioned. Specifically, if u = A−1v is computed
by factorizing A and solving Au = v, then the computed solution û is backward
stable. That is, (A+ΔA)û = v for some ΔA satisfying ‖ΔA‖ ≤ O(u)‖A‖. Then
(8) û− u = −A−1ΔAû and ‖û− u‖ ≤ O(u)‖A−1‖‖A‖‖û‖.
So, if u‖A−1‖‖A‖ is of order 1, very little accuracy can be expected of the computed
result û. Then little accuracy can be expected of the computed eigenvalue as
its accuracy is clearly limited by that of the matrix operator A−1v. We further
illustrate this point by looking at how an approximate eigenvalue is computed.

Note that all iterative methods are based on constructing an approximate eigen-
vector x1, from which an approximate eigenvalue is computed, essentially as the

Rayleigh quotient1 ρ1 :=
xT
1 A−1x1

xT
1 x1

. Unfortunately, for extremely ill-conditioned A,

this Rayleigh quotient cannot be computed with much accuracy. Specifically, to
compute ρ1, we first need to compute A−1x1. If û1 is the computed solution to
Au1 = x1, the computed Rayleigh quotient satisfies

(9) ρ̂1 = fl

(
xT
1 û1

xT
1 x1

)
=

xT
1 û1

xT
1 x1

+ e with |e| ≤ O(u)
|x1|T |û1|
xT
1 x1

≤ O(u)
‖û1‖
‖x1‖

.

Now, it follows from (8) that

|ρ̂1 − ρ1| =
∣∣∣∣xT

1 (û1 − u1)

xT
1 x1

+ e

∣∣∣∣ ≤ O(u)κ2(A)
‖û1‖
‖x1‖

.

1In the Lanczos algorithm, the Ritz value is computed as the eigenvalue of the projection
matrix, which is still the Rayleigh quotient of the Ritz vector.
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Using (8) again and ‖u1‖ = ‖A−1x1‖ ≤ μ1‖x1‖, we have

‖û1‖
‖x1‖

≤ ‖u1‖
‖x1‖

+
‖û1 − u1‖

‖x1‖
≤ μ1 +O(u)κ2(A)

‖û1‖
‖x1‖

from which it follows that

‖û1‖
‖x1‖

≤ μ1

1−O(u)κ2(A)
.

Therefore,

|ρ̂1 − ρ1| ≤
O(u)κ2(A)

1−O(u)κ2(A)
μ1 = O(u)κ2(A)μ1.

With ρ1 ≤ μ1, the relative error of the computed Rayleigh quotient ρ̂1 is expected
to be of order O(u)κ2(A). Note that this is independent of the algorithm that we
use to obtain an approximate eigenvector x1. Indeed, this is the case even when x1

is an exact eigenvector. That is, even if we have the exact eigenvector, we are still
not able to compute a corresponding eigenvalue with any accuracy if it is computed
numerically through the Rayleigh quotient.

We point out that the same difficulty occurs if we compute approximate eigen-

value λ1 directly using the Rayleigh quotient of A, i.e., using ρ1 =
xT
1 Ax1

xT
1 x1

. In this

case, as in (9), the computed Rayleigh quotient ρ̂1 satisfies

ρ̂1 = fl

(
xT
1 ŷ1

xT
1 x1

)
=

xT
1 ŷ1

xT
1 x1

+ e with |e| ≤ O(u)
|x1|T |ŷ1|
xT
1 x1

≤ O(u)
‖ŷ1‖
‖x1‖

,

where ŷ1 = fl(Ax1). Set y1 = Ax1. Then ŷ1 = fl(Ax1) = y1 + f with |f | ≤
nu

1−nu |A||x1|. Hence, ‖ŷ1‖ ≤ (1 +O(u))‖A‖‖x1‖ and ‖ŷ1 − y1‖ ≤ O(u)‖A‖‖x1‖. It
follows that |e| ≤ O(u)‖A‖ and, for ρ1 ≈ λ1,

(10)
|ρ̂1 − ρ1|

ρ1
=

1

ρ1

∣∣∣∣xT
1 (ŷ1 − y1)

xT
1 x1

+ e

∣∣∣∣ ≤ O(u)‖A‖
ρ1

≈ O(u)‖A−1‖‖A‖.

Again, the accuracy of ρ̂1 is limited by the condition number. This also shows that,
if we apply the Lanczos method directly to A, then the smallest Ritz eigenvalue
cannot be accurately computed, even if the process converges.

The above discussions demonstrate why all existing methods will have difficulties
computing the smallest eigenvalue accurately. It also highlights that the roundoff
errors encountered in computing A−1v are the root cause of the problem. This also
readily suggests a remedy: compute A−1v more accurately. It turns out that a more
accurate solution to Au = v, in the sense of (6), is sufficient, and this can be done
for a diagonally dominant matrix or a product of diagonally dominant matrices.

Let A = D(AD, v) be a (possibly nonsymmetric) diagonally dominant matrix
with v ≥ 0. We apply the Lanczos method (or the Arnoldi method in the nonsym-
metric case) to A−1 or simply using inverse iteration. Then at each iteration, we
need to compute u = A−1v for some v. This is done by computing the accurate
LDU factorization of A by Algorithm 1 and then solving Au = v by (3). The
computed solution û then satisfies (5), i.e.,

(11) ‖û− u‖ ≤ O(u)‖A−1‖‖v‖.

This error depends on ‖A−1‖ but is as accurate as multiplying the exact A−1 with
v. Specifically, if we have A−1 exactly, say A−1 = B, and we compute A−1v by
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computing Bv in a floating point arithmetic, the error is bounded as

‖fl(Bv)−Bv‖ ≤ n2u

1− nu
‖B‖‖v‖ =

n2u

1− nu
‖A−1‖‖v‖.

So, the error of û is of the same order as that of fl(Bv).
Therefore, applying the Lanczos algorithm to A−1 by solving Au = v using Al-

gorithm 1 and (3) has essentially the same roundoff effects as applying it to B in a
floating point arithmetic. In that case, μ1 := λ−1

1 , being the largest eigenvalue of
B = A−1, is computed accurately (see (1)). In light of the earlier discussions with
respect to the Rayleigh quotient, we also show that the Rayleigh quotient ρ1 :=
xT
1 A−1x1

xT
1 x1

for an approximate eigenvector x1 can be computed accurately. Specifi-

cally, if û1 is the computed solution to Au1 = x1, then ‖û1−u1‖ ≤ O(u)‖A−1‖‖x1‖
by (11) and the computed Rayleigh quotient ρ̂1 := fl

(
xT
1 û1

xT
1 x1

)
satisfies (9). Thus,

the error is bounded as

|ρ̂1 − ρ1| =
∣∣∣∣xT

1 (û1 − u1)

xT
1 x1

+ e

∣∣∣∣ ≤ O(u)‖A−1‖ = O(u)μ1,

where we have used

|e| ≤ O(u)
‖û1‖
‖x1‖

≤ O(u)
‖û1 − u1‖

‖x1‖
+O(u)

‖u1‖
‖x1‖

≤ O(u)‖A−1‖.

With ρ1 ≈ μ1, thus, ρ1 is computed with a relative error of order u.
Now, suppose a matrix A is not diagonally dominant but can be written as a

product of two or more diagonally dominant matrices, say A = A1A2. Then we can
factorize A1 and A2 using Algorithm 1 and then solve Au = v through A1w = v
and then A2u = w as in (3). Let ŵ and û be the computed solutions to A1w = v
and A2u = ŵ, respectively. Using (6), they satisfy

‖ŵ − w‖ ≤ O(u)‖A−1
1 ‖‖v‖

and

‖û− u‖ ≤ O(u)‖A−1
2 ‖‖ŵ‖

≤ O(u)‖A−1
2 ‖‖w‖+O(u)‖A−1

2 ‖‖ŵ − w‖
≤ O(u)‖A−1

2 ‖‖A−1
1 ‖‖v‖.

Thus, writing γ = ‖A−1
1 ‖‖A−1

2 ‖/‖A−1‖, we have

(12) ‖û− u‖ ≤ O(u)γ‖A−1‖‖v‖.
So, as discussed above, the largest eigenvalue of A−1 can be computed to an accu-
racy of order O(u)γ, which should be satisfactory as long as γ is not an extremely
large constant.

In the next section, we present examples from differential operators to demon-
strate that the approaches discussed in this section result in accurate computed
eigenvalues.

4. Eigenvalues of differential operators

The eigenvalue problem for self-adjoint differential operator arises in dynamical
analysis of vibrating elastic structures such as bars, beams, strings, membranes,
plates, and solids. It takes the form of Lu = λu in Ω with a suitable homogeneous
boundary condition, where L is a differential operator and Ω is a bounded domain
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in one, two, or three dimensions. For example, the natural vibrating frequencies of
a thin membrane stretched over a bounded domain Ω and fixed along the boundary
∂Ω is determined by the eigenvalue problem for a second order differential operator
[3, p. 653],

(13) −∇(c(x, y)∇u(x, y)) = λu(x, y) in (x, y) ∈ Ω,

with a homogeneous boundary condition αu + β ∂u
∂n = 0 for (x, y) ∈ ∂Ω. On the

other hand, a vibrating plate on Ω is described by one for a fourth order differential
operator [50, p. 16],

(14) Δ2u(x, y) = λu(x, y) in (x, y) ∈ Ω,

with the natural boundary condition u = Δu = 0 (if the plate is simply supported
at the boundary) or the Dirichlet boundary condition u = ∂u

∂n = 0 (if the plate
is clamped at the boundary) for (x, y) ∈ ∂Ω. The spectrum of such a differential
operator consists of an infinite sequence of eigenvalues with an accumulation point
at the infinity:

(15) λ1 ≤ λ2 ≤ · · · · · · ↑ +∞.

When computing eigenvalues for practical problems, it is usually lower frequencies,
i.e., the eigenvalues at the left end of the spectrum, such as λ1, that are of interest.

Numerical solutions of the differential eigenvalue problems typically involve first
discretizing the differential equations and then solving a matrix eigenvalue problem.
Then, it is usually a few smallest eigenvalues of the matrix that well approximate the
eigenvalues of the differential operators and are of interest. The finite difference
discretization leads to a standard eigenvalue problem Ax = λx, while the finite
element methods or the spectral methods result in a generalized eigenvalue problem
Ax = λBx. Although our discussions may be relevant to all three discretization
methods, we shall consider the finite difference method here as they often give rise
to the diagonal dominant structure that can be utilized in this work.

Let Ah be an n × n symmetric finite difference discretization of a self-adjoint
positive definite differential operator L with h being the meshsize and let

(16) 0 < λ1,h ≤ λ2,h ≤ · · · ≤ λn,h

be its eigenvalues. Under some conditions on the operator and the domain [41],
we have for a fixed i, λi,h → λi as h → 0, while the largest eigenvalue λn,h ap-
proaches ∞. Then, the condition number κ2(Ah) of Ah approaches the infinity as

the meshsize decreases to 0. As discussed in the introduction (see (1)), if λ̂1,h is the
computed smallest eigenvalue, its relative error is expected to be of order κ2(Ah)u.
Hence, we have a situation that, as the meshsize decreases, the discretization er-
ror λ1,h − λ1 decreases, but our ability to accurately compute λ1,h also decreases.
Indeed, the overall error

|λ̂1,h − λ1| ≤ |λ̂1,h − λ1,h|+ |λ1,h − λ1| ≤ λ1,hκ2(Ah)O(u) + |λ1,h − λ1|

will at some point be dominated by the computation error |λ̂1,h−λ1,h|. We illustrate
with an example.

Example 1. Consider the biharmonic eigenvalue problem Δ2u = λu on the unit

square [0, 1]2. With the simply supported boundary condition u = ∂2u
∂n2 = 0, the

eigenvalues are known explicitly [5] and the smallest one is λ1 = 4π4. The 13-point
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Figure 1. Example 1. Left: 2-D problem; Right: 1-D problem. solid
line: computation error; dashed line: discretization error; +-line: overall
error.

finite difference discretization with a meshsize h = 1/(N + 1) leads to a block five-
diagonal matrix (see [5] or [44, p. 131]). It is easy to check that the discretization
matrix can be written as Ah = 1

h4T
2
N×N , where TN×N = TN ⊗ I + I ⊗ TN , TN is

the N × N tridiagonal matrix with diagonals being 2 and off-diagonals being −1,
and ⊗ is the Kronecker product. The eigenvalues of Ah are also known exactly and
λ1,h = 1

h4 64 sin
4(πh/2).

We compute the smallest eigenvalue of Ah using the implicitly restarted Lanczos
algorithm with shift-and-invert (i.e., using eigs(A,1,σ) of MATLAB with σ = 0

with its default termination criterion) and let λ̂1,h be the computed result. We

compare the discretization error |λ1,h−λ1|, the computation error |λ̂1,h−λ1,h| and
the overall approximation error |λ̂1,h − λ1|. We use increasingly fine mesh (with
N = 2k − 1 for k = 1, 2, · · · ) and plot the corresponding errors against k in Figure
1 (left). We test the value of k up to k = 8 for the 2-D problem. To test larger
values of k, we use the corresponding 1-D biharmonic problem where Ah = 1

h4T
2
N ,

λ1,h = 16
h4 sin

4(πh/2) and λ1 = π4. Here we use k up to k = 15 and plot the result
in Figure 1 (right).

It is clear that as the meshsize decreases, the discretization error (dashed line)
decreases, while the computation error (solid line) increases. At some point (k = 9
in this case), the computation error dominates the discretization error and the total
error (+-line) increases from that point on to O(1). So, at some point, using finer
discretizations actually increases the final error.

We note that the large error in the computed eigenvalue is not due to possible
numerical complications of the Lanczos method we used to compute the eigenvalues
of Ah. Indeed, other than the implicitly restarted Lanczos method (eigs), we have
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also used simply inverse iteration and the Lanczos algorithm with full reorthogo-
nalization as combined with the Cholesky factorization for inverting A to compute
the smallest eigenvalue and obtained similar results.

We also note that for this particular problem, the eigenvalues can be computed as
the square of the eigenvalues of TN×N (or TN in the 1-dimensional case). This is not
the case for a general operator involving weight functions or a different boundary
condition. Here, we compute the eigenvalues directly from Ah to illustrate the
difficulty encountered by ill-conditioning.

4.1. Second order differential operators. A standard finite difference discreti-
zation of second order differential operators such as (13) is the five-point scheme,
which typically has a condition number of order O(h−2). Then the relative error
for the smallest eigenvalue computed is expected to be O(h−2)u. For modestly
small h, this relative error may be smaller than the discretization error and would
not cause any problem. However, there are situations where λ1 may be 0 or very
close to 0, resulting in a condition number significantly greater than h−2 and hence
low accuracy of the computed eigenvalue even when h is modestly small. This is
the case if we have a periodic boundary condition or Neumann boundary condition.
Then the smallest eigenvalue may be computed with little accuracy (see Example
2 below). Note that for a zero eigenvalue, we need to consider the absolute error,
which will be proportional to O(h−2)u.

For the second order differential operators, fortunately, the finite difference dis-
cretization matrices are typically diagonally dominant; see [49, p. 211]. Then, a
few smallest eigenvalues can be computed accurately by applying standard iter-
ative methods to A−1 as discussed in §3. We demonstrate this in the following
numerical example.

In this and Examples 3 and 4 later, we have used both the Lanczos algorithm with
full reorthogonalization for A−1 and inverse iteration and found the results to be
similar. With the smallest eigenvalue well separated, both methods converge quickly
but the Lanczos algorithm (without restart) typically requires fewer iterations. On
the other hand, inverse iteration sometimes improves the residuals by up to one
order of magnitude. We report the results obtained by inverse iteration only.

Example 2. Consider the eigenvalue problem for Lu = −Δu + ρ(x, y)u on the
2-D unit square [0, 1]2 with the periodic boundary condition u(0, y) = u(1, y) and
u(x, 0) = u(x, 1). If ρ(x, y) = 0, the smallest eigenvalue of L is 0. If ρ(x, y) ≤ ε
for some small ε, then the smallest eigenvalue is at most ε. In particular, we test
the case that ρ(x, y) = ρ is a small constant in this example. Then the smallest
eigenvalue of L is exactly ρ with u = 1 being a corresponding eigenfunction.

The 5-point finite difference discretization with a meshsize h = 1/(N + 1) leads

to Ah = 1
h2 (T̂N+1⊗ I+ I⊗ T̂N+1)+ρI where T̂N+1 is the (N +1)× (N +1) matrix

that is the same as TN+1 in Example 1 (i.e., tridiagonal with 2 on the diagonal and
−1 on the subdiagonals) except at the (1, N + 1) and (N + 1, 1) entries which are
−1. The smallest eigenvalue of Ah is still ρ while the largest is of order h−2.

We compute λ1,h by applying inverse iteration with the inverse operator A−1
h xk

computed using the Cholsky factorization or using the accurate LDLT factoriza-
tion (Algorithm 1) of Ah. Denote the computed eigenvalues by μchol

1 and μaldu
1 ,

respectively, in Table 1, where the test is run with h = 2−k with k = 3, 4, · · · , 9
and ρ = 1e− 8. The termination criterion is ‖A−1xk − μkxk‖/‖xk‖ ≤ nu|μk|.
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Table 1. Example 2: approximation of λ1 = 1e− 8 ( μchol
1 -computed

eigenvalue by Cholesky; μaldu
1 -computed eigenvalue by Algorithm 1.)

h μchol
1

|λ1−μchol
1 |

λ1
μaldu
1

|λ1−μaldu
1 |

λ1

1.3e-1 1.00000132998311550e-8 1.3e-6 9.99999999999999860e-9 1.7e-16
6.3e-2 9.99988941000340750e-9 1.1e-5 1.00000000000000020e-8 1.7e-16
3.1e-2 9.99983035717776210e-9 1.7e-5 1.00000000000000020e-8 1.7e-16
1.6e-2 1.00008828596534290e-8 8.8e-5 1.00000000000000000e-8 0
7.8e-3 9.99709923055774120e-9 2.9e-4 1.00000000000000000e-8 0
3.9e-3 1.00122462366335050e-8 1.2e-3 1.00000000000000050e-8 5.0e-16
2.0e-3 1.00148903549009850e-8 1.5e-3 1.00000000000000040e-8 3.3e-16

For this problem, ρ is always the smallest eigenvalue of Ah. As h decreases, the
condition number of Ah increases, which causes the relative error of the computed
eigenvalue μchol

1 to increase steadily. On the other hand, μaldu
1 computed by the

new approach using the accurate factorization has a relative error in the order of
machine precision u independent of h.

4.2. Biharmonic operator with the natural boundary condition. A thin vi-
brating elastic plate on Ω that is simply supported at the boundary ∂Ω is described
by the eigenvalue problem for the biharmonic operator (14) with the natural bound-
ary condition

(17) u = Δu = 0 for (x, y) ∈ ∂Ω.

Discretization of such operators are not diagonally dominant. However, the bi-
harmonic operator Δ2 has a form as a composition of two second order differential
operators. Indeed, with the simply supported boundary condition (17), the eigen-
value equation has the product form{

−Δu = v, with u = 0 for (x, y) ∈ ∂Ω,
−Δv = λu with v = 0 for (x, y) ∈ ∂Ω.

Then, the two Laplacian operators with the same boundary condition will have
the same discretization matrix Ah. Thus the final discretization has the product
form Bh = A2

h. Since Ah is typically diagonally dominant, Bh is a product of two
diagonally dominant matrices, and then as discussed in Section 3, its eigenvalue
can also be computed accurately by using accurate factorizations of Ah. Note that,
with respect to (12), we have γ = ‖Ah‖‖Ah‖/‖Bh‖ = 1.

For this problem, the eigenvalue can also be obtained by computing the eigen-
value of Ah first and then squaring. With Ah having more modest ill-conditioning,
its eigenvalues can be computed more accurately. However, this approach does not
generalize to problems such as stretched plates with a nonuniform stretch factor
ρ(x, y) as described by Δ2u(x, y) − ρΔu(x, y) = λu(x, y). On the other hand, its
discretization can still be expressed in a product form; that is, Bh = (Ah +D)Ah

where D = diag{ρ(xi, yj)}. Then if ρ(x, y) ≥ 0, Ah + D is also diagonally domi-
nant. Thus the method described in §3 can compute a few smallest eigenvalues of
Bh accurately. We illustrate this in the following numerical example. We use the
1-dimensional problem so as to test some really fine meshes.
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Table 2. Example 3: approximation of λ1 = π4+π2 ( μchol
1 - computed

eigenvalue by Cholesky; μaldu
1 - computed eigenvalue by Algorithm 1.)

h μchol
1

|λ1−μchol
1 |

λ1
μaldu
1

|λ1−μaldu
1 |

λ1

7.8e-3 1.07268420705487220e2 9.6e-5 1.07268420682006790e2 9.6e-5
3.9e-3 1.07276126605835940e2 2.4e-5 1.07276126662112130e2 2.4e-5
2.0e-3 1.07278050199309870e2 6.0e-6 1.07278053236552470e2 6.0e-6
9.8e-4 1.07278541687712870e2 1.4e-6 1.07278534885126120e2 1.5e-6
4.9e-4 1.07278608040777410e2 8.1e-7 1.07278655297579520e2 3.7e-7
2.4e-4 1.07276683387428220e2 1.9e-5 1.07278685400712600e2 9.4e-8
1.2e-4 1.07255355496649590e2 2.2e-4 1.07278692926496390e2 2.3e-8
6.1e-5 1.10218434482696150e2 2.7e-2 1.07278694807942740e2 5.8e-9
3.1e-5 1.16309014323327090e2 8.4e-2 1.07278695278302880e2 1.5e-9
1.5e-5 2.50710434033222100e2 1.3e0 1.07278695395894270e2 3.7e-10

Example 3. Consider computing the smallest eigenvalue of the eigenvalue problem:
d4v
dx4 − ρ(x) d

2v
dx2 = λv on [0, 1] with the natural boundary condition v(0) = v′′(0) =

v(1) = v′′(1) = 0. This models vibration of beams; see [50, p. 15]. Discretization
on a uniform mesh with h = 1/(N + 1) leads to

(18) BhuN = λh4uN , where Bh = T 2
N + h2DTN = (TN + h2D)TN ;

here D = diag{ρ(ih)}. We test the case with a constant stretch factor ρ = 1 so that
D = I and the eigenvalues of the differential operator are exactly known. Namely,
λ1 = π4 + π2.

We compute λ1,h by applying inverse iteration2 to Bh and we use the termina-

tion criterion ‖B−1
h xk − μkxk‖/‖xk‖ ≤ nu|μk|. In applying B−1

h , we compare the
methods of using the Cholesky factorization of Bh and using the accurate LDLT

factorization of TN +h2D and TN in (18). We denote the computed eigenvalues by
μchol
1 and μaldu

1 , respectively, and present the results in Table 2.

From the table, the error of μchol
1 decreases quadratically for h up to h ≈ 5e− 4,

at which point further decrease of h actually increases the error. When h ≈ 1e− 5,
there is no accuracy left in the computed result μchol

1 . On the other hand, the
error for μaldu

1 continues to decrease quadratically and maintains an accuracy to
the order of machine precision.

4.3. Biharmonic operator with the Dirichlet boundary condition. A thin
vibrating plate on Ω that is clamped at the boundary ∂Ω is described by the
eigenvalue problem for the biharmonic operator (14) with the Dirichlet boundary
condition

(19) u =
∂u

∂n
= 0 on (x, y) ∈ ∂Ω.

With this boundary condition, the standard 13-point discretization does not have a
product form; see [31]. For the 1-dimensional case, it turns out that we can derive
a suitable discretization at the boundary so that the resulting matrix is a product
of two diagonally dominant matrices. Here we present the details of this scheme.

2As mentioned before, similar results are obtained by applying the Lanczos algorithm with full
reorthogonalization to B−1

h .
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We consider a 1-dimensional fourth order biharmonic operator

(20)
d4v

dx4
= λv on [0, 1]

with the Dirichlet boundary condition

(21) v(0) = v′(0) = v(1) = v′(1) = 0.

We discretize the equation on the uniform mesh 0 = x0 ≤ x1 ≤ · · · ≤ xN ≤
xN+1 = 1 with xi = ih and h = 1/(N + 1). Let v := [v(x1), v(x2), . . . , v(xN )]T . A
standard discretization corresponding to the 13-point scheme [31] uses the second

order center difference for d2

dx2 and v(−h) = v(h)+O(h3) for the boundary condition
v′(0) = 0 with a similar one for v′(1) = 0. This results in Ahv = λv + e, where λ
is the eigenvalue of the operator (20) and
(22)

Ah =
1

h4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 −4 1
−4 6 −4 1
1 −4 6 −4 1

1 −4 6 −4 1
. . .

. . .
. . .

. . .
. . .

1 −4 6 −4 1
1 −4 6 −4

1 −4 5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, e =

⎛⎜⎜⎜⎜⎜⎝
O(h−1)
O(h2)

...
O(h2)
O(h−1)

⎞⎟⎟⎟⎟⎟⎠ .

We note that the local truncation error e is of order O(h−1) only at the two bound-
ary points, but it is shown in [10, 42] that this is sufficient to get a second order
convergence. Namely, there is some eigenvalue of Ah such that |λh − λ| ≤ Ch2

where C is a constant dependent on the eigenvector v.
The standard discretization Ah has a condition number of order h−4. It is not

diagonally dominant and it does not appear to have a factorization as a product
of diagonally dominant matrices. Thus, direct computations of a few smallest
eigenvalue of Ah will have low accuracy when h becomes small; see Example 4.

To be able to accurately compute a few smallest eigenvalues, we now derive a
discretization that is a product of diagonally dominant matrices. This is done by

exploring the product form d2

dx2
d2

dx2 of the operator. Let w = − d2v
dx2 and u = −d2w

dx2 =
d4v
dx4 . Let

v =

⎛⎜⎜⎜⎝
v(x1)
v(x2)

...
v(xN )

⎞⎟⎟⎟⎠ , w =

⎛⎜⎜⎜⎜⎜⎝
w(x0)
w(x1)

...
w(xN )

w(xN+1)

⎞⎟⎟⎟⎟⎟⎠ , u =

⎛⎜⎜⎜⎝
u(x1)
u(x2)

...
u(xN )

⎞⎟⎟⎟⎠ and û =

⎛⎜⎜⎜⎜⎜⎝
u(x0)
u(x1)

...
u(xN )

u(xN+1)

⎞⎟⎟⎟⎟⎟⎠ .

Then, we have, for 1 ≤ i ≤ N ,

w(xi) =
−v(xi−1) + 2v(xi)− v(xi+1)

h2
+

1

12
v(4)(xi)h

2 +O(h4)

=
−v(xi−1) + 2v(xi)− v(xi+1)

h2
+

1

12
u(xi)h

2 +O(h4)
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and

u(xi) =
−w(xi−1) + 2w(xi)− w(xi+1)

h2
+

1

12
w(4)(xi)h

2 +O(h4)

=
−w(xi−1) + 2w(xi)− w(xi+1)

h2
+

1

12
u′′(xi)h

2 +O(h4).

Among many possible discretizations of the boundary condition v′(x0) = v′(xN+1)
= 0, we use the following scheme to maintain the product form of the operator:

w(x0) =
2v(x1)− v(x2)

h2
+O(h) and w(xN+1) =

2v(xN )− v(xN−1)

h2
+O(h),

which is derived, in the case of the left end, by expanding v(x1), v(x2) about x0

using v(x0) = v′(x0) = 0. Then,

w =
1

h2
ŜNv +

1

12
ûh2 + f

with f = [O(h),O(h4), . . . ,O(h4),O(h)]T , and

(23) u =
1

h2
T̂Nw +O(h2),

where

ŜN =

⎛⎜⎜⎜⎜⎝
2 −1

TN

−1 2

⎞⎟⎟⎟⎟⎠ , TN =

⎛⎜⎜⎜⎜⎜⎝
2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2

⎞⎟⎟⎟⎟⎟⎠
are, respectively, (N + 2)×N and N ×N matrices and

T̂N =

⎛⎜⎜⎜⎝
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1

⎞⎟⎟⎟⎠ ∈ R
N×(N+2).

Note that by applying (23) to û, we have 1
h2 T̂N û = v(6) + O(h2) where v(6) =

[v(6)(xi)]
N
i=1. Hence,

u =
1

h4
T̂N ŜNv +

1

12h2
T̂N ûh2 +

1

12h2
T̂Nf +O(h2)

=
1

h4
T̂N ŜNv + f1

with

(24) f1 :=
1

12
T̂N û+

1

12h2
T̂Nf +O(h2) = [O(h−1),O(h2), . . . ,O(h2),O(h−1)]T ,

where we note that T̂N û=v(6)h2+O(h4) and T̂Nf=[O(h),O(h4), . . . ,O(h4),O(h)]T .
Thus,

(25)
1

h4
T̂N ŜNv + f1 = λv.

Omitting the f1 term, we obtain the following discretization:

(26) T̂N ŜNvh = λhh
4vh.
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The so derived discretization is in a factorized form, but T̂N and ŜN are not square
matrices. However, they can be reduced to a product of square matrices as follows:

Bh := T̂N ŜN = T 2
N −

⎛⎜⎜⎜⎜⎝
2 −1

0

−1 2

⎞⎟⎟⎟⎟⎠
= T 2

N − ENTN = SNTN ,(27)

where

EN =

⎛⎜⎜⎜⎜⎝
1 0

0

0 1

⎞⎟⎟⎟⎟⎠ and SN = TN − EN =

⎛⎜⎜⎜⎜⎜⎝
1 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 1

⎞⎟⎟⎟⎟⎟⎠
are both N ×N matrices. Now, both SN and TN are diagonally dominant and can
be factorized accurately using Algorithm 1.

Note that the local truncation error f1 of (24) for this discretization is of order
h2 except at the boundary points where it is of order h−1. By [10, 42], this is
sufficient to imply a second order approximation of eigenvalues, namely, for any
eigenvalue of the differential operator3, there is some eigenvalue of Bh such that
|λh − λ| ≤ Ch2 where C is a constant dependent on the eigenvector v (specifically,
v(6)). Namely, the finite difference method considers any operator eigenvalue λ and
approximates its associated equation (25) by (26), from which some eigenvalue λh of
Bh is found to approximate λ. It is not given that the pairing of λ and λh follows
any ordering of the eigenvalue sequences. (In contrast, projection methods such
as finite elements have each eigenvalue of the discretization, say the ith smallest,
approximating the ith smallest eigenvalue of the operator as h → 0 as implied from
the minimax theorem.) Then, Bh may have eigenvalues that do not approximate
any eigenvalue of the differential operator as h → 0. Such eigenvalues are called
spurious eigenvalues. In our particular discretization, it is easy to show that 0 is
always an eigenvalue of Bh of multiplicity 1 (the next theorem) and is therefore a
spurious eigenvalue as the differential operator does not possess any zero eigenvalue.
Thus, in actual computations, we need to deflate the zero eigenvalue and compute
the smallest nonzero eigenvalues of Bh.

Theorem 3. Bh = SNTN is diagonalizable with real eigenvalues and 0 is a simple
eigenvalue with e = [1, 1, . . . , 1]T as a left eigenvector and v0 = T−1

N e as a right
eigenvector. Furthermore, letting P0 = I − v0e

T /eT v0 be the spectral projection
associated with the nonzero eigenvalue, then Bh

∣∣R(P0) , the restriction of Bh on
R(P0) (the spectral subspace complementary to span{v0}), is invertible with its
eigenvalues being the nonzero eigenvalues of Bh.

3This may appear impossible with only a finite number of eigenvalues of a discretization matrix
but, as explained by Keller [41], the constant C in the bound depends on the smoothness of v and
for a higher eigenvalue, their corresponding eigenvector is highly oscillatory and thus C is large
enough that the bound Ch2 is only meaningful for correspondingly small h.
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Proof. By writing Bh = SNTN = T
−1/2
N (T

1/2
N SNT

1/2
N )T

1/2
N , Bh is diagonalizable

with real eigenvalues. It is straightforward to check that Bhv0 = 0 and eTBh =
0. It follows from rank(SN ) = N − 1 that 0 is a simple eigenvalue of Bh. The
invertibility of Bh

∣∣R(P0) and its spectral decomposition follows from the eigenvalue
decomposition of Bh. �

Remark. The invertibility of Bh

∣∣R(P0) implies that Bhx = y has a unique solution
x ∈ R(P0) for any y ∈ R(P0). In particular, the eigenvalues of the inverse are the
reciprocals of the nonzero eigenvalues of Bh. Also, the unique solution to Bhx = y
can also be expressed as x = BD

h y ∈ R(P0) using the Drazin inverse BD
h .

To compute a few smallest nonzero eigenvalue of Bh, we can use the deflation
by restriction to R(P0). Namely, we compute the eigenvalues of Bh

∣∣R(P0) . Indeed,
to compute them accurately, we compute a few largest eigenvalues of the inverse of
Bh

∣∣R(P0) , which can be computed accurately as follows.

First note that using the accurate LDLT factorization of TN , v0 = T−1
N e can be

computed accurately. To apply the inverse of Bh

∣∣R(P0) on a vector y ∈ R(P0), we
need to solve

Bhx = y for x, y ∈ R(P0).

Since SN is also diagonally dominant, we first compute an accurate LDLT factor-
ization SN = LsDsL

T
s . Indeed, for this matrix, we have the factorization exactly

with

(28) Ls =

⎛⎜⎜⎜⎝
1

−1 1
. . .

. . .

−1 1

⎞⎟⎟⎟⎠ and Ds = diag{1, . . . , 1, 0}.

Then LT
s e = eN , which also follows from SNe = 0, where eN = [0, · · · , 0, 1]T .

Thus, for y ∈ R(P0), we have eTN (L−1
s y) = eT y = 0; namely the last entry of L−1

s y
is zero. Thus a particular solution to Bhx = y that is not necessarily in R(P0)
can be obtained by solving Lsx1 = y, Dsx2 = x1 (by setting x2(i) = x1(i) for
1 ≤ i ≤ N − 1, and x2(N) = 0), LT

s x3 = x2 and TNx = x3 (by using the accurate
LDLT factorization of TN ). Since Ker(Bh) = span{v0}, the general solution to
Bhx = y is x(t) = x + tv0. Now, x(t) is in R(P0) if and only if t = −eTx/eT v0.

Thus, x(t) = x− v0
eT x
eT v0

= P0x is the unique solution to Bhx = y that is in R(P0).
We summarize this as the following algorithm.

Algorithm 2. Compute x =
(
Bh|R(P0)

)−1
y (solve Bhx = y for x, y ∈ R(P0))

1 Input: y ∈ R(P0);
2 Compute an accurate LDLT factorization TN = LtDtL

T
t by Algorithm 1;

3 Solve TNv0 = e;
4 Solve Lsx1 = y; x2 = x1 and explicitly set x2(N) = 0; (Ls defined by (28))
5 Solve LT

s x3 = x2;
6 Solve TNx = x3 using TN = LtDtL

T
t ;

7 x = x− v0e
Tx/eT v0.

Remarks. Lines 2 and 3 only need to be computed once if we run the above algo-
rithm multiple times for different y. In line 4, although x1(N) = 0 in theory, it
may not be the case due to roundoffs. We therefore explicitly set x2(N) = 0.
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Table 3. Example 4: approximations of λ1: μ
chol
1 - Ah with Cholesky;

μaldu
1 - Bh with accurate LDLT .

h μchol
1 of Ah

|λ1−μchol
1 |

λ1
μaldu
1 of Bh

|λ1−μaldu
1 |

λ1

6.3e-2 4.84875068679297440e2 3.1e-2 5.02539119245910290e2 3.9e-3

3.1e-2 4.96560468599189620e2 8.0e-3 5.01071514661422610e2 1.0e-3

1.6e-2 4.99557827787957420e2 2.0e-3 5.00691660365858750e2 2.6e-4

7.8e-3 5.00312055034394060e2 5.0e-4 5.00595894739436520e2 6.4e-5

3.9e-3 5.00500919775768520e2 1.3e-4 5.00571903322230300e2 1.6e-5

2.0e-3 5.00548153582656820e2 3.1e-5 5.00565902344106350e2 4.0e-6

9.8e-4 5.00559945766432860e2 7.9e-6 5.00564401904366210e2 1.0e-6

4.9e-4 5.00562428167766880e2 2.9e-6 5.00564026782234690e2 2.5e-7

2.4e-4 5.00570856305839580e2 1.4e-5 5.00563933000933900e2 6.2e-8

1.2e-4 5.00646588821035950e2 1.7e-4 5.00563909555575040e2 1.6e-8

6.1e-5 5.00733625655273670e2 3.4e-4 5.00563903694203870e2 3.9e-9

3.1e-5 5.48097497225735650e2 9.5e-2 5.00563902228892570e2 9.8e-10

1.5e-5 7.35072209632324980e2 4.7e-1 5.00563901862573060e2 2.4e-10

7.6e-6 1.98724756006599050e3 3.0e0 5.00563901770967450e2 6.1e-11

3.8e-6 2.91400428172778860e3 4.8e0 5.00563901748025440e2 1.5e-11

1.9e-6 - - 5.00563901742273290e2 3.7e-12

We now present some numerical results.

Example 4. Consider the biharmonic eigenvalue problem (20) with the Dirichlet
boundary condition (21). The eigenvalues are not known exactly for this problem,
but solving it as an initial value problem, we can reduce it to an algebraic equation
transcendental in the eigenvalue parameter [32]. The root of the transcendental
can then be computed using Mathematica’s built-in root-finding routine in high
precision. The following is the computed result using 50 digits as obtained by
M. Embree [32]:

λ1 ≈ 500.56390174043259597023906145469523385520808092739.

We now compute λ1 using the difference schemes Ah of (22) and Bh of (27). The
eigenvalues of Ah and Bh are computed using inverse iteration4 with A−1

h computed

using the Cholesky factorization and
(
Bh|R(P0)

)−1
computed by Algorithm 2. We

list the computed results for meshsize h = 2−k with k = 4, 5, . . . , 19 in Table 3.
Also listed are the relative errors as computed using the λ1 above.

We note that both discretizations converge in the order of h2. For the standard
discretization Ah, the eigenvalue errors decreases for h up to 10−3 and starts to
increase afterwards. When h ≈ 10−6, there is no accuracy left in the computed
eigenvalue. For h = 1.9e − 6, the matrix was tested as being indefinite by the
Cholesky factorization algorithm (marked by the “-” entry in the table). For the
new discretization Bh, the order h2 convergence is maintained for h up to when
the eigenvalue reach full machine accuracy with the relative error in the order
of nu ≈ 10−11. It is also interesting to note that, even before the roundoff errors
overtake the discretization errors in the standard scheme Ah, the new discretization
Bh results in an eigenvalue error one order of magnitude smaller.

4We have also carried out tests using the Lanczos algorithm with similar results.
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Thus, we have accurately computed the smallest eigenvalues of a 1-dimensional
biharmonic operator with the Dirichlet boundary condition by deriving a product
form discretization. Our method can be applied to a fourth order operator such as

Lv :=
d2

dx2

(
p(x)

d2v

dx2

)
or Lv :=

d4v

dx4
+ p(x)

d2v

dx2
.

However, we have not been able to generalize it to problems of dimension higher
than 1. This appears to be a difficulty intrinsic to the biharmonic operator in
dimension 2 or higher. It is known that the biharmonic operator with the Dirichlet
boundary condition do not have a so-called positivity preserving property in almost
all kinds of domains in dimension 2 or higher; see [16, 36, 37] for details. The
only exception is when the domain is a ball in R

n [9], which includes [0, 1] of R.
Notice that the two factors of Bh are diagonally dominant M-matrices, from which
it follows that Bh has the positivity preserving property. With the operator in
dimension 2 not having the positivity preserving property, it appears difficult to
derive a discretization of the form of Bh.

5. Concluding remarks

We have presented a new method to compute a few smallest eigenvalues of large
and extremely ill-conditioned matrices that are diagonally dominant or are prod-
ucts of diagonally dominant matrices. This can be used to compute eigenvalues
of finite difference discretization of certain differential operators. In particular,
the eigenvalues of the 1-dimensional biharmonic operator is accurately computed
by deriving a new discretization that can be written as a product of diagonally
dominant matrices. Unfortunately, it appears difficult to apply our present tech-
niques to the 2-dimensional problems. For future works, it will be interesting to
further investigate if there is a suitable generalization to the 2-dimensional bihar-
monic problems. It will also be interesting to study if the present techniques can
be used for other discretization methods as well as adaptive techniques [17, 45] for
differential operators.
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