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A CONTINUED FRACTION OF ORDER TWELVE

AS A MODULAR FUNCTION

YOONJIN LEE AND YOON KYUNG PARK

Abstract. We study a continued fraction U(τ) of order twelve using the mod-
ular function theory. We obtain the modular equations of U(τ) by computing
the affine models of modular curves X(Γ) with Γ = Γ1(12) ∩ Γ0(12n) for any
positive integer n; this is a complete extension of the previous result of Ma-
hadeva Naika et al. and Dharmendra et al. to every positive integer n. We
point out that we provide an explicit construction method for finding the mod-
ular equations of U(τ). We also prove that these modular equations satisfy the
Kronecker congruence relations. Furthermore, we show that we can construct
the ray class field modulo 12 over imaginary quadratic fields by using U(τ)
and the value U(τ) at an imaginary quadratic argument is a unit. In addition,
if U(τ) is expressed in terms of radicals, then we can express U(rτ) in terms
of radicals for a positive rational number r.

1. Introduction

The Rogers-Ramanujan continued fraction r(τ ) is a holomorphic function on the
complex upper half-plane H defined by

r(τ ) =
q

1
5

1 +
q

1 +
q2

1 +
q3

1 + · · ·

= q
1
5

∞∏
n=1

(1− qn)(
n
5 ),

where q = e2πiτ and
( ·
5

)
is the Legendre symbol. Ramanujan stated that the exact

value r(
√
−n/2) can be found whenever n is any positive rational quantity. Gee and

Honsbeek proved that r(τ ) is a generator of the modular function field of level 5.
They also showed that any singular value of r(τ ) at imaginary quadratic argument
is contained in some ray class field over an imaginary quadratic field [5]; hence its
minimal polynomial is solvable by radicals.

Another important subject is the modular equation. For each positive integer n,
there is a certain polynomial giving the relation between r(τ ) and r(nτ ) because
the modular function field of level 5 is of genus 0. This polynomial is called the
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modular equation of level n. By the aid of the theory of arithmetic models of
modular curves, Cais and Conrad studied the modular equations of the Rogers-
Ramanujan continued fraction [1]. They found the Kronecker congruence relations
for the modular equations which are similar to the modular equations of the elliptic
modular function j(τ ).

Since then there have been active research activities on the study of holomorphic
functions on H similar to r(τ ). Recently, the authors studied a Ramanujan-Selberg
continued fraction S(τ ) as a modular function of level 8, and they also obtained the
modular equations for every level and the ray class field modulo 4 over an imaginary
quadratic field by the value S(τ ) [9].

A continued fraction U(τ ) of order twelve is defined by

U(τ ) :=
q(1− q)

1− q3 +
q3(1− q2)(1− q4)

(1− q3)(1 + q6) +
q3(1− q8)(1− q10)

(1− q3)(1 + q12) + · · ·

.

Mahadeva Naika et al. [10] expressed U(τ ) as the following infinite product form:

U(τ ) = q

∞∏
n=1

(1− q12n−1)(1− q12n−11)

(1− q12n−5)(1− q12n−7)
.

They found modular equations of U(τ ) of levels 3 and 5 using the theory of hyperge-
ometric series. They also evaluated U(τ ) at τ = i

√
m for several rational numbers

ofm [10]. Afterwards, Dharmendra et al. [3] extended their result on modular equa-
tions to other levels n = 2, 3, 5, 7, 9 in a similar way as [10]. Moreover, Mahadeva
Naika et al. obtained modular equations of U(τ ) of degrees 4, 6, 8, 10, 12, 3/2, 5/2
and 7/2 [11, 12].

In this paper we study U(τ ) using the modular function theory. We first find
the generators of modular function fields on Γ1(12) and Γ0(12) by using the mod-
ularity of U(τ ) (Theorem 1.1). We then obtain the modular equations of U(τ ) by
computing the affine models of modular curves X(Γ) with Γ = Γ1(12)∩Γ0(12n) for
any positive integer n (Theorem 1.2); Mahadeva Naika et al. [10] and Dharmendra
et al. got their result for some positive integers, and our work is a complete exten-
sion of their result to every positive integer n. We point out that we provide an
explicit construction method for finding the modular equations of U(τ ) (Algorithm
3.4). We also prove that these modular equations satisfy the Kronecker congruence
relations (Theorem 1.3). Furthermore, we show that we can construct the ray class
field modulo 12 over imaginary quadratic fields by using U(τ ) (Theorem 1.4). We
show that the value U(τ ) at an imaginary quadratic argument is a unit (Theorem
1.6). In addition, if U(τ ) is expressed in terms of radicals, then we can express
U(rτ ) in terms of radicals for a positive rational number r.

We state our main results as follows.

Theorem 1.1.

(1) The field of modular functions on Γ1(12) is generated by U(τ ).
(2) The field of modular functions on Γ0(12) is generated by U(τ ) + 1/U(τ ).
(3) We can write U(τ ) in terms of Weierstrass ℘-functions:

U(τ ) =
℘12,(2,0)(12τ )− ℘12,(5,0)(12τ )

℘12,(1,0)(12τ )− ℘12,(2,0)(12τ )
,
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where

℘N,(a1,a2)(τ ) = ℘

(
a1τ + a2

N
,Zτ + Z

)
.

(4) We can express U(τ ) + 1/U(τ ) in terms of Dedekind eta functions:

U(τ ) +
1

U(τ )
=

η(3τ )3η(4τ )

η(τ )η(12τ )3
.

Theorem 1.2. For any positive integer n, one can find a modular equation Fn(X,Y )
of U(τ ) of level n by an explicit construction method in Algorithm 3.4.

Theorem 1.3 (Kronecker congruence relation). Let Fn(X,Y ) be the modular equa-
tion of U(τ ) of level n. Then for any prime p ≥ 5 we have

Fp(X,Y ) ≡
{

(Xp − Y )(X − Y p) (mod p) if p ≡ ±1 (mod 12),
(Xp − Y )(XY p − 1) (mod p) if p ≡ ±5 (mod 12).

Theorem 1.4. Let K be an imaginary quadratic field with discriminant dK and let
τ ∈ K∩H be a root of the primitive equation ax2+bx+c = 0 such that b2−4ac = dK
and (a, 6) = 1, where a, b, c ∈ Z. Then K(U(τ )) is the ray class field modulo 12
over K.

Corollary 1.5. Let K be an imaginary quadratic field. If Z[τ ] is the integral closure
of Z in K, then K(U(τ )) is the ray class field modulo 12 over K.

Theorem 1.6. Let K be an imaginary quadratic field. Then U(τ ) is an algebraic
unit for every τ ∈ K −Q.

Theorem 1.7. If U(τ ) is expressed in terms of radicals, then we can express U(rτ )
in terms of radicals for a positive rational number r.

This paper is organized as follows. In Section 2, we present some basic and
necessary notions about modular functions and Klein forms, and we give several
lemmas about the cusps of a congruence subgroup, which will be used in Section
3. Then we prove Theorems 1.1, 1.2 and 1.3 and give the properties of modular
equations in Section 3. In Section 4, we prove Theorems 1.4, 1.6 and 1.7. We use
the MAPLE program to find some examples.

2. Preliminaries

We introduce some definitions and properties in the theory of modular functions.
Let H = {τ ∈ C : Im(τ ) > 0} be the complex upper half plane, H∗ := H ∪Q ∪ {∞}
and Γ(1) := SL2(Z). For any positive integer N , we have congruent subgroups
Γ(N),Γ1(N),Γ0(N), Γ1(N) and Γ0(N) of Γ(1) consisting of matrices

(
a b
c d

)
con-

gruent modulo N to ( 1 0
0 1 ), (

1 ∗
0 1 ), (

∗ ∗
0 ∗ ), (

1 0
∗ 1 ) and ( ∗ 0

∗ ∗ ), respectively.
A congruence subgroup Γ acts on H∗ by linear fractional transformations as

γ(τ ) = (aτ + b)/(cτ + d) for γ =
(
a b
c d

)
∈ Γ, and its quotient space Γ\H∗ is a

compact Riemann surface with an appropriate complex structure. We identify γ
with its action on H∗. An element s of Q ∪ {∞} is called a cusp, and two cusps
s1, s2 are equivalent under Γ if there exists γ ∈ Γ such that γ(s1) = s2. The
equivalence class of such s is also called a cusp. Indeed, there exist at most finitely
many inequivalent cusps of Γ. Let s be any cusp of Γ, and let ρ be an element
of SL2(Z) such that ρ(s) = ∞. We define the width of the cusp s in Γ\H∗ by the
smallest positive integer h satisfying ρ−1 ( 1 h

0 1 ) ρ ∈ {±1} · Γ. Then the width of the
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cusp s depends only on the equivalence class of s under Γ, and it is independent of
the choice of ρ.

The modular function f(τ ) on a congruence subgroup Γ is a C-valued function
f(τ ) defined on H satisfying the following three conditions:

(1) f(τ ) is meromorphic on H.
(2) f(τ ) is invariant under Γ, i.e., f ◦ γ = f for all γ ∈ Γ.
(3) f(τ ) is meromorphic at all cusps of Γ.

The meaning of the last condition is as follows. For a cusp s for Γ, let h be the
width for s and let ρ be an element of SL2(Z) such that ρ(s) = ∞. Since

(f ◦ ρ−1)(τ + h) =

(
f ◦ ρ−1

(
1 h
0 1

)
ρ

)
(ρ−1τ ) = (f ◦ ρ−1)(τ ),

f ◦ ρ−1 has a Laurent series expansion in qh = e2πiτ/h, namely for some integer n0,
(f ◦ ρ−1)(τ ) =

∑
n≥n0

anq
n
h with an0


= 0. We call this integer n0 the order of f(τ )

at the cusp s and denote n0 by ordsf(τ ). When ordsf(τ ) is positive (respectively,
negative), we say that f(τ ) has a zero (respectively, a pole) at s. If a modular
function f(τ ) is holomorphic on H and ordsf(τ ) is nonnegative for all cusps s, then
we say that f(τ ) is holomorphic on H∗. Since we may identify a modular function
on Γ with a meromorphic function on the compact Riemann surface Γ\H∗, any
holomorphic modular function on Γ is a constant function.

Let A0(Γ) be the field of all modular functions on Γ, and let A0(Γ)Q be the
subfield of A0(Γ) which consists of all modular functions f(τ ) whose Fourier coeffi-
cients are in Q. We may identify A0(Γ) with the field C(Γ\H∗) of all meromorphic
functions on the compact Riemann surface Γ\H∗, and if f(τ ) ∈ A0(Γ) is noncon-
stant, then the field extension degree [A0(Γ) : C(f(τ ))] is finite and is equal to the
total degree of poles of f(τ ).

To recall the Klein form, consider the Weierstrass σ-function by

σ(z;L) := z
∏

ω∈L−{0}

(
1− z

ω

)
e

z
ω+ 1

2 (
z
ω )2 ,

where L is any lattice in C and z ∈ C. This is holomorphic with only simple zeros
at all points z ∈ L. The Weierstrass ζ-function is defined by

ζ(z;L) :=
σ′(z;L)

σ(z;L)
=

1

z
+

∑
ω∈L−{0}

(
1

z − ω
+

1

ω
+

z

ω2

)

by the logarithmic derivative of σ(z;L). This is meromorphic with only simple
poles at all points z ∈ L. We can see that σ(λz;λL) = λσ(z;L) and ζ(λz;λL) =
λ−1ζ(z;L) for any λ ∈ C×. In fact, ζ ′(z;L) is −℘(z;L) with Weierstrass ℘-function
defined by

℘(z;L) :=
1

z2
+

∑
ω∈L−{0}

(
1

(z − ω)2
− 1

ω2

)
.

For any ω ∈ L, ℘(z + ω;L) = ℘(z;L) and d
dz [ζ(z + ω;L) − ζ(z;L)] = 0. In other

words, ζ(z+ω;L)−ζ(z;L) depends only on a lattice point ω ∈ L and not on z ∈ C,
so we may let η(ω;L) be ζ(z + ω;L)− ζ(z;L) for all ω ∈ L. When we fix the basis
ω1, ω2 of L = Zω1 + Zω2, for z = a1ω1 + a2ω2 ∈ C with a1, a2 ∈ R, we define the
Weierstrass η-function by

η(z;L) := a1η(ω1;L) + a2η(ω2;L).
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Since η(z;L) does not depend on the choice of the basis {ω1, ω2} of L, it is well-
defined. Moreover, η(z;L) is R-linear so that η(rz;L) = rη(z;L) for any r ∈ R.

We define the Klein form by

K(z;L) = e−η(z;L)z/2σ(z;L).

For a = (a1, a2) ∈ R2 and τ ∈ H, we define

Ka(τ ) = K(a1τ + a2;Zτ + Z)

as the Klein form by abuse of terminology.
We observe that Ka(τ ) is homogeneous of degree 1, i.e., K(λz;λL) = λK(z;L)

and Ka(τ ) is holomorphic and nonvanishing on H for a ∈ R2 − Z2.
Then the Klein form satisfies the following properties. Let γ =

(
a b
c d

)
∈ SL2(Z)

and a = (a1, a2) ∈ R2.

(K0) K−a(τ ) = −Ka(τ ).
(K1) Ka(γτ ) = (cτ + d)−1Kaγ(τ ).
(K2) For b = (b1, b2) ∈ Z2, we have that

Ka+b(τ ) = ε(a,b)Ka(τ ),

where ε(a,b) = (−1)b1b2+b1+b2eπi(b2a1−b1a2).
(K3) For a = (r/N, s/N) ∈ (1/N)Z2 − Z2 and γ ∈ Γ(N) with an integer N > 1,

we obtain that

Ka(γτ ) = εa(γ)(cτ + d)−1Ka(τ ),

where εa(γ) = −(−1)((a−1)r+cs+N)(br+(d−1)s+N)/N2

eπi(br
2+(d−a)rs−cs2)/N2

.
(K4) Let τ ∈ H and z = a1τ +a2 with a = (a1, a2) ∈ Q2−Z2. For q = e2πiτ and

qz = e2πiz = e2πia2e2πia1τ , we get

Ka(τ ) = − 1

2πi
eπia2(a1−1)qa1(a1−1)/2(1− qz)

∞∏
n=1

(1− qnqz)(1− qnq−1
z )

(1− qn)2
,

and ordqKa(τ ) = 〈a1〉(〈a1〉− 1)/2, where 〈a1〉 denotes the rational number
such that 0 ≤ 〈a1〉 < 1 and a1 − 〈a1〉 ∈ Z.

(K5) Let f(τ ) =
∏

a K
m(a)
a (τ ) be a finite product of Klein forms with m(a) ∈ Z

and a = (r/N, s/N) = (1/N)Z2 − Z2 for an integer N > 1, and let k =
−
∑

a m(a). Then f(τ ) is a modular form of weight k on Γ(N) if and only
if⎧⎪⎨

⎪⎩
∑

a m(a)r2 ≡
∑

a m(a)s2 ≡
∑

a m(a)rs ≡ 0 (mod N) if N is odd,∑
a m(a)r2 ≡

∑
a m(a)s2 ≡ 0 (mod 2N),∑

a m(a)rs ≡ 0 (mod N) if N is even.

For more details on Klein forms, we refer to [8].
The following lemmas are useful to get our results. Let N and m be positive

integers and let Γ = Γ1(N) ∩ Γ0(mN). If we let Γ\Γ(1)/Γ(1)∞ = {Γγ1Γ(1)∞, . . . ,
ΓγgΓ(1)∞}, then {γ1(∞), . . . , γg(∞)} is a set of all inequivalent cusps of Γ such
that γi(∞) and γj(∞) are not equivalent under Γ for any i 
= j. Let

M :=
{
(c, d) ∈ (Z/mNZ)2 : (c, d) = 1, i.e., (c, d,mN) = 1

}
and let Δ be a subgroup of (Z/mNZ)× defined as

Δ :=
{
±(1 +Nk) ∈ (Z/mNZ)× : k = 0, . . . ,m− 1

}
.
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For (c1, d1) and (c2, d2), we define an equivalence relation ∼ on M by (c1, d1) ∼
(c2, d2) if there exist s ∈ Δ and n ∈ Z/mNZ such that c2 = s · c1 and d2 =
s · d1 + n · c1. Furthermore, we define a map φ : Γ\Γ(1)/Γ(1)∞ → M/ ∼ by
φ(Γ

(
a b
c d

)
Γ(1)∞) = [(c, d)]. Then we see without difficulty that the map φ is well-

defined and bijective. Throughout the paper, we regard ±1/0 as ∞. Therefore we
get the following lemmas.

Lemma 2.1. Suppose that a, c, a′, c′ ∈ Z with (a, c) = (a′, c′) = 1. Then with the
notation Δ as above, a/c and a′/c′ are equivalent under Γ1(N) ∩ Γ0(mN) if and

only if there exist s ∈ Δ ⊂ (Z/mNZ)× and n ∈ Z such that
(
a′

c′

)
≡

(
s−1a+nc

sc

)
(mod mN).

For a positive divisor x of mN , let πx : (Z/mNZ)× → (Z/xZ)× be the natural

homomorphism which is surjective. For a positive divisor c of mN , let s′c,1, . . . ,

s′c,nc
∈ (Z/(mN/c)Z)× be all the distinct coset representatives of πmN/c(Δ) in

(Z/(mN/c)Z)×, where

nc =
φ(mN/c)

|πmN/c(Δ)|
and φ is the Euler’s φ-function. Then for any s′c,i with i = 1, . . . , nc, we choose

sc,i ∈ (Z/mNZ)× such that πmN/c(sc,i) = s′c,i. We further let

Sc :=
{
sc,1, . . . , sc,nc

∈ (Z/mNZ)×
}
.

For a positive divisor c of mN , let a′c,1, . . . , a
′
c,mc

∈ (Z/cZ)× be all the distinct

coset representatives of πc

(
Δ ∩ ker

(
πmN/c

))
in (Z/cZ)×, where

mc =
φ(c)

|πc(Δ ∩ ker(πmN/c))|
=

φ(c) · |πmN/c(Δ)|∣∣πmN/(c,mN/c)(Δ)
∣∣ .

For any a′c,j with j = 1, . . . ,mc, we take ac,j ∈ (Z/mNZ)× such that πc(ac,j) = a′c,j .
We can choose a representative ac,j of ac,j so that 0 < ac,1, . . . , ac,mc

< mN ,
(ac,j ,mN) = 1 and the set Ac := {ac,1, . . . , ac,mc

}.
Lemma 2.2. With the notation as above, let

S :=
{
(c · sc,i, ac,j) ∈ (Z/mNZ)2 : c > 0, c | mN, sc,i ∈ Sc, ac,j ∈ Ac

}
.

For given (c · sc,i, ac,j) ∈ S, we can take x, y ∈ Z such that (x, y) = 1, x = c · sc,i
and y = ac,j because (c · sc,i, ac,j ,mN) = 1. Then the set of y/x with such x and
y is a set of all the inequivalent cusps of Γ1(N) ∩ Γ0(mN) and the number of such
cusps is

|S| =
∑
c>0
c|mN

nc ·mc =
∑
c>0
c|mN

φ(c)φ (mN/c)∣∣πmN/(c,mN/c)(Δ)
∣∣ .

The following lemma is for finding the width of cusps.

Lemma 2.3. Let a/c be a cusp of Γ = Γ1(N)∩Γ0(mN) with a, c ∈ Z and (a, c) = 1.
Then the width h of a cusp a/c in Γ\H∗ is given by

h =

{
m

(c2/4,m) if N = 4, (m, 2) = 1 and (c, 4) = 2,
mN

(c,N)·(m,c2/(c,N)) otherwise.

The proofs of Lemmas 2.1, 2.2 and 2.3 are given in [4].
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3. A continued fraction U(τ ) of order 12

We note that

U(τ ) = q

∞∏
n=1

(1− q12n−1)(1− q12n−11)

(1− q12n−5)(1− q12n−7)
= ζ−1

12

11∏
j=0

K(1/12,j/12)(τ )

K(5/12,j/12)(τ )

by (K4), where ζN = e2πi/N .

Proof of Theorem 1.1.

(1) By (K5), U(τ ) is a modular function on Γ(12). Since U(τ + 1) = U(τ ),
U(τ ) is invariant under ( 1 1

0 1 ). Hence U(τ ) ∈ A0(Γ1(12)) because Γ1(12) =
〈Γ(12), ( 1 1

0 1 )〉. Note that the genus of A0(Γ1(12)) is zero. Consider the
subfield C(U(τ )) of A0(Γ1(12)) generated by U(τ ) over C. By Lemmas 2.1,
2.2 and 2.3, all the inequivalent cusps of Γ1(12) are ∞, 5

12 , 0,
1
5 ,

1
2 ,

1
3 ,

1
9 ,

1
4 ,

1
8

and 1
6 with widths 1, 1, 12, 12, 6, 4, 4, 3, 3 and 2, respectively. Since U(τ ) has

a simple zero only at ∞ and a simple pole only at 5/12, the total degree of
poles is 1. Hence [A0(Γ1(12)) : C(U(τ ))] = 1.

(2) Note that Γ0(12) = 〈Γ1(12), ( 5 12
12 29 )〉. We can choose ∞, 0, 1/2, 1/3, 1/4 and

1/6 as the inequivalnet cusps of Γ0(12). By using that

U ◦
(
5 12
12 29

)
(τ ) =

1

U(τ )
,

we have

U(τ ) +
1

U(τ )
∈ A0(Γ0(12)).

This function has poles only at cusps because U(τ ) allows zeros and poles
only at cusps. Since U(∞) = 0 and the width of ∞ is 1, U(τ )+1/U(τ ) has
only a simple pole at ∞. Hence

A0(Γ0(12)) = C

(
U(τ ) +

1

U(τ )

)
.

(3) For a modular function, we call f normalized if its q-series is

q−1 + 0 + a1q + a2q
2 + · · · .

By (1) the normalized generator of A0(Γ1(12)) is 1/U(τ )− 1 because

1

U(τ )
= q−1 + 1 + q + q2 + · · · .

In [7, Theorem 3.7], they found the normalized generator

N (j1,12)(τ ) =
−1

j1,12(τ )− 1
− 2,

where

j1,12(τ ) =
℘12,(1,0)(12τ )− ℘12,(2,0)(12τ )

℘12,(1,0)(12τ )− ℘12,(5,0)(12τ )
.

From

1

U(τ )
= N (j1,12)(τ ) + 1 =

−1

j1,12(τ )− 1
− 1 =

j1,12(τ )

1− j1,12(τ )
,
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we get

U(τ ) =
℘12,(2,0)(12τ )− ℘12,(5,0)(12τ )

℘12,(1,0)(12τ )− ℘12,(2,0)(12τ )
.

(4) By [7, Table 10], one can get the values N (j1,12)(s) and U(s) at cusps s:

cusp s ∞ 0 1/2 1/3 1/4 1/6

N (j1,12)(s) ∞ 1 +
√
3 −2 −1− i (−1−

√
3i)/2 0

U(s) 0 2−
√
3 −1 i (1 +

√
3i)/2 1

Consider the modular function

g(τ ) :=
η(3τ )3η(4τ )

η(τ )η(12τ )3

on Γ0(12) by [13, Proposition 1.64].
Moreover, g(τ ) has a simple pole only at ∞ and simple zero only at 1/3.

Thus g(τ ) is also a generator of A0(Γ0(12)) = C(U(τ ) + 1/U(τ )) and there
are constants a, b, c, d such that

U(τ ) +
1

U(τ )
=

a · g(τ ) + b

c · g(τ ) + d
.

Note that

lim
τ→0

g(τ ) = lim
τ→∞

g|
(
0 −1
1 0

)
(τ ) = lim

τ→∞
g

(
−1

τ

)
= 4

because η(−1/τ ) =
√
−iτη(τ ). By substituting the values U(τ ) and g(τ ) at

∞, 0 and 1/3, we get a = d and b = c = 0. Therefore, U(τ )+1/U(τ ) = g(τ ).

�

Proposition 3.1. We have

Q(U(τ ), U(nτ )) = A0(Γ1(12) ∩ Γ0(12n))Q

for a positive integer n.

Proof. From Q(U(τ )) = A0(Γ1(12))Q, we see that for any α ∈ GL+
2 (Q), U(ατ ) =

U(τ ) if and only if α ∈ Q× · Γ1(12). For β = ( n 0
0 1 ), note that

Γ1(12) ∩ β−1Γ1(12)β = Γ1(12) ∩ Γ0(12).

Hence we get U(τ ), U(nτ ) ∈ A0(Γ1(12) ∩ Γ0(12n))Q. It is sufficient to show that
Q(U(τ ), U(nτ )) contains A0(Γ1(12) ∩ Γ0(12n))Q. Taking Mi ∈ Γ1(12), we write

Γ1(12) =
⋃
i

Γ ·Mi

as a disjoint union where Γ := Γ1(12) ∩ Γ0(12n).
Let f(τ ) = U(nτ ) = (U ◦ β)(τ ). Assume that for distinct indices i and j,

f ◦Mi = f ◦Mj .

Then U◦β◦Mi = U◦β◦Mj and U◦βMiM
−1
j β−1 = U . It means that βMiM

−1
j β−1 ∈

Q× · Γ1(12); thus MiM
−1
j ∈ β−1Γ1(12)β. Since MiM

−1
j ∈ Γ1(12), MiM

−1
j ∈

Γ1(12)∩β−1Γ1(12)β = Γ. So we get a contradiction. We showed that all functions
f ◦Mi are distinct and C(U(τ ), U(nτ )) = A0(Γ1(12) ∩ Γ0(12n))Q. �
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From the definition of U(τ ), the q-expansion of U(τ ) is U(τ ) = q + O(q2), and
so U(τ ) has a simple zero at ∞. We also check that U(τ ) has a simple pole at
5/12 by computing U | ( 5 12

12 29 ) (τ ). We can figure out the behavior of U(τ ) at each
s ∈ Q ∪ {∞} by checking the equivalence class in Q ∪ {∞}.

Lemma 3.2. Let a, c, a′, c′ ∈ Z and U(τ ) as before. Then we obtain the following
assertions:

(1) U(τ ) has a pole at a/c ∈ Q ∪ {∞} with (a, c) = 1 if and only if (a, c) =
1, c ≡ 0 (mod 12), a ≡ ±5 (mod 12).

(2) U(nτ ) has a pole at a′/c′ ∈ Q ∪ {∞} with (a, c) = 1 if and only if there
exist a, c ∈ Z such that a/c = na′/c′, (a, c) = 1, c ≡ 0 (mod 12), a ≡ ±5
(mod 12).

(3) U(τ ) has a zero at a/c ∈ Q ∪ {∞} with (a, c) = 1 if and only if (a, c) =
1, c ≡ 0 (mod 12), a ≡ ±1 (mod 12).

(4) U(nτ ) has a zero at a/c ∈ Q ∪ {∞} with (a, c) = 1 if and only if there
exist a, c ∈ Z such that a/c = na′/c′, (a, c) = 1, c ≡ 0 (mod 12), a ≡ ±1
(mod 12).

Proof. (1) By Lemma 2.1, U(τ ) has a simple pole at a/c if and only if(
a
c

)
≡ ±

(
5
0

)
(mod 12)

because the subgroup in Lemma 2.1 is Δ = {±1}. Hence the all a/c ∈ Q ∪ {∞}
are only a, c ∈ Z2 such that (a, c) = 1, c ≡ 0 (mod 12) and a ≡ ±5 (mod 12).

(3) Similarly, U(τ ) has a simple zero at a/c if and only if(
a
c

)
≡ ±

(
1
0

)
(mod 12)

for a, c ∈ Z such that (a, c) = 1.
(2) and (4) are proved by (1) and (3), respectively. �

Now we study the modular equation of U(τ ). Ishida and Ishii [6] showed the
following lemma by means of the standard theory of algebraic functions; this lemma
will be useful for checking which coefficients of modular functions are zero or not.

Lemma 3.3. For any congruence subgroup Γ, let f1(τ ) and f2(τ ) be nonconstants
such that C(f1(τ ), f2(τ )) = A0(Γ) with the total degree Dj of poles of fj(τ ) for
j = 1, 2, and let

F (X,Y ) =
∑

0≤i≤D2
0≤j≤D1

Ci,jX
iY j ∈ C[X,Y ]

be such that F (f1(τ ), f2(τ )) = 0. Let SΓ be a set of all the inequivalent cusps of Γ,
and let

Sj,0 = {s ∈ SΓ : fj(τ ) has zeros at s}
and

Sj,∞ = {s ∈ SΓ : fj(τ ) has poles at s}
for j = 1, 2. Let

a = −
∑

s∈S1,∞∩S2,0

ordsf1(τ ), b =
∑

s∈S1,0∩S2,0

ordsf1(τ ).
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Here we assume that a (respectively, b) is 0 if S1,∞ ∩S2,0 (respectively, S1,0 ∩S2,0)
is empty. Then we obtain the following assertions:

(1) CD2,a 
= 0. In addition, if S1,∞ ⊂ S2,∞ ∪ S2,0, then CD2,j = 0 for any
j 
= a.

(2) C0,b 
= 0. In addition, if S1,0 ⊂ S2,∞ ∪ S2,0, then C0,j = 0 for any j 
= b.
(3) Ci,D1

= 0 for 0 ≤ i < |S1,0 ∩ S2,∞|, D2 − |S1,∞ ∩ S2,∞| < i ≤ D2.
(4) Ci,0 = 0 for 0 ≤ i < |S1,0 ∩ S2,0|, D2 − |S1,∞ ∩ S2,0| < i ≤ D2.

If we interchange the roles of f1(τ ) and f2(τ ), then we may have more properties
similar to (1)–(4). Suppose that there exist r ∈ R and N,n1, n2 ∈ Z with N > 0
such that

fj(τ + r) = ζ
nj

N fj(τ )

for j = 1, 2, where ζN = e2πi/N . Then we get the following assertion:

(5) If n1i+ n2j 
≡ n1D2 + n2a (mod N), then Ci,j = 0. Here note that n2b ≡
n1D2 + n2a (mod N).

Proof. See [6, Lemmas 3 and 6]. �

We provide an explicit construction method for finding the modular equations
U(τ ) in the following algorithm.

Algorithm 3.4 (Finding the modular equation of U(τ )).
Input: The functions U(τ ) and U(nτ ) with a positive integer n.
Output: The explicit modular equation Fn(X,Y ) of U(τ ) of level n.
Steps:

(a) Let f1(τ ) := U(τ ), f2(τ ) := U(nτ ) and SΓ1(12)∩Γ0(12n) be the set of inequiv-
alent cusps on Γ1(12) ∩ Γ0(12n).

(b) Find the subsets S1,0, S1,∞, S2,0 and S2,∞ of SΓ1(12)∩Γ0(12n) using Lemmas
2.1–2.3.

(c) Calculate the total degrees d1 and d2 of poles of f1(τ ) and f2(τ ), respectively,
i.e.,

dj = −
∑

s∈Sj,∞

ordsfj(τ )

for j = 1, 2.
(d) We set

Fn(X,Y ) =
∑

0≤i≤d2
0≤j≤d1

Ci,jX
iY j

with Ci,j ∈ Q because all coefficients of f1(τ ) and f2(τ ) are rational; Ci,j

will be determined in Step (e).
(e) Let

a =

{
0 if S1,∞ ∩ S2,0 = φ,
−
∑

s∈S1,∞∩S2,0
ordsf1(τ ) otherwise,

and let Cd2,a = 1. Then by substituting q-expansions of U(τ ) and U(nτ ) to
Fn(X,Y ), we get Ci,j explicitly.

Proof of Theorem 1.2. For nonconstants f1(τ ) and f2(τ ), assume C(f1(τ ), f2(τ )) is
the field of all modular functions on some congruence subgroup. Then

[C(f1(τ ), f2(τ )) : C(fj(τ ))] = dj ,
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where dj is the total degree of poles of fj(τ ) for j = 1, 2. So we can take a
polynomial Φ(X,Y ) ∈ C[X,Y ] such that Φ(f1(τ ), Y ) and Φ(X, f2(τ )) are minimal
polynomials of f2(τ ) and f1(τ ) over C(f1(τ )) and C(f2(τ )) with degrees d1 and d2,
respectively. It means that

(3.1) Φ(X,Y ) =
∑

0≤i≤d2
0≤j≤d1

Ci,jX
iY j

satisfies Φ(f1(τ ), f2(τ )) = 0 for some Ci,j ∈ C.
For a positive integer n, let f1(τ ) and f2(τ ) be U(τ ) and U(nτ ), respectively. By

Proposition 3.1, C(f1(τ ), f2(τ )) is the field of modular functions on Γ1(12)∩Γ0(12n).
Since fj(τ ) has zeros and poles only at cusps, the sets Sj,0 and Sj,∞ are easily
obtained by (K1), (K4) and Lemma 2.2, where SΓ1(12)∩Γ0(12n) is a set of equivalence
classes under ∼:

s1, s2 ∈ Q ∪ {∞} , s1 ∼ s2 ⇔ γs1 = s2 for some γ ∈ Γ1(12) ∩ Γ0(12n),

Sj,0 =
{
s ∈ SΓ1(12)∩Γ0(12n) : fj(τ ) has zeros at s

}
,

and

Sj,∞ =
{
s ∈ SΓ1(12)∩Γ0(12n) : fj(τ ) has poles at s

}
for j = 1, 2. Moreover, we can get the total degree dj = −

∑
s∈Sj,∞

ordsfj(τ ) of

poles of fj(τ ) for j = 1, 2. Hence the equation Φ(X,Y ) in (3.1) is the modular
equation Fn(X,Y ). By using Lemma 3.3, we can choose Cd2,a = 1 without loss of
generality, where

a =

{
0 if S1,∞ ∩ S2,0 = φ,
−
∑

s∈S1,∞∩S2,0
ordsf1(τ ) otherwise.

Hence we get the explicit form of modular equation Fn(X,Y ) by substituting q-
expansions of U(τ ) and U(nτ ). �

Remark 3.5. In the case that n is a prime p ≥ 5, then Step (e) can be much more
simplified by using Theorem 3.7.

We apply Algorithm 3.4 to get the modular equations of levels 2 and 3.

Theorem 3.6. The modular equations of U(τ ) of levels 2 and 3 are the following:

(1) (Modular equation of level 2)(
U2(τ )− U(2τ )

)
(1− U(2τ )) + 2U(τ )U(2τ ) = 0.

(2) (Modular equation of level 3)(
U3(τ )− U(3τ )

) (
1− U(3τ ) + U2(3τ )

)
+ 3U(τ )U(3τ ) (1− U(τ )U(3τ )) = 0.

Proof. Following Algorithm 3.4, we present the explicit computation as below, and
we use the same notation for the steps.

(1) (a) Let f1(τ ) = U(τ ), f2(τ ) = U(2τ ).
(b)

S1,0 =

{
∞,

1

12

}
, S1,∞ =

{
5

12
,
5

24

}
, S2,0 = {∞} , and S2,∞ =

{
5

24

}
.
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(c) Since
ord∞f1(τ ) = ord1/12f1(τ ) = 1,

ord5/12f1(τ ) = ord5/24f1(τ ) = −1,

ord∞f2(τ ) = 2 and ord5/24f2(τ ) = −2,

we have
d1 = d2 = 2.

(d) Hence we get

F2(X,Y ) =
∑

0≤i,j≤2

Ci,jX
iY j .

(e) Since S1,∞ ∩ S2,0 = φ, we let C2,0 = 1. From U(τ ) = q + q2 + q6 −
q7 + q8 − q9 +O(q10), we determine that

F2(X,Y ) = X2 −X2Y − Y + Y 2 + 2XY

and (
U2(τ )− U(2τ )

)
(1− U(2τ )) + 2U(τ )U(2τ ) = 0.

(2) (a) Let f1(τ ) = U(τ ), f2(τ ) = U(3τ ).
(b) We have the subsets

S1,0 =

{
∞,

1

12
,
11

12

}
, S1,∞ =

{
5

12
,
7

12
,
5

36

}
, S2,0 = {∞} , and S2,∞ =

{
5

36

}
.

(c) From

ord∞f1(τ ) = ord1/12f1(τ ) = ord11/12f1(τ ) = 1,

ord5/12f1(τ ) = ord7/12f1(τ ) = ord5/36f1(τ ) = −1,

ord∞f2(τ ) = 3 and ord5/36f2(τ ) = −3,

we get
d1 = d2 = 3.

(d) Hence we may assume that

F3(X,Y ) =
∑

0≤i,j≤3

Ci,jX
iY j .

(e) We may assume that C3,0 = 1 because S1,∞ ∩ S2,0 = φ. Then by
substituting q-expansions of U(τ ) and U(3τ ) to F3(X,Y ) we get

F3(X,Y ) = X3 −X3Y +X3Y 2 − Y + Y 2 − Y 3 + 3XY − 3X2Y 2;

equivalently,(
U3(τ )− U(3τ )

) (
1− U(3τ ) + U2(3τ )

)
+ 3U(τ )U(3τ ) (1− U(τ )U(3τ )) = 0.

�

Theorem 3.7. With the notations as above, let p be a prime ≥ 5. Then Fp(X,Y ) =∑
0≤i,j≤p+1 Ci,jX

iY j ∈ Q[X,Y ] satisfies the following conditions:

(1) if p ≡ ±1 (mod 12), then

Cp+1,0 
= 0 and Cp+1,1 = Cp+1,2 = · · · = Cp+1,p+1 = 0,

and
C0,p+1 
= 0 and C0,0 = C0,1 = · · · = C0,p = 0;
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(2) if p ≡ ±5 (mod 12), then

Cp+1,p 
= 0 and Cp+1,0 = · · · = Cp+1,p−1 = Cp+1,p+1 = 0,

and

C0,1 
= 0 and C0,0 = C0,2 = · · · = C0,p+1 = 0.

Proof. The congruence subgroup which we should consider is Γ = Γ1(12)∩Γ0(12p)
and hence

Δ =
{
±(1 + 12k) ∈ (Z/12pZ)

×
: k = 0, . . . , p− 1

}
,

where Δ is the subgroup as in Section 2. Choose a unique x ∈ {0, . . . , p− 1} such
that 12x ≡ −1 (mod p). Among k = 0, . . . , p − 1, this value x is the only one of

them which does not satisfy the condition ±(1 + 12k) ∈ (Z/12pZ)×. By Lemmas
2.2 and 3.2 we have to consider S12, A12, S12p, A12p. We observe that{

(1 + 12k) ∈ (Z/pZ)× : k = 0, . . . , p− 1 such that 1 + 12k 
≡ 0 (mod p)
}

is equal to the whole set (Z/pZ)×. Thus all the inequivalent cusps under consid-
eration are 1/12, 5/12, 1/12p and 5/12p ( respectively, 1/12, 7/12, 1/60 and 7/60)
if p 
= 5 (respectively, p = 5). Although we consider only the case p 
= 5, for con-
venience, all the statements below still hold by replacing with appropriate cusps.
Hence we concentrate on the cusps 1/12, 5/12, 1/12p and 5/12p at which the widths
are p, p, 1 and 1, respectively, by Lemma 2.3. Note that 1/12p is equivalent to ∞
by Lemma 2.1. If we let f1(τ ) = U(τ ) and f2(τ ) = U(pτ ) in Lemma 3.3, then by
Lemma 3.2 we know that

S1,∞ =

{
5

12
,

5

12p

}
, S1,0 =

{
1

12
,

1

12p

}
.

Further we obtain that

S2,∞ =

{
5

12
,

5

12p

}
, S2,0 =

{
1

12
,

1

12p

}
if p ≡ ±1 (mod 12),

S2,∞ =

{
1

12
,

5

12p

}
, S2,0 =

{
5

12
,

1

12p

}
if p ≡ ±5 (mod 12).

Note that

ord5/12f1(τ ) = −p and ord5/12pf1(τ ) = −1.

Consider the orders of f2(τ ) at 1/12, 5/12 and 5/12p. For c ∈ {1, . . . , 11} such that
cp ≡ 1 (mod 12):

f2|
(
1 0
12 1

)
(τ ) = f2

(
τ

12τ + 1

)
= U

(
pτ

12τ + 1

)

= U ◦
(
p (cp− 1)/12
12 c

)(
1 (1− cp)/12
0 p

)
(τ )

= U ◦
(
p (cp− 1)/12
12 c

)(
τ + (1− cp)/12

p

)

=

{
q1/p + · · · if p ≡ ±1 (mod 12),
q−1/p + · · · if p ≡ ±5 (mod 12).
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Similarly, for c′ = {1, . . . , 11} such that cp ≡ 5 (mod 12),

f2|
(
5 12
12 29

)
(τ ) = f2

(
5τ + 12

12τ + 29

)
= U

(
5pτ + 12p

12τ + 29

)

= U ◦
(
5p (5cp− 1)/12
12 c

)(
1 (29− cp)/12
0 p

)
(τ )

= U ◦
(
5p (5cp− 1)/12
12 c

)(
τ + (29− cp)/12

p

)

=

{
q−1/p + · · · if p ≡ ±1 (mod 12),
q1/p + · · · if p ≡ ±5 (mod 12).

Hence it turns out that ordxf2(τ ) = −1 for x = 5/12 (respectively, 1/12 ) if p ≡ ±1
(mod 12) (respectively, ±5 (mod 12)). At 5/12p, take b and d ∈ Z such that
5d− 12bp = 1. As

f2|
(

5 b
12p d

)
(τ ) = U ◦

(
5 bp
12 d

)
(pτ ) = q−p + · · · ,

we get ord5/12pf2(τ ) = −p. So the total degrees of poles of f1(τ ) and f2(τ ) are both

p+ 1 and we may let the modular equation Fp(X,Y ) be
∑

0≤i,j≤p+1 Ci,jX
iY j .

Moreover, by using S1,0 ∪ S1,∞ = S2,0 ∪ S2,∞ and

S1,∞ ∩ S2,0 =

{
φ if p ≡ ±1 (mod 12),
{5/12} if p ≡ ±5 (mod 12),

we get{
Cp+1,0 
= 0, Cp+1,1 = · · · = Cp+1,p = Cp+1,p+1 = 0 if p ≡ ±1 (mod 12),
Cp+1,p 
= 0, Cp+1,0 = · · · = Cp+1,p−1 = Cp+1,p+1 = 0 if p ≡ ±5 (mod 12).

On the other hand,

S1,0 ∩ S2,0 =

{
{1/12, 1/12p} if p ≡ ±1 (mod 12),
{1/12p} if p ≡ ±5 (mod 12)

and {
ord1/12f1(τ ) + ord1/12pf1(τ ) = p+ 1 if p ≡ ±1 (mod 12),
ord1/12pf1(τ ) = 1 if p ≡ ±5 (mod 12).

Hence we get{
C0,p+1 
= 0, C0,0 = C0,1 = · · · = C0,p = 0 if p ≡ ±1 (mod 12),
C0,1 
= 0, C0,0 = C0,2 = · · · = C0,p+1 = 0 if p ≡ ±5 (mod 12).

�

We can completely determine all the coefficients Ci,j of the modular equation
Fp(X,Y ), which is presented in Table 1; this is done by using Theorem 3.7 and
substituting the Fourier expansions of U(τ ) and U(pτ ) into Fp(X,Y ) = 0 with
X = U(τ ) and Y = U(pτ ). Table 1 includes the results of Dharmendra, Rajesh,
Kanna, and Jagadeesh [3] and Mahadeva Naika, Dharmendra, and Shivashankar
[10]. It is obvious that one may apply our method to find higher order modular
equations Fp(X,Y ) for p ≥ 17.
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Table 1. The modular equations Fp(X,Y ) of U(τ ) of levels
2, 3, 5, 7, 11 and 13

p the modular equations Fp(X, Y ) of U(τ)

2 X2 + Y 2 − X2Y − Y + 2XY

3 X3 − X3Y + X3Y 3 − Y + Y 2 − Y 3 + 3XY − 3X2Y 2

5 (X5 − Y )(XY 5 − 1)

+5(XY 5 − 2X3Y 4 + 2X2Y 3 + X2Y − XY 4 − XY + 2X4Y 3 − X5Y 2 − 2X3Y 3

+X4Y 5 − X5Y 5 + X5)

7 (X7 − Y )(XY 7 − 1)

+7(2X2Y + XY 5 − XY 3 + XY 7 − 2XY 6 + XY 2 + 4X6Y 5 + 4X2Y 3

−4X2Y 2 + X7Y − X2Y 5 + 2X6Y 7 − XY + 5X4Y 5 − 2X7Y 2 − X2Y 7

+5X4Y 3 − 4X3Y 6 + X3Y 7 + X7Y 3 − 4X5Y 2 − 4X6Y 6 − X5Y 5

+4X6Y 2 + X5Y 3 + X5Y − X5Y 7 − X6Y 3 − X6Y + X5Y 6 − 5X5Y 4

+X3Y 2 − X3Y + X7Y 6 − X7Y 7 − X3Y 3 − X7Y 5 + X3Y 5 − 5X3Y 4 + 4X2Y 6)

11 (X11 − Y )(X − Y 11)

+11(X2Y − 10X2Y 2 + 69X7Y 3 − 33X7Y 2 − 5XY 5 + 33X10Y 7 − 4XY 3 + 69X9Y 5

−48X10Y 8 + 73X9Y 3 − X10Y + 7XY 4 + 5X11Y 5 − 88X8Y 8 − X11Y 2 − X11Y

+133X8Y 4 + 7X8Y 11 − 99X8Y 3 − 33X10Y 5 + 4X11Y 3 + 84X6Y 6 + 48X4Y 10 + 69X5Y 9

−136X5Y 5 + 64X5Y 7 − 69X5Y 3 + 92X5Y 4 − 5X5Y + 33X5Y 2 + 133X4Y 8 − 99X4Y 9

+92X4Y 5 − 92X4Y 7 + 4X3Y 11 + 7X4Y + 99X3Y 4 − 69X3Y 5 − X2Y 11 − 136X7Y 7

−34X2Y 9 + 16X2Y 10 − 7X8Y + 48X2Y 8 + 33X2Y 5 − 5X7Y 11 + 34X2Y 3 − 48X2Y 4

+4X9Y + 34X10Y 9 + 4XY 9 + 5XY 7 − 7XY 8 − 4X9Y 11 − 34X10Y 3 + 48X10Y 4 + 92X8Y 7

−5X11Y 7 + 7X11Y 8 − XY 11 − XY 10 − 92X7Y 4 − 48X4Y 2 − 88X4Y 4 + 99X4Y 3 − 99X3Y 8

−34X3Y 10 + 73X3Y 9 + X10Y 11 + 99X9Y 8 − 34X9Y 2 + 34X3Y 2 − 93X3Y 3 + 92X7Y 8

+99X8Y 9 + 34X9Y 10 − 7X11Y 4 − 92X5Y 8 − 48X8Y 10 − 10X10Y 10 + XY 2 + 5X7Y

−99X9Y 4 + 5X5Y 11 + 33X7Y 10 + 48X8Y 2 − 33X2Y 7 − 7X4Y 11 − 33X5Y 10 − 93X9Y 9

+16X10Y 2 − 4X11Y 9 − 69X9Y 7 − 92X8Y 5 + 69X3Y 7 + X11Y 10 + 64X7Y 5

−4X3Y − 69X7Y 9)

13 (X13 − Y )(X − Y 13)

+13 ( 339X11Y 10 − 90X8Y 12 − 487X9Y 11 − 10X2Y 7 + XY 2 + 70X7Y 4 + 6X13Y 7

+493X9Y 3 − 993X9Y 9 − 90X12Y 8 − 6X9Y 7 − 90X6Y 2 + 652X9Y 8 − 794X9Y 4

−6X5Y 7 + 101X2Y 10 − 302X3Y 8 + 6XY 6 − 396X8Y 8 + 486X10Y 6 − 409X4Y 11

−106X4Y 2 + 838X5Y 9 − 64X11Y 7 + 70X7Y 10 + 116X2Y 8 − 10X7Y 2 − 147X2Y 9

−642X6Y 9 − 14XY 5 + 362X8Y 11 − X3Y 13 − 409X3Y 10 − 2XY 13 − 16XY 8

−106X2Y 4 − 556X4Y 6 − 37X12Y 3 − 37X2Y 11 + 486X4Y 8 − 396X6Y 6 + 671X6Y 8

−10X7Y 12 + 6XY 7 − 64X3Y 7 + 70X4Y 7 − 10X12Y 7 + 116X6Y 12 − 60X7Y 6 + 15X9Y

−X11Y + 116X8Y 2 + 204X11Y 3 − 168X11Y 11 − 642X8Y 5 + 4X12Y − 37X3Y 12 − 64X7Y 11

−5X3Y + 6X13Y 8 − 64X7Y 3 + 47X2Y 3 − 556X6Y 4 + 362X6Y 3 − 147X5Y 12 + 493X5Y 11

−6X7Y 5 + 6X7Y − 5X13Y 11 − 7X4Y 13 + 101X4Y 12 − 794X4Y 9 + 789X5Y 4 − 7XY 10

−106X10Y 12 − 794X5Y 10 + 4X13Y 2 − 3X12Y 2 − 587X4Y 4 + 789X4Y 5 − 5X11Y 13

+204X3Y 11 + 339X4Y 3 + 47X3Y 2 + 362X3Y 6 + 493X3Y 9 + 739X4Y 10 − 302X6Y 11

−3X2Y 12 + 142X2Y 5 − 302X8Y 3 − 106X12Y 10 − 11X2Y 2 + X2Y + 671X8Y 6 + 15XY 9

−90X2Y 6 + 838X9Y 5 − 642X9Y 6 + 6X8Y 13 − 60X8Y 7 + 652X5Y 6 − 60X6Y 7 − 16X8Y

−168X3Y 3 + 739X10Y 4 + 12X4Y − 642X5Y 8 − 14X13Y 9 − 16X13Y 6 + 15X13Y 5 − 7X13Y 4

+47X12Y 11 − 11X12Y 12 + 142X12Y 9 + 101X12Y 4 − 487X11Y 9 + 362X11Y 8 + 493X11Y 5

−409X11Y 4 − 37X11Y 2 + 12X10Y 13 + 339X10Y 11 − 587X10Y 10 + 789X10Y 9 − 556X10Y 8

+70X10Y 7 + 15X5Y 13 + 101X10Y 2 − 409X10Y 3 − 7X10Y + 142X9Y 12 + 652X6Y 5 + 6X6Y

−993X5Y 5 − 487X5Y 3 + 116X12Y 6 − 147X9Y 2 − 147X12Y 5 − X13Y 3 − 487X3Y 5

+789X9Y 10 − 2X13Y + 12X13Y 10 + X12Y 13 + 12XY 4 − 6X7Y 9 + X13Y 12 − 60X7Y 8

+339X3Y 4 − 14X5Y + 142X5Y 2 + 6X7Y 13 − 136X7Y 7 − 794X10Y 5 − XY 11

−556X8Y 10 − 14X9Y 13 + 652X8Y 9 − 302X11Y 6 + 47X11Y 12 − 16X6Y 13 − 5XY 3

+486X6Y 10 + 486X8Y 4 + 4X2Y 13 + 4XY 12 )

From now on, we let n be a positive integer with (n, 6) = 1. We will find the
Kronecker congruence relations for the modular equations of U(τ ) and U(nτ ). If
σa ∈ SL2(Z) satisfies σa ≡

(
a−1 0
0 a

)
(mod 12) for any integer a with (a, 6) = 1,

then we have

Γ1(12)

(
1 0
0 n

)
Γ1(12) =

⋃
a>0
a|n

⋃
0≤b<n/a

(a,b,na )=1

Γ1(12)σa

(
a b
0 n/a

)
,
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in which the right-hand side is a disjoint union [14, Proposition 3.36]. Note that

d :=

∣∣∣∣Γ1(12)\Γ1(12)

(
1 0
0 n

)
Γ1(12)

∣∣∣∣ = n
∏
p|n

(
1 +

1

p

)
.

Since σa depends only on a modulo 12, we choose σa as

σ±1 = ±
(
1 0
0 1

)
, σ±5 = ±

(
5 12
12 29

)
.

From the transformation formulas (K0)–(K2), we get

U ◦ σ±1 = U and U ◦ σ±5 =
1

U
.

For convenience, let αa,b = σa

(
a b
0 n/a

)
for such a, b with 0 < a | n, 0 ≤ b < n/a

and (a, b, n/a) = 1. We now consider the following polynomial Ψn(X, τ ) with the
indeterminate X:

Ψn(X, τ ) =
∏
a>0
a|n

∏
0≤b<n/a

(a,b,na )=1

[X − (U ◦ αa,b)(τ )] .

Since all the coefficients of Ψn(X, τ ) are the elementary symmetric functions of
U ◦αa,b, they are invariant under Γ1(12), i.e., Ψn(X, τ ) ∈ C(U(τ ))[X], and we may
write Ψn(X,U(τ )) instead of Ψn(X, τ ).

Theorem 3.8. With the notations as above, for a positive integer n > 1 with
(n, 6) = 1 we define

Fn(X,U(τ )) = U(τ )rnΨn(X,U(τ )),

that is, Fn(X,Y ) = Y rnΨn(X,Y ) with the nonnegative integer

rn = −
∑

s∈S1,∞∩S2,0

ordsU(τ ).

Here we assume that rn = 0 if S1,∞ ∩ S2,0 is empty. Then we obtain the following
assertions:

(1) Fn(X,Y ) ∈ Z[X,Y ] and degX Fn(X,Y ) = n
∏

p|n(1 + 1/p).

(2) Fn(X,Y ) is irreducible both as a polynomial in X over C(Y ) and as a
polynomial in Y over C(X).

(3) Let d = n
∏

p|n(1 + 1/p). Then{
Fn(X,Y ) = Fn(Y,X) if n ≡ ±1 (mod 12),
Fn(X,Y ) = (−1)rnY dFn(1/Y,X) if n ≡ ±5 (mod 12).

Moreover, if p is a prime number congruent to ±5 (mod 12), then rp = p
and

Fp(X,Y ) = −Y p+1Fp(1/Y,X).

(4) If n is not a square, then Fn(X,X) is a polynomial of degree > 1 whose
leading coefficient is ±1.

Proof. Since U(τ ) = q + O(q2), we may let U(τ ) =
∑∞

m=1 cmqm with cm ∈ Z. We

further let ψk ∈ Gal(Q(ζn)/Q) be such that ψk(ζn) = ζkn for some integer k with
(k, n) = 1. Then ψk induces an automorphism of Q(ζn)((q

1/n)) through the action
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on the coefficients. We denote the induced automorphism by the same notation ψk.
Since

U ◦
(
a b
0 n/a

)
(τ ) = U

(
a2

n
τ +

ab

n

)
=

∞∑
m=1

cmζabmn

(
q1/n

)a2m

,

we obtain that

ψk

(
U ◦

(
a b
0 n/a

)
(τ )

)
=

∞∑
m=1

cmζabkmn

(
q1/n

)a2m

.

Let b′ be the unique integer such that 0 ≤ b′ < n/a and b′ ≡ bk (mod n/a). Then

ψk

(
U ◦

(
a b
0 n/a

)
(τ )

)
= U ◦

(
a b′

0 n/a

)
(τ )

because ζabkn = ζab
′

n . Since U ◦σa = U or 1/U , we have ψk(U ◦αa,b) = U ◦αa,b′ , and

so all the coefficients of Ψn(X,U(τ )) are contained inQ((q1/n)). Hence by observing
the fact Ψn(X,U(τ )) ∈ C(U(τ ))[X] we see that Ψn(X,U(τ )) ∈ Q(U(τ ))[X].

For each αa,b, we have Γ1(12) · αa,b ⊂ Γ1(12) ( 1 0
0 n ) Γ1(12), and there exist γ, γ′

and γa,b ∈ Γ1(12) such that

γ

(
1 0
0 n

)
γa,b = γ′αa,b,

i.e., ( 1 0
0 n ) γa,bα

−1
a,b ∈ Γ1(12). We consider an embedding ξa,b of C (U(τ/n), U(τ ))

over C(U(τ )) defined by

ξa,b(h) = h ◦ γa,b.
In fact, ξa,b(U) = U ◦ γa,b = U and

ξa,b

(
U
( τ
n

))
= ξa,b

(
U ◦

(
1 0
0 n

))
(τ ) = U ◦

(
1 0
0 n

)
γa,b(τ ) = U ◦ αa,b(τ ).

When αa,b 
= αa′,b′ , U ◦ αa,b 
= U ◦ αa′,b′ . This means that

[C(U(τ/n), U(τ )) : C(U(τ ))] = d.

So, Ψn(X,U(τ )) is irreducible over C(U(τ )).
With the notation as in Lemma 3.3, we let f1(τ ) = U(τ ) and f2(τ ) = U(nτ ) for

(n, 6) = 1. Assume that a/c ∈ S1,0∪S1,∞. In other words, a ≡ ±1 or ±5 (mod 12)
and c ≡ 0 (mod 12). Since (n, 6) = 1,

n

m
≡ ±1,±5 (mod 12)

for m = (c, n). Note that

na

c
=

(n/m)a

c/m
=

a′

c′

such that a′ ≡ ±1 or ±5 (mod 12) and c′ ≡ 0 (mod 12). Hence f2(a/c) =
U(na/c) = U(a′/c′) = 0 or ∞ and S1,0 ∪ S1,∞ ⊂ S2,0 ∪ S2,∞. Similarly, one
can prove the reverse inclusion and we have

S1,∞ ∪ S1,0 = S2,∞ ∪ S2,0.
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If we let

r = rn = −
∑

s∈S1,∞∩S2,0

ordsU(τ ), s =
∑

s∈S1,0∩S2,0

ordsU(τ ),

r′ = −
∑

s∈S2,∞∩S1,0

ordsU(nτ ), s′ =
∑

s∈S2,0∩S1,0

ordsU(nτ ),

then F (X,Y ) in Lemma 3.3 is written as the form

F (X,Y ) = Cdn,rX
dnY r + Cr′,d1

Xr′Y d1 + Cs′,0X
s′ + C0,sY

s +
∑

0<i<dn
0<j<d1

Ci,jX
iY j ,

where d1 (respectively, dn) is the total degree of poles of U(τ ) (respectively, U(nτ ))
and Cdn,r, Cr′,d1

, Cs′,0, C0,s are nonzero. Since F (X,U(τ )) is an irreducible polyno-
mial of U (τ/n) over C(U(τ )) and F (U (τ/n) , Y ) is also an irreducible polynomial
of U(τ ) over C (U (τ/n)), we know that

Cdn,r · U(τ )rΨn(X,U(τ )) = F (X,U(τ ))

and Fn(X,Y ) = Y rΨn(X,Y ) is a polynomial in X and Y which is irreducible
both as a polynomial in Y over C(X) and a polynomial in X over C(Y ). Since
U(τ )rΨn(X,U(τ )) ∈ Q[X,U(τ )] and all the Fourier coefficients of the coefficients
of the Ψn(X,U(τ )) are algebraic integers, it turns out that U(τ )rΨ(X,U(τ )) ∈
Z[X,U(τ )], i.e., Fn(X,Y ) ∈ Z[X,Y ]. Hence (1) and (2) follow.

(3) We first consider the case n ≡ ±1 (mod 12). By (2), Fn(X,U(τ )) is an irre-
ducible polynomial in X over C(U(τ )) with root U(τ/n). Since Ψn(U(nτ ), U(τ )) =
0, i.e., Ψn(U(τ ), U(τ/n)) = 0, U(τ/n) is a root of the polynomial Fn(U(τ ), X) ∈
Z[X,U(τ )]. So we derive that

Fn(U(τ ), X) = g(X,U(τ ))Fn(X,U(τ ))

for some polynomial g(X,U(τ )) ∈ Z[X,U(τ )] by the Gauss lemma on the irre-
ducibility of polynomials. Since

Fn(X,U(τ )) = g(U(τ ), X)Fn(U(τ ), X),

Fn(U(τ ), X) = g(X,U(τ ))g(U(τ ), X)Fn(U(τ ), X)

implies g(X,U(τ )) = ±1. If g(X,U(τ )) = −1, then

Fn(U(τ ), U(τ )) = −Fn(U(τ ), U(τ ));

hence U(τ ) is a root of Fn(X,U(τ )), which is a contradiction to the irreducibility
of Fn(X,U(τ )) over C(U(τ )). Therefore we have

Fn(X,U(τ )) = Fn(U(τ ), X).

Next, we consider the case n ≡ ±5 (mod 12). U(τ/n) is a root of the polynomial
U(τ )dFn(1/U(τ ), X) ∈ Z[X,U(τ )] because we see that

X − 1

U(nτ )
= X − U ◦ σn

(
n 0
0 1

)
(τ ) = X − (U ◦ αn,0) (τ )

is one of the factors of

Ψn(X,U(τ )), Ψn (1/U(nτ ), U(τ )) = 0

and

U(τ )dFn(1/U(τ ), U(τ/n)) = Ψn (1/U(τ ), U(τ/n)) = 0.
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In a similar way as the case n ≡ ±1 (mod 12), we have

(3.2) U(τ )dFn

(
1

U(τ )
, X

)
= g(X,U(τ ))Fn(X,U(τ ))

for some g(X,U(τ )) ∈ Z[X,U(τ )] with the Gauss lemma because Fn(X,U(τ )) is
an irreducible polynomial in X with root U(τ/n) by (2). We write (3.2) as

Y dFn

(
1

Y
,X

)
= g(X,Y )Fn(X,Y ).

We note that

degX Fn(X,Y ) + degX g(X,Y ) = degX Y dFn

(
1

Y
,X

)
= degY Fn(X,Y )

and

degY Fn(X,Y ) + degY g(X,Y ) = degY Y dFn

(
1

Y
,X

)
= d = degX Fn(X,Y )

because

Y dFn

(
1

Y
,X

)
=

1

Cdn,r

(
Cdn,rX

rnY d−dn + C0,sX
sY d

+Cr′,d1
Xd1Y d−r′ + Cs′,0Y

d−s′ + (lower degree terms)
)

with nonzero coefficient C0,s. So g(X,Y ) is a constant and

degX Fn(X,Y ) = degY Fn(X,Y ) = d.

Since Fn(X,Y ) is a primitive polynomial, we have g := g(X,Y ) = ±1. By using
that Fn(Y

−1, X) = g · Y −dFn(X,Y ),

Fn(X,Y ) = g ·XdFn

(
Y,

1

X

)
= g ·Xd

(
Y dX−r + (other terms)

)
= g ·Xd−rY d + (other terms)

and the coefficient of Xd−rY d in Fn(X,Y ) is g.
On the other hand, since Ψn(X,U(τ )) is equal to∏

a>0,a|n
a≡±1 (mod 12)

∏
0≤b<n

a

(a,b,na )=1

(X − ζabn qa
2/n + · · · )

×
∏

a>0,a|n
a≡±5 (mod 12)

∏
0≤b<n

a

(a,b,na )=1

(X − ζ−ab
n q−a2/n + · · · ),

we see that the coefficient of Xd−rY d in Fn(X,Y ) is equal to

(3.3)
∏

a>0,a|n
a≡±5 (mod 12)

∏
0≤b<n

a

(a,b,na )=1

(−ζ−ab
n ) = ε

∏
a>0,a|n

a≡±5(mod 12)

∏
0≤b<n

a

(a,b,na )=1

ζ−ab
n ,

where
ε =

∏
a>0,a|n

a≡±5(mod 12)

∏
0≤b<n

a

(a,b,na )=1

(−1).
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In fact, we note ε = (−1)rn and the other factor of the right-hand side of (3.3) is∏∏
ζ−ab
n = 1 by the elementary lemma in [1, Lemma 6.7]; if m > 0 is an odd

integer with k | m, then
∏

0≤b<m,(b,k)=1 ζ
−b
m = 1. Therefore g = (−1)rn .

Now, assume that p is a prime with p ≡ ±5 (mod 12). Clearly, d =
p
∏
(1 + 1/p) = p + 1. In the proof of Theorem 3.7, S1,∞ ∩ S2,0 = {5/12} and

rp = −ord5/12U(τ ) = p. Hence Fp(X,Y ) = −Y p+1Fp(1/Y,X).
(4) Assume that n is not a square. Since

U(τ )− (U ◦ αa,b)(τ ) =

{
q − ζabn qa

2/n + · · · if a ≡ ±1 (mod 12),

−ζ−ab
n q−a2/n + q + · · · if a ≡ ±5 (mod 12),

the coefficient of its lowest degree term is{
1 if a2 > n and a ≡ ±1 (mod 12),
−ζ−ab

n otherwise.

Therefore the coefficient of the lowest degree term in Fn(U(τ ), U(τ )) is a product
of −ζ−ab

n for a, b where a is a positive divisor of n such that a ≡ ±5 (mod 12) or
a ≡ ±1 (mod 12) with a2 < n and b is a nonnegative integer with 0 ≤ b < n/a and
(a, b, n/a) = 1. By (1), Fn(X,X) has the integral leading coefficient, which should
be ±1. �

Proof of Theorem 1.3. Let p be an odd prime. For any g(τ ) and h(τ ) ∈ Z[ζp]((q
1
p ))

and α ∈ Z[ζp], we write

g(τ ) ≡ h(τ ) (mod α)

if g(τ )− h(τ ) ∈ αZ[ζp]((q
1
p )).

Since U(τ ) = q +
∑∞

m=2 cmqm with cm ∈ Z, we have that

(U ◦ α1,b) (τ ) = ζbpq
1
p +

∞∑
m=2

cmζbmp (q
1
p )m

≡ q
1
p +

∞∑
m=2

cm(q
1
p )m ≡ (U ◦ α1,0)(τ ) (mod 1− ζp),

for any b = 0, . . . , p− 1. Note that

(U ◦ α1,0)(τ )
p =

(
ζpq

1
p +

∞∑
m=2

cmζmp q
m
p

)p

≡ q +

∞∑
m=2

cpmqm (mod 1− ζp)

≡ q +
∞∑

m=2

cmqm (mod 1− ζp)

= U(τ ).

Suppose that p ≡ ±1 (mod 12). By observing that

(U ◦ αp,0)(τ ) = (U ◦ σp)(pτ ) = U(pτ ) = qp +

∞∑
m=2

cmqpm

and cpm ≡ cm (mod p), we see that

(U ◦ αp,0)(τ ) ≡ U(τ )p (mod p)
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and

(U ◦ αp,0)(τ ) ≡ U(τ )p (mod 1− ζp).

Since rp = −
∑

s∈S1,∞∩S2,0
ordsU(τ ) = 0, we have

Fp(X,U(τ )) = Ψp(X,U(τ )) = (X − (U ◦ αp,0)(τ ))
∏

0≤b<p

(X − (U ◦ α1,b)(τ ))

≡ (X − U(τ )p)(X − (U ◦ α1,0)(τ ))
p

≡ (X − U(τ )p)(Xp − (U ◦ α1,0)(τ )
p)

≡ (X − U(τ )p)(Xp − U(τ )) (mod 1− ζp).

Let Fp(X,U(τ ))− (X −U(τ )p)(Xp −U(τ )) =
∑

ν ψν(U(τ ))Xν , where ψν(U(τ )) ∈
Z[U(τ )]. Since all the Fourier coefficients of ψν(U(τ )) are rational integers and
divisible by 1− ζp in Z[ζp], we see that ψν(U(τ )) ∈ pZ[U(τ )]. Hence we have

Fp(X,U(τ )) ≡ (Xp − U(τ ))(X − U(τ )p) (mod pZ[X,U(τ )])

when p ≡ ±1 (mod 12) as desired.
Now assume that p ≡ ±5 (mod 12). Since (U◦αp,0)(τ ) = (U◦σp)(pτ ) = 1/U(pτ )

and U(pτ ) ≡ U(τ )p (mod p), we get that (U◦αp,0)(τ ) ≡ 1/U(τ )p (mod p). In other
words,

(U ◦ αp,0)(τ ) ≡
1

U(τ )p
(mod 1− ζp).

Note that rp = −
∑

s∈S1,∞∩S2,0
ordsU(τ ) = p. So we get

Fp(X,U(τ )) = U(τ )pΨp(X,U(τ ))

= U(τ )p(X − (U ◦ αp,0)(τ ))
∏

0≤b<p

(X − (U ◦ α1,b)(τ ))

≡ U(τ )p(X − 1/U(τ )p)(X − (U ◦ α1,0)(τ ))
p

≡ (XU(τ )p − 1)(Xp − (U ◦ α1,0)(τ )
p)

≡ (XU(τ )p − 1)(Xp − U(τ )) (mod 1− ζp).

With the same argument as in the case p ≡ ±1 (mod 12), we get that

Fp(X,U(τ )) ≡ (Xp − U(τ ))(XU(τ )p − 1) mod pZ[X,U(τ )].

�

4. Ray class fields and evaluation of U(τ )

In this section, we focus on finding the value U(τ ) and the extension field gen-
erated by the value U(τ ).

Lemma 4.1. Let K be an imaginary quadratic field with discriminant dK and
τ ∈ K ∩ H be a root of the primitive equation ax2 + bx + c = 0 in Z[x] such that
b2−4ac = dK , and let Γ′ be any congruence subgroup such that Γ(N) ⊂ Γ′ ⊂ Γ1(N).
Suppose that (N, a) = 1. Then the field generated over K by all the values h(τ ),
where h ∈ A0(Γ

′)Q is defined and finite at τ , is the ray class field modulo N over
K.

Proof. See [2, Corollary 5.2]. �

The previous lemma gives us the ray class field generated by U(τ ) and the proof
of Theorem 1.4.
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Proof of Theorem 1.4. If Γ′ be the congruence subgroup such that Q(U(τ )) =
A0(Γ

′)Q, then Γ(12) ⊂ Γ′ ⊂ Γ1(12) because Γ
′ = Γ1(12) by Theorem 1.1(1). For an

imaginary quadratic field K with discriminant dK , consider τ ∈ K ∩ H satisfying
aτ2 + bτ + c = 0 such that b2 − 4ac = dK , (a, 6) = 1 and a, b, c ∈ Z. Since U is
defined and finite at this τ , K(U(τ )) is the ray class field modulo 12 over K by
Lemma 4.1. �

Proof of Corollary 1.5. Assume that Z[τ ] is the ring of integers in K. If aτ2+ bτ +
c = 0 with a, b, c ∈ Z and (a, b, c) = 1, then a should be 1. Hence K(U(τ )) is the
ray class field modulo 12 over K. �

By definition, a modular unit h(τ ) over Z is a modular function of some level N
which is rational over Q(ζN ) such that h(τ ) and 1/h(τ ) are integral over Z[j(τ )],
where j(τ ) is the classical elliptic modular function.

Lemma 4.2. Let h(τ ) be a modular function of some level N rational over Z(ζN )
for which h(τ ) has neither zeros nor poles on H. If for every γ ∈ SL2(Z) the Fourier
expansion of h ◦ γ has algebraic integer coefficients and the coefficient of the term
of lowest degree is a unit, then h(τ ) is a modular unit over Z.

Proof. See [8, Chapter 2, Lemma 2.1]. �

Let h(τ ) be a modular unit over Z and K be an imaginary quadratic field. Since
it is well known that j(τ ) is an algebraic integer for every τ ∈ K−Q, we can derive
that for such τ , h(τ ) is an algebraic integer which is a unit. By observing this fact,
we derive the property of U(τ ).

Proof of Theorem 1.6. It is enough to prove that U(τ ) is a modular unit over Z.
Let γ =

(
a b
c d

)
∈ SL2(Z). Then U(τ ) is written in the product of Klein forms as

U(τ ) = ζ−1
12

11∏
j=0

K( 1
12 ,

j
12 )

(τ )

K( 5
12 ,

j
12 )

(τ )
.

By (K1) in Section 2, the action γ on U(τ ) is

U(γτ ) = ζ−1
12

11∏
j=0

K( a+cj
12 , b+dj

12 )(τ )

K( 5a+cj
12 , 5b+dj

12 )(τ )
.

If we replace the Klein forms by the q-products in (K4) and expand the products
as a series, then the series is the Fourier expansion of U(γτ ). Since we want to use
Lemma 4.2 to prove that U(γτ ) has Fourier coefficients which are algebraic integers
and the coefficient of the lowest degree term is a unit, we may assume that

0 ≤ (a+ cj)/12, (5a+ cj)/12 ≤ 1

by (K2). If we assume these, then the only term we should consider in (K4) is

1− qz = 1− ζb+dj
12 q

a+cj
12 or 1− ζ5b+dj

12 q
5a+cj

12 .

Put c′ = (c, 6). First, assume that c′ 
= 1. Then a is relatively prime to c′ and
a + cj ≡ a 
≡ 0, 5a + cj ≡ 5a 
≡ 0 (mod c′); thus, the exponents (a + cj)/12 and
(5a+ cj)/12 of q are not integers and 1 − qz cannot be complex numbers, namely
it has algebraic integer coefficients with the lowest coefficient 1, and the series
expansion of U(γτ ) has the desired properties.
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Now assume that c′ = 1. There exist unique integers j1, j2 ∈ {0, . . . , 11} such
that

(4.1) a+ c · j1 ≡ 0 (mod 12) and 5a+ c · j2 ≡ 0 (mod 12).

Hence, the coefficient of the lowest degree term of U(γτ ) is

(1− ζb+d·j1
12 )/(1− ζ5b+d·j2

12 )

up to a unit. Since(
1

12
,
j1
12

)
=

(
a+ c · j1

12
,
b+ d · j1

12

)(
d −b
−c a

)

=

(
(a+ c · j1)d− (b+ d · j1)c

12
, ∗
)

and (
5

12
,
j2
12

)
=

(
5a+ c · j2

12
,
5b+ d · j2

12

)(
d −b
−c a

)

=

(
(5a+ c · j2)d− (5b+ d · j2)c

12
, ∗
)
,

we know that

1 = (a+ c · j1)d− (b+ d · j1)c ≡ −(b+ d · j1)c (mod 12)

and

5 = (5a+ c · j2)d− (b+ d · j2)c ≡ −(5b+ d · j2)c (mod 12)

by (4.1). Hence neither ζb+d·j1
12 nor ζ5b+d·j2

12 is 1.
Let c0 be an integer such that −c0 · c ≡ 1 (mod 12). Then

1− ζb+d·j1
12

1− ζ5b+d·j2
12

=
1− (ζ−c0·c

12 )b+d·j1

1− (ζ−c0·c
12 )5b+d·j2

=
1− ζc012
1− ζ5c012

=
1− ζ25c012

1− ζ5c012

= 1 + ζ5c012 + ζ10c012 + ζ15c012 + ζ20c012 ∈ Z[ζ12],

1− ζ5b+d·j2
12

1− ζb+d·j1
12

=
1− ζ5c012

1− ζc012
= 1 + ζc012 + ζ2c012 + ζ3c012 + ζ4c012 ∈ Z[ζ12].

This means that (1− ζb+d·j1
12 )/(1− ζ5b+d·j2

12 ) is a unit. �

Corollary 4.3. Let g(τ ) = η(τ )−1η(3τ )3η(4τ )η(12τ )−3 and let K be an imaginary
quadratic field. Then g(τ ) is an algebraic integer for every τ ∈ K −Q.

Proof. For any τ ∈ K−Q, U(τ ) and 1/U(τ ) are algebraic integers by Theorem 1.6.
By Theorem 1.1 (4), g(τ ) = U(τ )+1/U(τ ), so g(τ ) is also an algebraic integer. �

Proof of Theorem 1.7. Suppose that the value U(τ ) is expressed in terms of radi-
cals. To write U(rτ ) in terms of radicals as well, we need to factorize r.

Assume that r = a/b with a, b ∈ Z>0 and (a, b) = 1. Find all solutions s1, . . . , st
of the equation Fa(U(τ ), x), where Fa(X,Y ) is the modular equation obtained by
Theorem 1.2. Then write them in terms of radicals. For a sufficiently large N ,
compare the obtained solutions s1, . . . , st with

v := qa
N∏

n=1

(1− qa(12n−1))(1− qa(12n−11))

(1− qa(12n−5))(1− qa(12n−7))
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and q = e2πiτ . We choose sj to be the value closest to v, then we take sj to be the
explicit value of U(aτ ).

In a similar way, we get the value U(rτ ) in terms of radicals by using the modular
equation Fb(X,Y ) and an approximation

w := qa/b
N∏

n=1

(1− qa(12n−1)/b)(1− qa(12n−11)/b)

(1− qa(12n−5)/b)(1− qa(12n−7)/b)

for a sufficiently large N . �

In [10, Theorem 5.1] one can find 12 values U(τ ) if τ = ix/2 with x = 1,
√
3,
√
5,√

7,
√
13,

√
17, 1/

√
3, 1/

√
5, 1/

√
7,
√
5/3,

√
7/3 and

√
11/3. We find more values

in the following.

Example 4.4.

(1)

U(i) =

√
2
(√

2−
√

3t1+
4√27

√
t1

)

( 8√27 4
√
t1+1)2

for t1 = 2−
√
3,

(2)

U(
√
3i) =

√
2t3+4

(√
2−

√
3t3

√
3√2+1/

√
t3(t3+2)

)

( 4
√
9t3+

4
√
t3+2)2

for t3 =
3
√
2− 1,

(3)

U(
√
5i) =

2−
√
3
√

(1−t5)(1+3t5)

(
√
3t5+1)2

for t5 =

√
14
√
5 + 8

√
15− 18

√
3− 31,

(4)

U(
√
7i) =

4
√
24+t7−2

√
3
√

t7+4
√
2
√
24+t7

( 4√288+ 4
√
96+4t7)2

for t7 = 4
√
21 +

√√
21− 3(3

√
14 + 5

√
6).

Solution. The values of U(ix/2) are as follows [10, Theorem 5.1]:

(1) U(i/2) =
4
√

6
√
3−9−1

4
√

6
√
3−9+1

,

(2) U(
√
3i/2) =

4
√

−108+108 3√2− 4
√

12+12 3√2
4
√

−108+108 3√2+
4
√

12+12 3√2
,

(3) U(
√
5i/2) =

4
√

126
√
5+72

√
15−162

√
3−279−1

4
√

126
√
5+72

√
15−162

√
3−279+1

,

(4) U(
√
7i/2) =

√
12

√
2− 4

√
32+

√
5+

√
21(

√
5+

√
21+

√√
21−3)3√

12
√
2+

4
√

32+
√

5+
√
21(

√
5+

√
21+

√√
21−3)3

.

We will show case (1) and the rest of the cases are obtained by exactly the same
process.

The modular equation of level 2 is

F2(X,Y ) = X2 −X + 2XY −X2Y + Y 2.
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Then the zeros of F2(U(i/2), x) = 0 are

2 +

√
12− 6

√
3 + 2

√
6
√
3− 9

(
4
√
6
√
3− 9 + 1)2

≈ 0.9171526117

and

2−
√
12− 6

√
3 + 2

√
6
√
3− 9

(
4
√
6
√
3− 9 + 1)2

≈ 0.001863955375.

By letting q0 = e−2π and finding the approximation of

q0

2000∏
n=1

(1− q12n−1)(1− q12n−11)

(1− q12n−7)(1− q12n−5)
≈ 0.001863955388,

we get the value

U(i) =
2−

√
12− 6

√
3 + 2

√
6
√
3− 9

(
4
√
6
√
3− 9 + 1)2

=

√
2

(√
2−

√
3t1 +

4
√
27
√
t1

)
(

8
√
27 4

√
t1 + 1

)2
for t1 = 2−

√
3. �
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