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A CONTINUED FRACTION OF ORDER TWELVE
AS A MODULAR FUNCTION

YOONJIN LEE AND YOON KYUNG PARK

ABSTRACT. We study a continued fraction U(7) of order twelve using the mod-
ular function theory. We obtain the modular equations of U(7) by computing
the affine models of modular curves X(I') with I' = I'1 (12) N T'g(12n) for any
positive integer m; this is a complete extension of the previous result of Ma-
hadeva Naika et al. and Dharmendra et al. to every positive integer n. We
point out that we provide an explicit construction method for finding the mod-
ular equations of U(7). We also prove that these modular equations satisfy the
Kronecker congruence relations. Furthermore, we show that we can construct
the ray class field modulo 12 over imaginary quadratic fields by using U(7)
and the value U(7) at an imaginary quadratic argument is a unit. In addition,
if U(7) is expressed in terms of radicals, then we can express U(r7) in terms
of radicals for a positive rational number r.

1. INTRODUCTION

The Rogers-Ramanujan continued fraction r(7) is a holomorphic function on the
complex upper half-plane $ defined by
1
q 5
r(r) = p =q
l+ ————
1+ 1

o=

[T0-a)
n=1

q3
1+ — T+
where ¢ = 2™ and (5) is the Legendre symbol. Ramanujan stated that the exact
value 7(y/—n/2) can be found whenever n is any positive rational quantity. Gee and
Honsbeek proved that r(7) is a generator of the modular function field of level 5.
They also showed that any singular value of r(7) at imaginary quadratic argument
is contained in some ray class field over an imaginary quadratic field [5]; hence its
minimal polynomial is solvable by radicals.

Another important subject is the modular equation. For each positive integer n,
there is a certain polynomial giving the relation between r(7) and r(n7) because
the modular function field of level 5 is of genus 0. This polynomial is called the
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modular equation of level n. By the aid of the theory of arithmetic models of
modular curves, Cais and Conrad studied the modular equations of the Rogers-
Ramanujan continued fraction [I]. They found the Kronecker congruence relations
for the modular equations which are similar to the modular equations of the elliptic
modular function j(7).

Since then there have been active research activities on the study of holomorphic
functions on ) similar to (7). Recently, the authors studied a Ramanujan-Selberg
continued fraction S(7) as a modular function of level 8, and they also obtained the
modular equations for every level and the ray class field modulo 4 over an imaginary
quadratic field by the value S(7) [9].

A continued fraction U(T) of order twelve is defined by

(1 —q)
(1 —*)(1 - q")
¢*(1-¢*)(1—q")
0= @0+ 4
Mahadeva Naika et al. [I0] expressed U(7) as the following infinite product form:

U(r) =
1—-¢3+

(1-=¢*)(1+¢% +

0 (1_ 12n—1)(1_ 12n—11)

v =a]] G :

] (1—q'27=5)(1 — ¢12n-7)

They found modular equations of U(7) of levels 3 and 5 using the theory of hyperge-
ometric series. They also evaluated U(7) at 7 = iy/m for several rational numbers
of m [10]. Afterwards, Dharmendra et al. [3] extended their result on modular equa-
tions to other levels n = 2,3,5,7,9 in a similar way as [I0]. Moreover, Mahadeva
Naika et al. obtained modular equations of U(7) of degrees 4,6,8,10,12,3/2,5/2
and 7/2 [11[12].

In this paper we study U(7) using the modular function theory. We first find
the generators of modular function fields on I'1(12) and T'y(12) by using the mod-
ularity of U(7) (Theorem [[I]). We then obtain the modular equations of U(7) by
computing the affine models of modular curves X (I") with I" = T’y (12) NI (12n) for
any positive integer n (Theorem [[.2]); Mahadeva Naika et al. [10] and Dharmendra
et al. got their result for some positive integers, and our work is a complete exten-
sion of their result to every positive integer n. We point out that we provide an
explicit construction method for finding the modular equations of U(7) (Algorithm
[B)). We also prove that these modular equations satisfy the Kronecker congruence
relations (Theorem [[3]). Furthermore, we show that we can construct the ray class
field modulo 12 over imaginary quadratic fields by using U(7) (Theorem [[4]). We
show that the value U(7) at an imaginary quadratic argument is a unit (Theorem
[[O). In addition, if U(7) is expressed in terms of radicals, then we can express
U(r7) in terms of radicals for a positive rational number r.

We state our main results as follows.

Theorem 1.1.
(1) The field of modular functions on I'1(12) is generated by U(T).
(2) The field of modular functions on Tg(12) is generated by U(7) + 1/U(7).
(3) We can write U(7) in terms of Weierstrass p-functions:

. @12,(2,0)(127’) - @12,(570)(127)

U(r) = ,
™ @12,(1,0)(127) - Plz,(2,0)(127)




A CONTINUED FRACTION OF ORDER TWELVE 2013

where

a1 7T+ ag
@N,(al,ag)(T) = p (T,ZT + Z) .

(4) We can express U(T) + 1/U(7) in terms of Dedekind eta functions:
1 n(37)3n(4r)
U(r)  n(m)n(12r)*

Theorem 1.2. For any positive integer n, one can find a modular equation F,(X,Y)
of U(1) of level n by an explicit construction method in Algorithm B4l

U(r)+

Theorem 1.3 (Kronecker congruence relation). Let Fy,(X,Y) be the modular equa-
tion of U(T) of level n. Then for any prime p > 5 we have

_ [ (XP=-Y)(X -YP) (mod p) ifp==+1 (mod 12),
F(X,Y) = { (XP —Y)(XY? —1) (modpp) ifg =45 (mod 12).

Theorem 1.4. Let K be an imaginary quadratic field with discriminant dy and let
T € KN$ be a root of the primitive equation ax?+bx+c = 0 such that b* —4ac = dx
and (a,6) = 1, where a,b,c € Z. Then K(U(7)) is the ray class field modulo 12
over K.

Corollary 1.5. Let K be an imaginary quadratic field. If Z[t] is the integral closure
of Z in K, then K(U(71)) is the ray class field modulo 12 over K.

Theorem 1.6. Let K be an imaginary quadratic field. Then U(T) is an algebraic
unit for every T € K — Q.

Theorem 1.7. IfU(7) is expressed in terms of radicals, then we can express U(rT)
in terms of radicals for a positive rational number 7.

This paper is organized as follows. In Section 2, we present some basic and
necessary notions about modular functions and Klein forms, and we give several
lemmas about the cusps of a congruence subgroup, which will be used in Section
3. Then we prove Theorems [L.T] and [[3] and give the properties of modular
equations in Section 3. In Section 4, we prove Theorems [[L4] and [[’7l We use
the MAPLE program to find some examples.

2. PRELIMINARIES

We introduce some definitions and properties in the theory of modular functions.
Let $ = {r € C: Im(7) > 0} be the complex upper half plane, H* := HUQU {oo}
and T'(1) := SLy(Z). For any positive integer N, we have congruent subgroups
I'(N),T1(N),Io(N), I''(N) and T°(N) of I'(1) consisting of matrices (2}) con-
gruent modulo N to (§9), (§%), (§5), (L9) and (%), respectively.

A congruence subgroup I' acts on $* by linear fractional transformations as
(1) = (at +b)/(ct +d) for v = (¢}4) € I, and its quotient space I'\H* is a
compact Riemann surface with an appropriate complex structure. We identify
with its action on $*. An element s of QU {oo} is called a cusp, and two cusps
s1, 82 are equivalent under I' if there exists v € T such that y(s;) = s2. The
equivalence class of such s is also called a cusp. Indeed, there exist at most finitely
many inequivalent cusps of I'. Let s be any cusp of I', and let p be an element
of SL3(Z) such that p(s) = co. We define the width of the cusp s in I'\$H* by the
smallest positive integer h satisfying p=! (§ #)p € {£1}-T. Then the width of the
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cusp s depends only on the equivalence class of s under I', and it is independent of
the choice of p.
The modular function f(7) on a congruence subgroup I' is a C-valued function
f(7) defined on $ satisfying the following three conditions:
(1) f(r) is meromorphic on £.
(2) f(7) is invariant under T, i.e., foy = f for all v € T".
(3) f(r) is meromorphic at all cusps of T'.

The meaning of the last condition is as follows. For a cusp s for I, let h be the
width for s and let p be an element of SLy(Z) such that p(s) = co. Since

Gortimem=(sor (5 1) o) o= (For o).

fop~! has a Laurent series expansion in g, = €2™7/" namely for some integer ng,
(fop ™) () = X5, @) With apn, 7# 0. We call this integer ng the order of f(r)
at the cusp s and denote ng by ord,f(7). When ord, f(r) is positive (respectively,
negative), we say that f(7) has a zero (respectively, a pole) at s. If a modular
function f(7) is holomorphic on $) and ord; f(7) is nonnegative for all cusps s, then
we say that f(7) is holomorphic on $*. Since we may identify a modular function
on I'" with a meromorphic function on the compact Riemann surface I'\H)*, any
holomorphic modular function on I' is a constant function.

Let Ao(T') be the field of all modular functions on I', and let Ay(I")g be the
subfield of Ay(I") which consists of all modular functions f(7) whose Fourier coeffi-
cients are in Q. We may identify Ag(T") with the field C(T'\$*) of all meromorphic
functions on the compact Riemann surface I'\$)*, and if f(7) € Ay(I") is noncon-
stant, then the field extension degree [Ao(I") : C(f(7))] is finite and is equal to the
total degree of poles of f(7).

To recall the Klein form, consider the Weierstrass o-function by

T — _ B\ EHE(R)?
o(z;L) =z H (1 w) ewtzluw)
weL—{0}

where L is any lattice in C and z € C. This is holomorphic with only simple zeros
at all points z € L. The Weierstrass (-function is defined by

n=TE0 =t Y (A )

weL—{0}

by the logarithmic derivative of o(z; L). This is meromorphic with only simple
poles at all points z € L. We can see that o(Az; A\L) = Ao(z; L) and ((Az; AL) =
A"1¢(2; L) for any A € C*. In fact, '(z; L) is —p(z; L) with Weierstrass p-function

defined by
1 1 1
N L :: _— D .
p(z; L) 22"‘ Z ((Z_w)Q w2>
weL—{0}

For any w € L, p(z + w; L) = p(z; L) and “L[((z + w; L) — ((2;L)] = 0. In other
words, ((z+4w; L) —((z; L) depends only on a lattice point w € L and not on z € C,
so we may let n(w; L) be ((z +w; L) — ((z; L) for all w € L. When we fix the basis
w1,ws of L = Zw1 + Zws, for z = aywy + asws € C with a1,as € R, we define the
Weierstrass n-function by

n(z; L) := ain(w1; L) + agn(wsz; L).



A CONTINUED FRACTION OF ORDER TWELVE 2015

Since 7(z; L) does not depend on the choice of the basis {wq, w2} of L, it is well-
defined. Moreover, 7(z; L) is R-linear so that n(rz; L) = rn(z; L) for any r € R.
We define the Klein form by
K(z; L) = e "&02/25(2. 1),
For a = (a1,az2) € R? and 7 € §, we define
Ka(r) = K(aym + ag; Z7 + Z)

as the Klein form by abuse of terminology.
We observe that K,(7) is homogeneous of degree 1, i.e., K(Az; AL) = AK(z; L)
and K, (7) is holomorphic and nonvanishing on § for a € R? — Z2.
Then the Klein form satisfies the following properties. Let v = (g Z) € SLo(Z)
and a = (aj,az) € R2.
(K0) K_a(1) = —Ka(1).
(K1) Ka(y7) = (c7 +d) ' Kay (7).
(K2) For b = (by,b2) € Z?, we have that
Ka+b(T) = 6(&, b)Ka(T)’
where e(a, b) = (—1)b1b2tbitbzmilbaar—bras)
(K3) For a= (r/N,s/N) € (1/N)Z? — Z? and v € I'(N) with an integer N > 1,
we obtain that
Ka(y7) = ea(v)(c + d)ilKa(T)a
where Ea(”)/) — _(_1)((afl)rJrchrN)(br+(d71)s+N)/N2efri(br2+(d7a)'r57052)/N2.
(K4) Let 7 € $ and 2z = a7 +ap with a = (a;,a2) € Q% —Z2. For ¢ = €™ and
¢ = e27riz — eZTria2627ria17" we get

1 mias (a1 — ai(a;— ¥ (1_qnqz)(1_qnq;1)
Ka(r) = =g gm0 ) [ — 7 =

and ord,K,(7) = (a1)({a1) —1)/2, where (a1) denotes the rational number
such that 0 < (a;) < 1 and a1 — {a1) € Z.

(K5) Let f(r) =11, K;n(a)(r) be a finite product of Klein forms with m(a) € Z
and a = (r/N,s/N) = (1/N)Z? — Z? for an integer N > 1, and let k =
— > .m(a). Then f(7) is a modular form of weight k on I'(V) if and only
if

n=1

Sam@r? =Y _m(a)s*> =Y _ m(a)rs=0 (mod N) if N is odd,
Sam(a)yr? =3 _m(a)s? =0 (mod 2N),
Yam(a)rs=0 (mod N) if N is even.
For more details on Klein forms, we refer to [§].

The following lemmas are useful to get our results. Let N and m be positive
integers and let I' = T'1 (N) N To(mN). If we let T\I'(1)/T'(1)0o = {11 I'(1) ooy - - -,
I'ygT'(1)oo }, then {y1(00),...,74(c0)} is a set of all inequivalent cusps of I' such
that ~;(0c0) and +,(c0) are not equivalent under I" for any ¢ # j. Let

M :={(¢,d) € (Z/mNZ)*: (¢,d) =1, ie., (c,d,mN) =1}
and let A be a subgroup of (Z/mNZ)* defined as

A= {i(l—l—Nk:)E(Z/mNZ)X :k;:O,...,m—l}.
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For (¢1,d;) and (G3,ds), we define an equivalence relation ~ on M by (¢1,d;) ~
(¢z,dz) if there exist 5 € A and m € Z/mNZ such that & = 5-¢ and dy =
5-d; +7m-¢. Furthermore, we define a map ¢ : I\I'(1)/T'(1)oe — M/ ~ by
$(I' (25)T(1)e) = [(,d)]. Then we see without difficulty that the map ¢ is well-
defined and bijective. Throughout the paper, we regard +1/0 as co. Therefore we
get the following lemmas.

Lemma 2.1. Suppose that a,c,a’,c € Z with (a,c) = (a’,c') = 1. Then with the
notation A as above, a/c and a'/c’ are equivalent under T'1(N) NTo(mN) if and
only if there exist 5 € A C (Z/mNZ)* and n € Z such that (%) = (Tlgjm>
(mod mN).

For a positive divisor  of mN, let 7, : (Z/mNZ)* — (Z/xZ)* be the natural
homomorphism which is surjective. For a positive divisor ¢ of mN, let s’cjl, .

)

sl € (Z/(mN/c)Z)* be all the distinct coset representatives of m,,xn/.(A) in

c,ne

(Z/(mN/c)Z)*, where

_ olmN/e)
¢ |7TmN/C( )‘
and ¢ is the Euler’s ¢-function. Then for any Sc,i with ¢ = 1,...,n., we choose

5ci € (Z/mNZ)* such that 7, n/.(5c:) = ?. We further let
Se:={51,.--+Sem. € (Z/mNZ)*}.
For a positive divisor ¢ of mNN, let ac’l, ooy U € (Z/cZ)™ be all the distinct

s Yem
coset representatives of . (A Nker (m,n/c)) in (Z/cZ)*, where

0O 60 D)
|7TC(A n ker(ﬂ—mN/C)” |7TmN/(c7mN/c) (A)} .

me =

For any a/, Wlth] =1,...,me, wetake@,; € (Z/mNZ)* such that 7.(ac;) = @
We can choose a representative acj of az; so that 0 < ac1,...,0cm, < MmNV,
(ac,;,mN) =1 and the set A; := {ac1,...,0cm.}

Lemma 2.2. With the notation as above, let

S:={(¢-5c;,ac;) € (Z/mNZ)* : ¢ > 0,¢| mN,5c; € S¢,ac; € A}

For given (¢-3.5,0ac,;) € S, we can take x,y € Z such that (z,y) =1, T =¢ 5,
and § = Q. ; because (c- sc’i,ac’j,mN) = 1. Then the set of y/x with such x and
y is a set of all the inequivalent cusps of T'1(N)NTo(mN) and the number of such

cusps s
N
S1= Y ne-mo= 3 (mNje)
>0 >0 ’WmN/(cmN/c)(A)‘
clmN clmN

The following lemma is for finding the width of cusps.

Lemma 2.3. Let a/c be a cusp of T = T'1(N)NLg(mN) with a,c € Z and (a,c) = 1.
Then the width h of a cusp a/c in T\$H* is given by

h— ) @i if N=4,(m,2) =1 and (c,4) =2,
a W otherwise.

The proofs of Lemmas 2] 22 and 23] are given in [4].
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3. A CONTINUED FRACTION U(T) OF ORDER 12
We note that
— 11
ﬁ ¢ —g ) I K(1/12,512)(7)
o q127=5)(1 — ¢'2n-7) 12 LUK i112)(7)

by (K4), where ¢y = e>™/N,

Proof of Theorem [L11.

(1) By (K5), U(7) is a modular function on I'(12). Since U(r + 1) = U(7),
U(7) is invariant under ({ ). Hence U(7) € Ay(I'1(12)) because I'1(12) =
((12),(§1)). Note that the genus of Ay(I'1(12)) is zero. Consider the
subfield C(U (7)) of Ap(T'1(12)) generated by U(r) over (C By Lemmas 2]
and [Z3)] all the inequivalent cusps of I';(12) are oo, 12 ,0, %, %, %, %, i, %
and % with widths 1,1,12,12,6,4,4, 3,3 and 2, respectively. Since U(7) has
a simple zero only at co and a simple pole only at 5/12, the total degree of
poles is 1. Hence [Ay(T'1(12)) : C(U(7))] = 1.

(2) Note that I'o(12) = (I'1(12), (% 32)). We can choose 00,0,1/2,1/3,1/4 and
1/6 as the inequivalnet cusps of I'g(12). By using that

5 12 1
Ue (1 2) = g
we have

U(r) + € Ao(To(12)).

1
U(r)
This function has poles only at cusps because U(7) allows zeros and poles
only at cusps. Since U(co) = 0 and the width of oo is 1, U(7) +1/U(7) has
only a simple pole at co. Hence

1

(3) For a modular function, we call f normalized if its g-series is
¢ +0+aig+ag® +- -
By (1) the normalized generator of Ag(I'1(12)) is 1/U(7) — 1 because

L :q*1+1+q+q2+...
U(r)
In [7, Theorem 3.7], they found the normalized generator
-1
N(j )= ——— — 2,
(]1712)( ) ]1,12(7') -1
where
. @127(1,0)(127) - @12,(270)(127')
Jraz(r) = .
©12,(1,0)(127) — p12,(5,0)(127)
From
1 -1 ]
:N(leQ)(T) + 1= —  — 1= jl,lQ(T)

U(r) Jia2(7) —1 1= jiaa(r)’
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we get
. @12,(2,0)(127) - @12,(570)(127)
912,00 (127) = P12,(2.0)(127)
(4) By [7, Table 10], one can get the values N'(j1,12)(s) and U(s) at cusps s:
cusp S 00 0 1/2| 1/3 1/4 1/6
N(Gra2)(s) [[oo [ 14+V3 | =2 [ =1 -4 | (=1 =+/3i)/2] 0
U(s) 0[2-v3] -1 i (1++30)/2 | 1
Consider the modular function
_ n(37)°n(47)
RNTCTIPE
on I'y(12) by [I3, Proposition 1.64].
Moreover, ¢g(7) has a simple pole only at co and simple zero only at 1/3.

Thus g(7) is also a generator of Ag(I'o(12)) = C(U(7) + 1/U(7)) and there
are constants a, b, ¢, d such that
1 a-g(t)+b

Ur) + U(r) - c-g(t)+d

U(r)

Note that

. o 0 -1 s 1y
lim 9(7) = lim 9] (1 0 > () = lim g (_F) =4
because n(—1/7) = v/—iTn(T). By substituting the values U(7) and ¢(7) at
00,0and 1/3, we get a = d and b = ¢ = 0. Therefore, U(7)+1/U(7) = g(7).
]
Proposition 3.1. We have
QU(7),U(n7)) = Ao(T'1(12) N To(12n))g
for a positive integer n.

Proof. From Q(U(7)) = A¢(I'1(12))g, we see that for any a € GL3 (Q), U(at) =
U(7) if and only if « € Q* - T';(12). For 8 = (% {), note that

[(12) N BT (12)3 = T (12) NTo(12).

Hence we get U(7),U(nt) € Ao(I'1(12) N To(12n))q. It is sufficient to show that
QU(7),U(nT)) contains Ap(I'1(12) NTo(12n))g. Taking M; € I'1(12), we write

ry(12) = JT- M;

as a disjoint union where I' :=I'1(12) NT'g(12n).
Let f(1) =U(nt) = (U o B)(7). Assume that for distinct indices i and j,

f (¢] MZ = f o Mj.
Then UofoM; = UofBoM; and UOBMiM]flﬂ*I = U. It means that ﬂMiMjflﬂfl €
Q* - Ty(12); thus M;M;' € B7'I'1(12)8. Since M;M:' € T'y(12), M;M; " €

1 (12)N B~y (12)8 =T. So we get a contradiction. We showed that all functions
f o M, are distinct and C(U(7),U(n7)) = Ag(T'1(12) NTo(12n))g. O
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From the definition of U(7), the g-expansion of U(7) is U(T) = q + O(q?), and
so U(7) has a simple zero at co. We also check that U(7) has a simple pole at
5/12 by computing U| (2 33) (7). We can figure out the behavior of U(7) at each
s € QU {0} by checking the equivalence class in Q U {oo}.

Lemma 3.2. Let a,c,a’,c¢’ € Z and U(T) as before. Then we obtain the following
assertions:
(1) U(7) has a pole at a/c € QU {oo} with (a,c) = 1 if and only if (a,c) =
1, =0 (mod 12),a = £5 (mod 12).
(2) U(nt) has a pole at o’ /c € QU {oo} with (a,c) = 1 if and only if there
exist a,c € Z such that a/c = na’/d, (a,¢) = 1,¢ = 0 (mod 12),a = £5
(mod 12).
(3) U(7) has a zero at afc € QU {oo} with (a,c) =1 if and only if (a,c) =
1,e=0 (mod 12),a = £1 (mod 12).
(4) U(nt) has a zero at a/c € QU {oo} with (a,c) = 1 if and only if there
exist a,c € 7 such that a/c = na'/c, (a,¢) = 1,¢ = 0 (mod 12),a = +1
(mod 12).

Proof. (1) By Lemma 2] U(7) has a simple pole at a/c if and only if

(Z):i(g) (mod 12)

because the subgroup in Lemma [ZT]is A = {4+1}. Hence the all a/c € QU {o0}
are only a, ¢ € Z? such that (a,c¢) =1,¢ =0 (mod 12) and a = 5 (mod 12).
(3) Similarly, U(7) has a simple zero at a/c if and only if

(i)Zi(é) (mod 12)

for a,c € Z such that (a,c) = 1.
(2) and (4) are proved by (1) and (3), respectively. O

Now we study the modular equation of U(7). Ishida and Ishii [6] showed the
following lemma by means of the standard theory of algebraic functions; this lemma
will be useful for checking which coefficients of modular functions are zero or not.

Lemma 3.3. For any congruence subgroup T', let f1(7) and fo(7) be nonconstants
such that C(f1(7), f2(T)) = Ao(T') with the total degree D; of poles of f;(T) for
i=1,2, and let

F(X,Y)= Y Ci;X'Y7 € C[X,Y]

0<i<Ds
0<j<D;

be such that F(f1(1), f2(7)) = 0. Let Sr be a set of all the inequivalent cusps of T,
and let

Sjo={s € Sr: fj(1) has zeros at s}
and
Sj oo ={s € Sr: fj(1) has poles at s}

a=— Z ordg f1(7), b= Z ords f1(7).

5€851,00MNS2,0 s€S51,0NS2,0
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Here we assume that a (respectively, b) is 0 if S1,00 N S2,0 (respectively, S1,0M S2,0)
is empty. Then we obtain the following assertions:
(1) Cpye # 0. In addition, if S1,00 C S2,00 U Sa0, then Cp, ; = 0 for any
a.
(2) éjb # 0. In addition, if S10 C S2.00 U S20, then Cy; =0 for any j # b.
(3) Ci,Dl =0 fO’f‘ 0<1< ‘5170 N SQVOO‘,DQ — |Sl,oo N Sg7oo| <1< Ds.
(4) Ci,O =0 for0<i< |51’0 n SQ’()|,D2 — |Sl,oo n SQ7Q| < i< Ds.

If we interchange the roles of f1(7) and fo(7), then we may have more properties
similar to (1)—(4). Suppose that there exist r € R and N,ny,ny € Z with N > 0
such that

filr+1) = (Y fi(r)
for j =1,2, where (n = e*™/N . Then we get the following assertion:
(5) If n1i + nej # n1Da + nga (mod N), then C; j = 0. Here note that nob =
7’),1D2 —+ noa (HlOd N)

Proof. See [0, Lemmas 3 and 6]. O

We provide an explicit construction method for finding the modular equations
U(7) in the following algorithm.

Algorithm 3.4 (Finding the modular equation of U(7)).
Input: The functions U(T) and U(nT) with a positive integer n.
Output: The explicit modular equation F,(X,Y) of U(T) of level n.
Steps:
(a) Let fi() :=U(7), fa(7) := U(nT) and Sr,(12)nr,(12n) be the set of inequiv-
alent cusps on I'1(12) NTo(12n).
(b) Find the subsets S1,0, 51,00, 52,0 and S2.00 0f Sr,(12)nre(12n) Using Lemmas

2123
(¢) Calculate the total degrees di and da of poles of f1(7) and fo(T), respectively,
i.e.,
dj = — Z ordsfj(T)
SESj,oc
forj=1,2.
(d) We set
F,(X,Y) = Z Ci i X'Y7
0<i<ds,
0<j<d:

with C; ; € Q because all coefficients of fi(1) and fo(T) are rational; C; ;
will be determined in Step (e).
(e) Let
o 0 Zf Sl,oo N SQ,O = ¢7
“=9 - Esesl 820 ords fi(7)  otherwise,

and let Cyq, o = 1. Then by substituting g-expansions of U(T) and U(nTt) to
Fo.(X,Y), we get C; ; explicitly.

Proof of Theorem [[2 For nonconstants f1(7) and f2(7), assume C(f1(7), f2(7)) is
the field of all modular functions on some congruence subgroup. Then

[C(f1(7), fo(7)) - C(f5(7))] = dj,
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where d; is the total degree of poles of f;(7) for j = 1,2. So we can take a
polynomial ®(X,Y) € C[X,Y] such that ®(f1(7),Y) and ®(X, f2(7)) are minimal
polynomials of fo(7) and f1(7) over C(f1(7)) and C(f(7)) with degrees d; and da,
respectively. It means that

(3.1) OX,Y)= Y Ci; X'V

0<i<ds
0<j<d:

satisfies ®(f1(7), f2(r)) = 0 for some C; ; € C.

For a positive integer n, let f1(7) and fo(7) be U(7) and U(n7), respectively. By
Proposition Bl C(f1(7), f2(7)) is the field of modular functions on 'y (12)NTg(12n).
Since f;(7) has zeros and poles only at cusps, the sets S, and S, are easily
obtained by (K1), (K4) and Lemma[2.2] where St (12)nr,(12n) is a set of equivalence
classes under ~:

81,82 € QU {0}, 81 ~ 83 & 81 = s for some v € T';(12) NTy(12n),

Sio= {s € ST, (12)"Ty(12n) ° f;(7) has zeros at s} ,
and

Sjoo = {s € Sr,(12)nre(12n) : fj(7) has poles at s}
for j = 1,2. Moreover, we can get the total degree d; = — Zsesj,x ord, f; (1) of
poles of f;(7) for j = 1,2. Hence the equation ®(X,Y’) in (BI) is the modular

equation F,(X,Y). By using Lemma [3.3] we can choose Cy, , = 1 without loss of
generality, where

- 0 if Sl,oo n S2,0 = (ba
R D seS) oS o Otds f1(T)  otherwise.

Hence we get the explicit form of modular equation F,(X,Y) by substituting g-
expansions of U(r) and U(nT). O

Remark 3.5. In the case that n is a prime p > 5, then Step (e) can be much more
simplified by using Theorem 3.7

We apply Algorithm B4 to get the modular equations of levels 2 and 3.

Theorem 3.6. The modular equations of U(T) of levels 2 and 3 are the following:
(1) (Modular equation of level 2)

(U2(r) = U(27)) (1 = U(27)) +2U(r)U(27) = 0.
(2) (Modular equation of level 3)
(U3(7) = U37)) (1 = U3r) + U?*(37)) +3U(r)U(37) (1 — U(1)U(37)) = 0.

Proof. Following Algorithm [3.4] we present the explicit computation as below, and
we use the same notation for the steps.

(1) (a) Let f1(7) =U(7), for) =U(27).
(b)

1 5 b )
Sl,O = {OOyE} 751700 - {E’ﬂ} ,5270 = {OO}’ and SQ,OO = {ﬂ} .
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(c) Since
orde f1(7) = 0Td1/12f1(7') =1,
0Yd5/12f1(7') = 0Td5/24f1(7) =-1,
ordee fo(7) = 2 and ords a4 f2(7) = =2,
we have

(d) Hence we get
B(X,)Y)= Y Ci X'V
0<4,j<2

(e) Since Sl,oo n 52,0 = ¢, we let 0270 = 1. From U(T) =q+ q2 + q6 _
¢+ ¢® — ¢° + O(¢'?), we determine that

FB(X,Y)=X?—- X% - Y + Y24+ 2XY
and
(U2(r) = U(27)) (1 = U(27)) +2U(7)U(27) = 0.

(2) (a) Let fi(r) = U(7), fa(7) = U(37).
(b) We have the subsets

1 11 5 7 5 5
p— —_— —_— pu— —_— —_— —_— pu— d pu— —_— .
S1,0 {007 Tk 12} , 51,00 {12, Bk 36} ,S2,0 = {00}, and Ss {3 }

(¢) From
orde f1(7) = ordy /12 f1(7) = ordyy 12.f1(7) = 1,

ords 12 f1(7) = ordy 12 f1(7) = ords 36 f1(7) = —1,
orde fo(7) = 3 and ords 36 f2(7) = —3,

(=)

we get
dy =ds = 3.
(d) Hence we may assume that
F5(X,Y) = Z Ci; XY,
0<i,j<3

(e) We may assume that C5o = 1 because S1,00 N S20 = ¢. Then by
substituting g-expansions of U(7) and U(37) to F53(X,Y) we get

F(X,Y)=X3 - X3 + X3Y?2 - Y + Y2 - Y3 + 3XY — 3X?Y?;
equivalently,
(U3(1) = U@37)) (1= U3r) + U?(37)) +3U(r)U(37) (1 — U(1)U(37)) = 0.
(]

Theorem 3.7. With the notations as above, let p be a prime > 5. Then F(X,)Y)=
> o<ij<pi1 CigX'Y7 € QX,Y] satisfies the following conditions:

(1) 4f p= =1 (mod 12), then

Cpr10#0and Cpp11 = Cpy12 =+ = Cpyy1py1 =0,

and
CO,p+1 7é 0 and CO,O = CO,I — ... = CO,p — 07
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(2) if p= =5 (mod 12), then

Cpr1p 70 and Cpri0 =+ = Cpp1p-1 = Cpr1pt1 =0,

and

00’1 75 0 and CO’() = 0072 == CO,erl =0.

Proof. The congruence subgroup which we should consider is T' = T'1 (12) N Ty (12p)
and hence

A:{i(1+12k)6(Z/12pZ)X :k':(),...,p—l},

where A is the subgroup as in Section 2. Choose a unique z € {0,...,p — 1} such
that 122 = —1 (mod p). Among k = 0,...,p — 1, this value z is the only one of
them which does not satisfy the condition +(1 4 12k) € (Z/12pZ)”. By Lemmas
and we have to consider Si2, A12, S12p, A12p. We observe that

{(1+12k) € (Z/pZ)* : k=0,...,p—1 such that 1 + 12k 20 (mod p)}

is equal to the whole set (Z/pZ)*. Thus all the inequivalent cusps under consid-
eration are 1/12,5/12,1/12p and 5/12p ( respectively, 1/12,7/12,1/60 and 7/60)
if p # 5 (respectively, p = 5). Although we consider only the case p # 5, for con-
venience, all the statements below still hold by replacing with appropriate cusps.
Hence we concentrate on the cusps 1/12,5/12,1/12p and 5/12p at which the widths
are p,p, 1 and 1, respectively, by Lemma 231 Note that 1/12p is equivalent to oo
by Lemma 2Tl If we let fi(7) = U(7) and fo(7) = U(p7) in Lemma [33] then by
Lemma we know that

5 5 11
Sloe =198 ,510=14—,— .
1o {12’12;;}’ 1o {12’12p}

Further we obtain that

1 1
SQ,OO:{ o > }75270:{ —} ipril (mod 12),

127 12p 127 12p
1 5 5 1
Sp=d— 2 g =02 ~ Uip=15 d12).
2,00 {12’12;;}’2’0 {12’12p}1p (mod 12)
Note that

ords /12 f1(7) = —p and ords /19, f1(7) = —1.

Consider the orders of f3(7) at 1/12,5/12 and 5/12p. For ¢ € {1,...,11} such that
cp=1 (mod 12):

1 0 o T o pT
f2<12 1)(7) - f2<127‘+1)_U<12T+1)

U (p (cp— 1)/12) (1 (1 —cp)/l?) ")

12 c 0 »

qrr if p=+1 (mod 12),
- g VP4 ifp=45 (mod 12).
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Similarly, for ¢/ = {1,...,11} such that ¢p =5 (mod 12),

5 12 B 57 +12\ opT + 12p
e (12 29) (0 = 1 (127+29> =U ( 127 + 29 )
B 5p (bep—1)/12\ (1 (29 —cp)/12
~ o (12 ) N KO
(5p (5cp — 1)/12> (7' + (29 — CP)/12)
= UO
12 c p
B g VP ... ifp=+41 (mod 12),
- ql/P_|_... ifp=45 (mod 12).

Hence it turns out that ord, f2(7) = —1 for x = 5/12 (respectively, 1/12 ) if p = £1
(mod 12) (respectively, +5 (mod 12)). At 5/12p, take b and d € Z such that
5d — 12bp = 1. As

Sl (13;0 Z) (m=0Ue (152 bfz)) (pr)=q7"+-+,

we get ords 12, f2(7) = —p. So the total degrees of poles of fi(7) and f»(7) are both
p+ 1 and we may let the modular equation Fy,(X,Y) be Y ; iy Cij XYY
Moreover, by using 510U S1,0c = S2,0 U 52,00 and

(¢ if p=+1 (mod 12),
S1,00 N S20 = { {5/12} ifp==45 (mod 12),

we get
Cot107#0,Cpp11 = =Cpp1p =Cpr1pp1 =0 ifp=+£1 (mod 12),
Cpr1p #0,Cpp10=""=Cpp1p-1=Cpr1p41 =0 ifp=45 (mod 12).

On the other hand,

¢ g { 11/12.1/12p} ifp=%1 (mod 12),
LOTI=20 79 (1/12p) if p==45 (mod 12)

and

ordy/12f1(7) +ordy /12, f1(7) =p+1 ifp=+1 (mod 12),
ordy /12, f1(7) = 1 ifp=45 (mod 12).

Hence we get

C()’erl 7& O, 007() = 0071 == Com =0 ifp =+1 (mod 12),
Con #0,C00=Cop==Copy1 =0 ifp=+5 (mod 12).

]

We can completely determine all the coeflicients C; ; of the modular equation
F,(X,Y), which is presented in Table [T} this is done by using Theorem [3.7] and
substituting the Fourier expansions of U(7) and U(pr) into F,(X,Y) = 0 with
X =U(r) and Y = U(pr). Table [l includes the results of Dharmendra, Rajesh,
Kanna, and Jagadeesh [3] and Mahadeva Naika, Dharmendra, and Shivashankar
[10). It is obvious that one may apply our method to find higher order modular
equations F,(X,Y) for p > 17.
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TABLE 1. The modular equations F,(X,Y) of U(7) of levels
2.3.5,7,11 and 13

the modular equations F},(X,Y) of U(7)

XZ4+v2 X%y —Y +2XY

X3 X3y + X3Yv3 v 4+ YZ _yY3 4 3XY —3X2Y?Z

(X5 —Y)(XY® —1)

+5(XY® —2x3v* 4 2x2y3 4 X2y — Xv* - XY 4+ 2x%Y3 — x5y? —2x3y3

+X4Y5 — x5y® 4 xP)

7 [ (XT-Y)(XYT —1)

+702X2%Y 4+ XY® — XY3 4+ XY7 —2XYS + Xy? +4x%y® 44 x2y3

—4X2Y2 4+ XY — X2Y® 4+2X0Y7 - Xy +5Xx%Y5 —2Xx7y2 - x2y7

+5x%y3 —ax3yS 4+ x3y7 4 XTy3 —4x°%y? —4x0y6 — x5y5

+4x0y2 4+ x5v3 4+ XPy — XPy7 — x6y3 - xOy 4+ x%y6 _5x5y4

+x3y2 - X3y + X7y6 — X7Ty7 — x3y3 - X7Ty% 4+ x3y® —5x3v% 4 4x2v%)

11 [ (XTT—y)(x —Yh

+11(X2Y —10X2Y2 +69X7Y3 —33X7Yv2 -5 XY® +33x0v7 —axv3 +69x°Y°

—48 x10y8 L 73 x9y3 — xW0y 4 7xyv4 45 x1y5 — g8 x8y8 — xMy2 _ xlly

+133x8y? 4+ 7x8y 1 — 99 x8y3 —33x10y® 4 ax1y3 4+ 84x0y0 448 x4y 10 469 XOY?
—136 X°Y5 + 64 X%Y7T —69X°Y3 4+ 92Xx%y* — 5 x5y +33x°%Y2 4133 Xx%y® — 99 x4Yy?

492 X4Y5 — 92 X%y 7T 4+ 4x3y 4 7 X%y +99x3y?* — 69 X3Y5 — X2y — 136 X7Y”
—34Xx2Y9 +16 X2Y10 — 7 X8y +48 X2Y8 +33X2Y°% —5 X7y 434 x2y3 — 48 X2v*

+4 X% 434 X0V 1 axY? +5XYT —7XY® —ax%v1t —34x10y3 4 48 x10v% 4 92 x8Y7
—5xMyT 47 xMy8 - xy! - xv10 —02X7y? — 48 X*y2 — 88 X*Y* 4+ 99 x*y3 — 99 x3y8
—34x3y10 4 73 x3y 9 4 x 10yl 4 99 x9y® — 34 X924 34 x3y?2 — 93 x3y3 +92x7y8

+99 Xx8Y9 4 34 x9y10 —7x1y? —92x%y® —48 x8Y10 —10Xx10v10 4 XY?2 4+ 5X7Y

—99 x9y% 4+ 5 x5yl £ 33 X7Ty10 4 48 x8y2 —33X2Y7 —7x%y!1! —33x5y10 — 93 x9y?
+16 X10y2 4 xMy? 69 X977 —92x8Y® +69X3Y7 + xMy10 y 64 x7y"

—4x3Y —69X7Y?)

13 | (X -—v)(x — v

+13( 339 X11v10 _90 X8y 12 — 487 x9v!! —10X2Y7 + XY2 4+ 70X7Y* +6 X13Y7

+493 X%Y3 — 993 x2Y® — 90 X12Y® —6X%Y7 —90x%Y? + 652 x9Y® — 794 x%v*

—6X°%Y7 +101 X2Y10 — 302 x3y8 + 6 XY0% — 396 X8Y8 + 486 X10y6 — 409 x4y 1l

—106 X4Y?2 + 838 X°%y? —64 XM y7 4+ 70 X7y 10 + 116 X2v® —10X7Y? — 147 X2Y?®

—642 X0Y9 — 14 XY 4+ 362 X8y 1! — x3y13 _ 409 x3y10 —2xy13 — 16 XY8

—106 X2y?* — 556 X4Y6 — 37 x12y3 — 37 x2y ! 4 486 x*yY® — 396 X0y 6 4 671 XOy8
—10X7Y12 4 6 XY7 —64X3Y7T +70X*Y7 —10X12Y7 4+ 116 X0y 12 — 60 X7Y% 4+ 15 X%V
—xMy 4116 X8Y?2 + 204 xMy3 — 168 X1yl — 642 X8y % +4x1?y — 37 x3y12 64 xTY 1!
—5X3Y +6X13Y® —64X7Y3 +47Xx2y3 — 556 X0y ?* 4362 X603 — 147 X%y 12 4 493 x5y 11
—6X7Y? +6X7Yy —5x13y1l _7x4y13 4 101 X4Y12 — 794 X4y + 789 XPv?* — 7 XY 10
—106 X'10v12 — 794 x5y 10 4 4 x13y2 3 x'12y? — 587 x*v* + 789 X4y® — 5 x!1y13

+204 X3y 4339 Xx4y3 + 47 X3y 2 4362 X3Y S +493 x3Y° 4 739 x4y 10 — 302 xOy 1!
—3x2y12 1142 x2y® — 302 X833 — 106 X2y 10 — 11 Xx2v2 4+ X2y + 671 X8y % + 15 XY?
—90x2Y% +838 Xx9Y® —642X°Y® + 6 X813 —60X%Y7 +652X°Y% —60X%Y7 — 16 X%Y
—168 X3Y3 4+ 739 X10y4 4 12 X4y — 642 X°Y® — 14 X138y 9 — 16 x13y6 4 15 x13y5 — 7 x13y4
447 X2y 11 x 12y 12 4142 X2y 4101 X12y? — 487 X1y 4362 X1 y® 4493 x11yS
—409 X11y4 — 37 x11y?2 4 12 x10y13 4 339 x 10y 1l _ 587 x10y10 4 789 x10y9 _ 556 x 10y 8
+70 X0y 7 415 x5y 13 £ 101 X10y2 — 409 Xx10v3 — 7 x10y 4 142 x9v12 4 652 XOy® 4+ 6 X0y
—993 X%Y® — 487 X%y 3 4116 X12Y% — 147 x%y? — 147 x12y5 — x13y3 _ 487 x3y®

+789 X%y 10 2 x B3y 412 x13y10 4 x12yv13 L 12 xy? —6Xx7yY? 4 Xx13y12 60 xTY®
+339X3Y? — 14 X%y +142X5Y2 + 6 X7Y13 — 136 XTY7 — 794 Xx10y5 — xy !

—556 X8Y10 — 14 X9y 13 4 652 X8V — 302 x11y6 4 47 x11y12 _ 16 x6y13 — 5 xy3

+486 X0y 10 4 486 X8y* + 4 X2y f4xY!?)

afw(n|z

From now on, we let n be a positive integer with (n,6) = 1. We will find the
Kronecker congruence relations for the modular equations of U(7) and U(n7). If
0o € SLy(Z) satisfies 0, = (9," 9) (mod 12) for any integer a with (a,6) = 1,
then we have

10 a b
a2 (, ,)ha=1 U 2|, nja)
a‘>0 0<b<n/a
A" (a,b,2)=1
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in which the right-hand side is a disjoint union [14] Proposition 3.36]. Note that

Iy (12)\I'(12) (é 2) r1(12)’ =n]] (1 + 1) .

p
pln

d:=

Since o, depends only on @ modulo 12, we choose o, as

10 5 12
"ili(o 1)’Ui5i<12 29)'

From the transformation formulas (K0)—(K2), we get

1
Uooy1=U and Uooys = i
For convenience, let a,p = o4 (8 nl}a) for such a,b with 0 < a | n,0 < b < n/a

and (a,b,n/a) = 1. We now consider the following polynomial ¥, (X, 7) with the
indeterminate X:

\Iln(Xa T) = H H [X - (U o aa,b)(T)] .

a>0 0<b<n/a
aln (a,p,2)=1

Since all the coefficients of W, (X,7) are the elementary symmetric functions of
U o g p, they are invariant under I'1(12), i.e., ¥, (X, 7) € C(U(7))[X], and we may
write ¥, (X, U(7)) instead of ¥, (X, 7).

Theorem 3.8. With the notations as above, for a positive integer n > 1 with
(n,6) =1 we define

Fo(X,U(7)) = U(r)"™ 0 (X, U(7)),
that is, F,(X,Y) =Y "™V, (X,Y) with the nonnegative integer

Ty =— Z ord;U(1).
s€S1,006MNS2,0
Here we assume that r, =0 if S1 00 N S20 is empty. Then we obtain the following
assertions:
(1) Fo(X,Y) € ZIX, Y] and degx Fo(X,Y) =n][,,(1+1/p).
(2) Fo(X,Y) is irreducible both as a polynomial in X over C(Y) and as a

polynomial in' Y over C(X).
(3) Letd=n]],,(1+1/p). Then

F.(X,Y) = F,(Y, X) ifn=41 (mod 12),
{ F (X,Y) = (-1)™YeF,(1/Y,X) ifn=45 (mod 12).

Moreover, if p is a prime number congruent to £5 (mod 12), then r, = p
and
Fy(X,Y) = ~YPE,(1/Y, X).
(4) If n is not a square, then F,(X,X) is a polynomial of degree > 1 whose
leading coefficient is +1.

Proof. Since U(1) = ¢+ O(g?), we may let U(7) = >°°_, ¢,q™ with ¢, € Z. We
further let v, € Gal(Q(¢,)/Q) be such that 1 ((,) = ¢ for some integer k with

(k,n) = 1. Then 1, induces an automorphism of Q(¢,)((¢'/™)) through the action
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on the coefficients. We denote the induced automorphism by the same notation vy,.

Since
a b a? ab > abm {1/ a?m
Uo (O n/a) (T) =U (ZT—F ) Z Can (q ) )

m=1

we obtain that

(09 (5 ) 0) = Zonit ()"

Let b’ be the unique integer such that 0 < b < n/a and b’ = bk (mod n/a). Then

o L)) -es B

because (2% = Cﬁb/. Since Uoo, = U or 1/U, we have ¢ (Uoagp) = Uoagy, and
so all the coefficients of U,, (X, U(7)) are contained in Q((¢'/™)). Hence by observing
the fact U, (X,U(7)) € C(U(7))[X] we see that ¥,,(X,U(7)) € Q(U(7))[X].

For each oy p, we have I'1(12) - ap, € I'1(12) (§ 2) T1(12), and there exist 7,7/

and 7,5 € I'1(12) such that
10 .
Y 0 n Ya,b = 7Y Ca,b,

ie, (§0)Yab0, 5 € T'1(12). We consider an embedding &, of C(U(7/n),U(7))
over C(U (7)) defined by

fa,b(h) =ho Ya,b-
In fact, £, 4(U) =U oy, = U and

& (U(2)) =6 (Vo (5 1)) @ =0o (5 1)t = Voo,

When aqp # ag i, Uoagp # U ooy p. This means that

[CU(7/n),U(7)) : CU(7))] = d.

So, U,,(X,U(7)) is irreducible over C(U(7)).

With the notation as in Lemma B3] we let f1(7) = U(7) and fa(7) = U(n7) for
(n,6) = 1. Assume that a/c € S1,0US1,00- In other words, a = £1 or £5 (mod 12)
and ¢ =0 (mod 12). Since (n,6) =1

" =41,45 (mod 12)

for m = (¢,n). Note that
na (n/m)a a

c c/m d
such that ' = #1 or £5 (mod 12) and ¢ = 0 (mod 12). Hence fa(a/c) =
U(na/c) = U(d'/d") = 0 or oo and S19U Si0c C S20U S2.00. Similarly, one
can prove the reverse inclusion and we have

S1,00 US10 = 52,00 US20.
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If we let
r=r,=— Z ord,U(7), s = Z ord,U(7),
5€851,00MNS2,0 s€8S1,0NS2,0
r=— Z ord,U(nt), & = Z ord U(nt),
SE€S2,66NS1,0 8€852,0MS1,0

then F(X,Y) in Lemma [33] is written as the form

F(X,Y) = Cg, o XUV + Co g, XY 4 Cy o X¥ + Co Vo + > CiyX'Y9,

0<i<dy,
0<y<dsy

where d; (respectively, d,,) is the total degree of poles of U(7) (respectively, U(nt))
and Cy, r, Crr.a,,Cs 0, Co s are nonzero. Since F(X,U(r)) is an irreducible polyno-
mial of U (7/n) over C(U(7)) and F (U (7/n),Y) is also an irreducible polynomial
of U(r) over C(U (7/n)), we know that

Ca,r - U(M) 0, (X,U(r)) = F(X,U(1))

and F,(X,Y) = Y"0,(X,Y) is a polynomial in X and Y which is irreducible
both as a polynomial in Y over C(X) and a polynomial in X over C(Y). Since
U(r)"0,(X,U(1)) € QX,U(7)] and all the Fourier coefficients of the coefficients
of the ¥, (X,U(7)) are algebraic integers, it turns out that U(7)"¥(X,U(r)) €
Z[X,U(1)], i.e., Fo(X,Y) € Z|X,Y]. Hence (1) and (2) follow.
(3) We first consider the case n = £1 (mod 12). By (2), F,,(X,U(7)) is an irre-

ducible polynomial in X over C(U (7)) with root U(7/n). Since ¥, (U(n71),U(T)) =
0, i.e., ¥, (U(7),U(r/n)) = 0, U(r/n) is a root of the polynomial F,,(U(7),X) €
Z[X,U(7)]. So we derive that

Fo(U(7), X) = g(X, U(7)) Fu (X, U (7))
for some polynomial g(X,U(7)) € Z[X,U(7)] by the Gauss lemma on the irre-
ducibility of polynomials. Since

FA(X.U(7)) = g(U (7). X)Fo(U (7). X),

Fa(U(7), X) = g(X, U(7))g(U(7), X) Fo(U(7), X)
implies g(X,U(7)) = £1. If g(X,U(7)) = —1, then
Fo(U(7),U(7)) = =Fa(U(7), U(7));
hence U(7) is a root of F,,(X,U(7)), which is a contradiction to the irreducibility
of F,,(X,U(7)) over C(U(7)). Therefore we have
FTL(X) U(T)) = Fn(U(T)vX)
Next, we consider the case n = £5 (mod 12). U(7/n) is a root of the polynomial
U(T)eF,(1/U(7), X) € Z[X,U(7)] because we see that
1 n 0
X_W_X_Uogn(o 1)(T)—X—(U006n’0)(7)

is one of the factors of

(X, U(7)), W (1/U(n7),U(7)) =0

and

U(r) Fa(1/U(7),U(r/n)) = ¥, (1/U(7),U(r/n)) = 0.
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In a similar way as the case n = +1 (mod 12), we have

(3.2) U(r)4F, (ﬁx) = g9(X,U(7))Fu(X,U(7))

for some g(X,U(7)) € Z[X,U(7)] with the Gauss lemma because F,,(X,U(7)) is
an irreducible polynomial in X with root U(7/n) by (2). We write (3:2)) as

YIE, ( !

?,X> — (X, Y)Fu(X, ).

We note that
1
degy Fn(X,Y) + degx g(X,Y) = degx YF, (?,X) = degy F,(X,Y)

and

1
degy Fo(X,Y) + degy g(X,Y) = degy VP, (?

,X) = d = degy F,(X.Y)

because

1 1
YiE, (= x) = (Cd LXTnyd=dn L0y XSy
Y Cdn’r mn bl

+Cr/7d1Xd1Yd7T/ + CSQOYd*S/ + (lower degree terms))

with nonzero coefficient Cp 5. So g(X,Y") is a constant and
degy Fn(X,Y) = degy Fi(X,Y) =d.
Since F,(X,Y) is a primitive polynomial, we have g := ¢g(X,Y) = +1. By using
that F,(Y 1, X) =g - Y IF,(X,Y),
1
X
= g-X?(Y?X ™" + (other terms))
= g-X“"Y? 4+ (other terms)

and the coefficient of X4="Y? in F,(X,Y) is g.
On the other hand, since ¥, (X, U(7)) is equal to

11 T x—¢¢/m+-)

a>0,aln 0<b< 2
a==+1 (mod 12) (a,b, ﬂ)zl

R R !

a>0,aln 0<b< 2
a==+5 (mod 12) (a,b,ﬂ):l

we see that the coefficient of X4="Y? in F,(X,Y) is equal to

(3.3) 11 II am=¢ 11 |

a>0,aln 0<b< 2 a>0,a|n 0<b<
a==+5 (mod 12) (a,b,%):l a=+5(mod 12) (a,b,%):l
where
e= ]I I v
a>0,a|n 0<b< %

a=+£5(mod 12) (a,b,%):l
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In fact, we note ¢ = (—1)"™ and the other factor of the right-hand side of (B3] is
[TI1¢, % = 1 by the elementary lemma in [I, Lemma 6.7]; if m > 0 is an odd
integer with & | m, then [[o<ycp b1)=1 (b = 1. Therefore g = (—1)".

Now, assume that p is a prime with p = +£5 (mod 12). Clearly, d =
pII(1 +1/p) = p+ 1. In the proof of Theorem B7 Si o N S20 = {5/12} and
rp = —ords ;15U (1) = p. Hence F,(X,Y) = —YPTF,(1/Y, X).

(4) Assume that n is not a square. Since

q—Cflban/"—l—~~~ ifa=41 (mod 12),

U(t) = (Uoag = 8
)= (T e 2wp)lr) {—C;“bq‘“/”+q+~-- ifa==+5 (mod 12),

the coefficient of its lowest degree term is

1 if a2 >nand a = £1 (mod 12),
—(,; % otherwise.

Therefore the coefficient of the lowest degree term in F,(U(7),U(7)) is a product
of —(; % for a,b where a is a positive divisor of n such that a = +5 (mod 12) or
a =41 (mod 12) with a® < n and b is a nonnegative integer with 0 < b < n/a and
(a,b,n/a) =1. By (1), F,,(X, X) has the integral leading coefficient, which should
be £1. ]

Proof of Theorem [L3 Let p be an odd prime. For any ¢g(7) and h(7) € Z[Cp]((qi))
and a € Z[(,], we write
g(t) = h(r) (mod )

if g(r) — h(r) € aZ[G) (7).
Since U(T) = q+ > _5 Cmq™ with ¢,,, € Z, we have that

(Uoary)(T)=Cav + Y emClm (g™
m=2

=gv+ Y em(@?)" = (Uoang)(r) (mod1-g),

m=2

for any b =0,...,p — 1. Note that

(U oao)(r)?

0o P
(cpq% +3 cmc;“q%>

m=2

q+ Z g™ (mod1—¢p)
m=2

q-+ Z emqg™ (mod 1—¢p)
m=2
= U(r).
Suppose that p = +1 (mod 12). By observing that

(Uoapo)(r)=(Uoay)(pr) =U(pr) = ¢" + Z cm@™™

m=2
and &, = ¢, (mod p), we see that

(Uoapo)(r) =U(r)?  (mod p)
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and
(Uoapo)(r)=U(r)? (mod 1—¢,).
Since r, = — Esesl,wﬂ&,o ord,U(7) = 0, we have
F(X,U(1)) = (X, U(r) = (X = (Uoapo)(r) [[ (X-(Uoai)(r)

0<b<p

= (X -U@)")X = (Uoai)(r))?
= (X-U)")(X? (anlo)( )”)

(X =U(@)")(X?=U(r)) (mod 1—¢p).
Let F,(X, U(7)) = (X = U(7)")(X? = U(7)) = X2, ¥ (U(7)) X", where ¢, (U(7)) €
Z[U(7)]. Since all the Fourier coefficients of v, (U(7)) are rational integers and
divisible by 1 — ¢, in Z[(,], we see that ¢, (U(7)) € pZ[U(7)]. Hence we have

Fp(X,U(7)) = (XP = U(T))(X = U(7)")  (mod pZ[X, U(7)])

when p = £1 (mod 12) as desired.

Now assume that p = £5 (mod 12). Since (Uoay,0)(7) = (Uooy)(pr) = 1/U(p7)
and U(pr) = U(7)P (mod p), we get that (Uoay 0)(7) = 1/U(7)? (mod p). In other
words,

U(r

J— 1 _
(Uoapo)(r) = Ui (mod 1 — (p).
Note that r, = — ZSQSLWQSM ord;U(7) = p. So we get
Fp(X,U(T)) = Um)"¥,(X,U(7))
= UMP(X = (Uea)(m) [] (X - (Uoay)(r)
0<b<p

= U)X = 1/U)"NX = (U o ao)(r))”

XU(7)? = 1)(XP = (U 0 a1,0)(7)")

XU(m)P —1)(XP -U(r)) (mod1-—¢,).

With the same argument as in the case p = £1 (mod 12), we get that
Fo,(X,U(r) = (XP-U(r))(XU(T)? = 1) mod pZ[X,U(T)].

S~ o~

4. RAY CLASS FIELDS AND EVALUATION OF U(7)

In this section, we focus on finding the value U(7) and the extension field gen-
erated by the value U(7).

Lemma 4.1. Let K be an imaginary quadratic field with discriminant dx and
7€ KN$H be aroot of the primitive equation ax?® + bx + ¢ = 0 in Z[z] such that
b2 —dac = dx, and let T be any congruence subgroup such that T'(N) C T" C T'1(N).
Suppose that (N,a) = 1. Then the field generated over K by all the values h(t),
where h € Ao(I")q is defined and finite at 7, is the ray class field modulo N over
K.

Proof. See [2, Corollary 5.2]. O

The previous lemma gives us the ray class field generated by U(7) and the proof
of Theorem [[4
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Proof of Theorem [L4. If T be the congruence subgroup such that Q(U(r)) =
Ao(T")q, then I'(12) C I € I'1(12) because I'' =T'1(12) by Theorem [[I[(1). For an
imaginary quadratic field K with discriminant dg, consider 7 € K N §) satisfying
at? + br + ¢ = 0 such that b?> — dac = dg, (a,6) = 1 and a,b,c € Z. Since U is
defined and finite at this 7, K(U(7)) is the ray class field modulo 12 over K by
Lemma [£.11 O

Proof of Corollary [LH. Assume that Z[7] is the ring of integers in K. If ar? +br +
¢ =0 with a,b,c € Z and (a,b,c) = 1, then a should be 1. Hence K(U(7)) is the
ray class field modulo 12 over K. O

By definition, a modular unit h(7) over Z is a modular function of some level N
which is rational over Q((y) such that h(r) and 1/h(7) are integral over Z[j(7)],
where j(7) is the classical elliptic modular function.

Lemma 4.2. Let h(7) be a modular function of some level N rational over Z({n)
for which h(7) has neither zeros nor poles on §. If for every v € SLa(Z) the Fourier
expansion of h oy has algebraic integer coefficients and the coefficient of the term
of lowest degree is a unit, then h(7) is a modular unit over Z.

Proof. See [8, Chapter 2, Lemma 2.1]. ]

Let h(7) be a modular unit over Z and K be an imaginary quadratic field. Since
it is well known that j(7) is an algebraic integer for every 7 € K —Q, we can derive
that for such 7, h(7) is an algebraic integer which is a unit. By observing this fact,
we derive the property of U(7).

Proof of Theorem [LLGl It is enough to prove that U(7) is a modular unit over Z.
Let v = (%) € SLy(Z). Then U(7) is written in the product of Klein forms as

llK ()

ClleK 7_ .

By (K1) in Section 2, the action v on U(T) is

= (' H

If we replace the Klein forms by the q—products in (K4) and expand the products
as a series, then the series is the Fourier expansion of U(y7). Since we want to use
Lemma L2 to prove that U(y7) has Fourier coefficients which are algebraic integers
and the coefficient of the lowest degree term is a unit, we may assume that

0<(a+cj)/12,(ba+cj)/12 <1

N)lH
wl“

LL
12 12

a+c] b+d] ) (T)

5a+c] SbIEd] ) (T)

by (K2). If we assume these, then the only term we should consider in (K4) is

b+dj

1l—q,=1- q =57 or1— 5b+d]q5a+u.

Put ¢ = (¢,6). First, assume that ¢ # 1. Then a is relatively prime to ¢’ and
a+cj=a#0,5a+cj=ba#0 (modcd); thus, the exponents (a + ¢j)/12 and
(5a + ¢j)/12 of g are not integers and 1 — ¢, cannot be complex numbers, namely
it has algebraic integer coefficients with the lowest coefficient 1, and the series
expansion of U(v7) has the desired properties.
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Now assume that ¢ = 1. There exist unique integers ji,j2 € {0,...,11} such
that
(4.1) a+c-j1 =0 (mod12) and 5a+c-jo =0 (mod 12).

Hence, the coefficient of the lowest degree term of U(y7) is
(1= o9y (1 = i)
up to a unit. Since
(i j_1>_<a—|—c-j1 b+dj1><d —b)
12712 12 7 12 —c a
_ (<a+c-j1>d— (b+d-ji)e *)
12 ’

Sa4c-jy Sb+d-jo\ (d —b
12 12 - a

<(5a+c-j2)d—(5b+d~j2)c,*)’

and

/)
12’12

12
we know that
l=(a+c-j1)d—(b+d-j1)e=—(b+d-j1)c (mod 12)
and
5=ba+c-j2)d—(b+d-jy)c=—(5b+d-ja)c (mod 12)

by @I). Hence neither ¢/ 7" nor ¢757472 js 1.
Let ¢p be an integer such that —co-c¢ =1 (mod 12). Then

RS T A N E (STA0 NI Sys NS Sy e i
1_ 153+d~j2 - 1 (szco~c)5b+d-j2 - 1 — 15200 - 1— 15200
= 1450+ Cp™ + (5 + (2 € Z[Go),s
5b+d-j 5
1-— <12 2 _ 1-— 150 -1+ Cco + C2CO + CSCO + <4co e Z[C ]
1_ f;dg‘l 1- % 12 12 12 12 12]-
This means that (1 — ¢/549) /(1 = ¢P5492) is a unit. O

Corollary 4.3. Let g(7) = n(7)~n(37)3n(47)n(127)~3 and let K be an imaginary
quadratic field. Then g(7) is an algebraic integer for every 7 € K — Q.

Proof. For any 7 € K —Q, U(7) and 1/U(7) are algebraic integers by Theorem [L.6
By Theorem [Tl (4), g(7) = U(7)+1/U(7), so g(7) is also an algebraic integer. [

Proof of Theorem [l Suppose that the value U(7) is expressed in terms of radi-
cals. To write U(r7) in terms of radicals as well, we need to factorize r.

Assume that r = a/b with a,b € Z~( and (a,b) = 1. Find all solutions s1, ..., s
of the equation F,(U(7),z), where F,(X,Y) is the modular equation obtained by
Theorem Then write them in terms of radicals. For a sufficiently large IV,
compare the obtained solutions si,...,s; with

N _ _a(12n—1) _ a(12n—11)
v = q° H (1-g ) —q )
(]_ _ qa(12n75))(1 _ qa(12n77))

n=1
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and ¢ = e2™7. We choose s;j to be the value closest to v, then we take s; to be the

explicit value of U(ar).
In a similar way, we get the value U (r7) in terms of radicals by using the modular
equation Fp(X,Y) and an approximation

1 _ ,a(12n—1)/b 1— a(12n—11)/b
T H g™ )(1—¢ )
— ¢a(12n=5)/b)(1 — qa(12n=7)/b)

for a sufficiently large N. |

In [I0, Theorem 5.1] one can find 12 values U(7) if 7 = iz /2 with z = 1,/3,/5,

VT,V/13, V17, 1/3/3,1/3/5,1/3/7, \/%,\/7/_3 and /11/3. We find more values

in the following.

Example 4.4.
(1)
. V2(V2—1/3t1+ V27V
U(i) = ( (Vo m+1)? ) for t; =2 — /3,
(2)

m(ﬁfm f+1/./_t3+_2)>

N _ 3 _
U(\/gl) - (m*‘r /—t3+2) fOI‘ t3 - \/5 17
(3)
. 2—/34/(1—t5) (143t
U(V5i) = TVl o = \/14\/5+ 8v/15 — 18V/3 — 31,
(4)

N 4y2AFE7—2V3/ tr+4V2y/2dF 7
U(\/_ ) - (V288 +\/92‘W)2

for t7 = 4v21 + v/v/21 — 3(3v/14 + 5/6).

Solution. The values of U(iz/2) are as follows [10, Theorem 5.1]:

9 6v3—9—1
(1) UG/2) = LpEt,
— . =
9 9) — V/—108+108 ¥2— V124122
(2) U(v3i/2) V/—108+108 ¥2+ V12412932
4
19) — V/1261/5+72/15—162v/3—279—1

(3) U(V5i/2) V/1261/65+72v/15—162/3—279+1"
V12v3— 3245 v/IL (V54 V21 /v _3)8

12V2+ /324150721 (V/54 V214 V/VEI-3)
We will show case (1) and the rest of the cases are obtained by exactly the same
process.

The modular equation of level 2 is

(4) UWVTi/2) =

B(X,Y)=X?- X +2XY - X?Y + Y2
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Then the zeros of F5(U(i/2),x) =0 are

2+\/12—6\/§+2\/6\/§—9
(V6v3—9+1)2

~ 0.9171526117

and

2—\/12—6\/§+2\/6\/§—9
(V63 —9+1)2

By letting gy = e ™2™ and finding the approximation of

~ (0.001863955375.

2000 n— n—
. H (1 _ q12 1)(1 _ q12 11)
0 (1 — q2n=T)(1 — ¢12n-5)

n=1

~ (0.001863955388,

we get the value
4
2 1/12 - 6v3+2V/6v3 9 ﬁ<ﬁ— 3ty + m\ﬁtl)

(V63— 9+1)? (V2T +1)°
for t; =2 — /3. O

U(i)
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