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A KERNEL-BASED DISCRETISATION METHOD FOR

FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS

TOBIAS RAMMING AND HOLGER WENDLAND

Abstract. We derive a new discretisation method for first order PDEs of
arbitrary spatial dimension, which is based upon a meshfree spatial approxi-
mation. This spatial approximation is similar to the SPH (smoothed particle
hydrodynamics) technique and is a typical kernel-based method. It differs,
however, significantly from the SPH method since it employs an Eulerian and
not a Lagrangian approach. We prove stability and convergence for the re-
sulting semi-discrete scheme under certain smoothness assumptions on the
defining function of the PDE. The approximation order depends on the un-
derlying kernel and the smoothness of the solution. Hence, we also review an
easy way of constructing smooth kernels yielding arbitrary convergence orders.
Finally, we give a numerical example by testing our method in the case of a
one-dimensional Burgers equation.

1. Introduction

In this paper, we will derive and analyse a new discretisation method for a large
class of first order evolution equations, i.e., we are interested in finding approximate
solutions to initial value problems of the form

∂tρ+ f(t, x, ρ,∇ρ) = 0 on (0,∞)× R
n,(1.1)

ρ(0, ·) = ρ0 on R
n.(1.2)

Here, f : R2n+2 → R is a given, twice continuously differentiable mapping, ρ0 ∈
Cr(Rn) is the given initial condition and ∇ρ denotes as usual the vector of first
order spatial derivatives of ρ. The function ρ : [0,∞) × R

n → R is the solution
we want to compute and we will assume that the above problem has a solution
ρ ∈ C1,r([0,∞) × R

n), i.e., a solution which has at least first order continuous
derivatives in time and r-th order continuous derivatives in space with r ≥ 1.

These somewhat strong conditions are required for our error analysis. The nu-
merical scheme itself can be set up under much milder conditions. Nonetheless, as
usual the efficiency of the scheme is based upon the assumption that we have a
strong solution to the problem.

First order problems of the above type occur in many different situations, often
when modelling physical phenomena. The most simple example is given by the
well-known linear transport problems

∂tρ+ u · ∇ρ = g

with a given drift u : [0,∞) × R
n → R

n and a source term g : [0,∞) × R
n → R.
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Further examples range from the nonlinear evolution problems of Hamilton-Jacobi
type, given by equations of the form

∂tρ+H(x,∇ρ) = 0

with given Hamiltonian function H : R2n → R to problems from optimal control
and dynamical programming, where the control usually also has to satisfy a given
(often physically motivated) partial differential equation.

One specific possible application we have in mind is the determination of the
basin of attraction of a system of ordinary differential equations ẋ(t) = f(t, x(t)).
Here, a feasible approach is to set up a first order partial differential equation for
the Lyapunov function L(x, t), which then has to satisfy

∇L(t, x) · f(t, x) + ∂tL(t, x) = −g(t, x)

with a given function g. For a recent review see [18]. Since the function g can be
chosen by the user, it is possible to have a smooth solution such that this particular
type of problem is indeed covered by our convergence analysis below.

Numerically, equations of the form (1.1), (1.2) are typically solved by classical
finite differences, semi-Lagrangian approximation schemes, level set methods or by
finite elements using an approach based upon viscosity solutions [16, 17].

However, some of these problems do not exhibit classical smooth solutions. This
is particularly the case when scalar, non-linear conservation laws of the form

∂tρ+∇ · f(ρ) = 0

with a flux function f : R → R
n are considered. Here it is well-known that, even

for smooth initial data, the solutions can develop shocks in finite time (cf. [4]) or
an even worse non-smooth behaviour.

The numerical simulation of such conservation laws and the handling of these
non-smooth solutions has attracted considerable attention within the last few years.
In particular, weighted essentially non-oscillatory (WENO) schemes and discontinu-
ous Galerkin schemes have proven to work quite well—at least in one spatial dimen-
sion (cf. [20,30,31] and the references therein). However, there are still considerable
problems when it comes to treating non-smooth data in the multivariate setting,
since most of the known schemes are more or less extensions of the one-dimensional
schemes and show spurious effects if the shocks and other discontinuities are not
aligned with the mesh [15]. As a consequence, there is a need for suitable, genuinely
multivariate methods. While the method we want to analyse in this paper is still
far from tackling these kinds of problems, the method can hopefully be extended
in such a direction in the future.

In this paper, we propose a new spatial discretisation method, which, in a certain
way, uses techniques from classical particle methods such as SPH (smoothed particle
hydrodynamics); see for example [22–25, 34, 35]. For this reason, our analysis will
partially employ ideas of earlier works such as [10,26]. However, our method differs
from these methods significantly since we do not use a Lagrangian approach as it is
usually done in this context. Instead, we employ an Eulerian approach. Hence, in a
certain way, our method can also be seen as a generalised finite difference method.
Moreover, from an approximation theory point of view, our approximation scheme
uses and extends ideas from quasi-interpolation, particularly those with radial basis
functions. Our scheme to approximate a function ρ which depends on time and
space is based on the following ingredients. We fix a function ζ : R

n → R, a



KERNEL-BASED DISCRETISATION 1759

sampling size h > 0 and a scaling parameter ε > 0. Then, the function ρ would be
approximated by

(1.3) [ρ](t, x) :=

(
h

ε

)n ∑
j∈Zn

ρ(t, jh)ζ

(
x− jh

ε

)

if we were able to sample ρ at the points ρ(t, jh), t ≥ 0, j ∈ Z
n. In approxi-

mation theory, an expression of the form (1.3) is referred to as a quasi-interpolant,
though the functions approximated there usually do not depend on time. Moreover,
usually some conditions on the function ζ are required, which ensure that certain
polynomials are reproduced. Widely used choices for ζ are given by radial basis
functions; see for example [2,5–9,28]. There are, however, fundamental differences
to our approach. As mentioned above, in classical quasi-interpolation, polynomial
reproduction is required, which is, due to a result by Strang and Fix [33], equivalent
to the Strang-Fix conditions. We will make a similar but still different assumption
on our function ζ; see Definition 2.1 below. The main difference, however, is that in
quasi-interpolation, in part due to earlier results on principal shift-invariant spaces
(see [11, 12, 27]), the underlying basis function is often globally supported. Obvi-
ously, a globally supported ζ might cause convergence problems in (1.3). Hence,
classical quasi-interpolation actually employs a finite linear combination of a glob-
ally supported radial basis function as the function ζ. This linear combination is
chosen such that ζ decays exponentially and polynomials are reproduced. In this
paper, we will omit this step and work directly with compactly supported functions,
which makes the evaluation of (1.3) extremely efficient. Yet another difference is
that in quasi-interpolation the scale parameter ε and the sampling parameter are
usually connected by ε = h. This is referred to as a stationary setting and the
Strang-Fix conditions then yield approximation orders depending on the order of
the Strang-Fix condition. Our situation is different since we will have to assume
that h is significantly less than ε, i.e., that h/ε → 0 with h, ε → 0. This is compa-
rable to, but not exactly the same as, the non-stationary setting in [27].

The main difference, however, is that we actually do not have the samples ρ(t, jh)
but need to approximate them by solving a system of ODEs. It might be possible
to employ the machinery of quasi-interpolation in this context, as well, but we are
not aware of such an approach.

In deriving the ODE just mentioned we will employ (1.3) to approximate spatial
derivatives, in particular, ∇ρ of the unknown function ρ. This is simply achieved
by differentiating [ρ], i.e., by forming ∇[ρ]. This means that we are reconstructing
the derivative of a function from its sampled function values. Such a procedure is
commonly called a generalised finite difference approximation. The difference to
classical finite differences is, of course, that in finite differences a local interpolating
polynomial is differentiated, while here we differentiate an expression of the form
(1.3). Interestingly, in a series of papers, a connection between radial basis function
approximation and polynomial approximation had been established. In [13], it was
shown that univariate interpolation with increasingly flat Gaussians yields univari-
ate polynomial interpolants. In [29] flat limits of analytical and radial functions
were studied and it was shown that the limiting interpolant is again, under certain
assumptions, a polynomial interpolant. Further results in this direction are, for
example, in [19, 32]. Though all of these results are mainly for interpolation they
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could also be used to derive approximations for derivatives, which then would re-
semble classical finite differences in the flat limit. Our approach, however, is quite
different. While in the flat limit case the number of data sites is fixed and the
scaling ε tends to infinity (ε in those papers corresponds to 1/ε here), we have a
possibly infinite number of data sites. Moreover, we change the scaling and data
sites simultaniously and let both the scaling and the mesh size tend to zero in a
very specific way. Hence, we cannot expect to end up with a polynomial interpolant
in our case and the similarity to classical interpolation is restricted to the fact that
we reconstruct a derivative from function values.

While our analysis is based upon the fact that our spatial discretisation points
form a regular grid, it is our goal to extend these results to arbitrary point sets
later on.

The paper is organised as follows. In the next section, we will derive our discreti-
sation scheme and state our main convergence result. The third section is devoted
to some approximation results which extend results from [26]. The fourth section
then deals with the proof of our main convergence result. In the fifth section, we
give a general scheme to construct high order kernels. The final section is devoted
to a numerical example.

In this paper, we will only consider problems on all of Rn as the spatial domain.
From a practical point of view, this means that we will, where necessary, assume
that for a fixed time interval [0, T ] there is a compact set Ω ⊆ R

n such that the
solution ρ(t) = ρ(t, ·) of (1.1), (1.2) has support contained in Ω for all t ∈ [0, T ]. We
will choose Ω large enough such that no boundary effects occur. For the purpose
of our analysis, we will without restriction also assume that Ω is convex. In this
situation, we obviously only need to know the defining function f on the set

(1.4) M := {(t, x, ρ(t, x),∇ρ(t, x)) ∈ R
2n+2 : t ∈ [0, T ], x ∈ Ω} ⊆ R

2n+2,

which is also compact since ρ is supposed to be a C1 function. Again, for the
purpose of our analysis, we will extend this set M to a bigger, convex set

(1.5) M̃ := [0, T ]× Ω1 ×Π.

Here Ω1 is the convex hull of
⋃

x∈Ω B1(x), where B1(x) is the ball of radius 1 and
centre x. Moreover, Π is a convex, compact super set of {(ρ(t, x),∇ρ(t, x)) : t ∈
[0, T ], x ∈ Ω} ⊆ R

n+1.
Then we may assume that f is smoothly defined on all of Rn but has support

in M̃ . Obviously, this is no restriction under the given assumptions and we can
modify any given f that does not satisfy this condition accordingly.

As usual, W k
p (R

n) will denote the space of all functions having weak derivatives
up to order k in Lp. Its norm will be denoted by ‖ · ‖Wk

p (Rn) and the semi-norm

consisting only of the derivatives of order |α| = k will be denoted by | · |Wk
p (Rn).

2. The discretisation scheme and its convergence

Our discretisation scheme is a classical kernel-based approximation scheme. We
will employ kernels of the following form.

Definition 2.1. A continuous and bounded function ζ : Rn → R is called a kernel
of order k ≥ 1 if

(i) ζ ∈ L1(R
n) with

∫
Rn ζ(x)dx = 1,

(ii)
∫
Rn xαζ(x)dx = 0 for all α ∈ N

n
0 with 1 ≤ |α| ≤ k − 1,

(iii)
∫
Rn |x|k|ζ(x)|dx < ∞.
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For k, s ∈ N0 with k ≥ 1, we define Kk,s to be the set of all such kernels
ζ ∈ Cs(Rn) ∩ W s

1 (R
n) of order k and smoothness s. If s = 0 we require ζ ∈

C(Rn) ∩ L1(R
n). Moreover, we define Kk,s

c to be the subset of such kernels having
compact support.

Note that the second condition in Definition 2.1 will only become active if k ≥ 2.
The smoothness s and the order k of the kernel ζ are not related. However, the

order k is related to the smoothness of the Fourier transform of ζ. In particular,

the second condition in Definition 2.1 can be expressed as Dαζ̂(0) = 0 for all
1 ≤ |α| ≤ k − 1. As this is of no importance to us, we will not pursue this any
further.

So far, ζ is rather a function than a kernel. It is named a kernel since it is used
as a convolution kernel. To be more precise, let ε > 0 and a kernel ζ as before be
given and let us define the scaled version ζε(x) = ε−nζ(x/ε), x ∈ R

n. Then, any
function ρ : [0,∞)× R

n → R can be approximated by a convolution of the form

(2.1) ρε(t, x) = (ρ ∗ ζε)(t, x) =
∫
Rn

ρ(t, y)ζε(x− y)dy, (t, x) ∈ [0,∞)× R
n,

provided that the integral exists. Note that the convolution is only taken with
respect to the spatial variable and not with respect to the time variable.

Next, in particle methods, the approximation ρε is further approximated using
a quadrature rule. From now on, we will use the notation

• xi = ih, i ∈ Z
n,

• ρxi
= ρih = ρ(·, xi), i ∈ Z

n,

where h > 0 is a given discretisation parameter. Thus, applying a simple composite
rectangular rule to the integral in (2.1) yields the new approximation

(2.2) [ρ]x(t) := [ρ](t, x) := hn
∑
j∈Zn

ρjh(t)ζε(x− xj), (t, x) ∈ [0,∞)× R
n.

For simplicity, we will assume here that ρ and ζ are chosen such that the series is
well defined. This is, for example, the case if ρ satisfies sufficient decay conditions
or if ζ is compactly supported. In this case, [ρ] defines a smooth function in space
where the smoothness is determined by the smoothness of ζ. It also defines a smooth
function in time, where the smoothness is now determined by the smoothness of ρ
in time. The function ζ can also be a fast decaying function like a Gaussian but
the analysis becomes more complicated in such a situation.

Note that if ζ is a compactly supported function with support in the unit ball,
then ζε has support in the ball about zero with radius ε. Hence, in this situation
ε > h is required since otherwise the sum in (2.2) would reduce to one term for
each spatial point x yielding a very efficient but also poor approximation.

Note that [ρ] is already defined if only a countable number of time-dependent
(or even constant) functions ρj : [0,∞) → R, j ∈ Z

n, is given and ρjh is replaced
by ρj . This obvious observation can be used to compute an approximate solution
to (1.1) by reducing the original problem to the problem of finding approximate
coefficients ρεhj : [0,∞) → R.

Hence, we may define a function depending on time and space by

(2.3) [ρεh]x(t) = [ρεh](t, x) = hn
∑
j∈Zn

ρεhj (t)ζε(x− xj), (t, x) ∈ [0,∞)× R
n.
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Provided that the kernel ζ is at least |α|-times continuously differentiable, spatial
derivatives of this function are simply given by

∂α[ρεh](t, x) = hn
∑
j∈Zn

ρεhj (t)∂αζε(x− xj), (t, x) ∈ [0,∞)× R
n.

In particular, we have
(2.4)

∇[ρεh]x(t) = ∇[ρεh](t, x) = hn
∑
j∈Zn

ρεhj (t)∇ζε(x− xj), (t, x) ∈ [0,∞)× R
n.

In the next section, we will discuss the approximation properties of this approxi-
mation process. The results derived there are essential for the proof of our main
result; they are mainly technical improvements of earlier results which can be found
in [26].

Before that, we will state our approximation method and our main convergence
result.

If we restrict (1.1) to the spatial points xi = ih, i ∈ Z
n, the initial partial

differential equation reduces to the system of differential equations

ρ̇ih(t) = −f(t, ih, ρ(t, ih),∇ρ(t, ih)), (t, i) ∈ (0,∞)× Z
n.

We can now solve the latter equation by approximating the expressions ρ and
∇ρ on the right-hand side by their approximations [ρεh] and ∇[ρεh], respectively.

Theorem 2.2. Let T > 0 and I := [0, T ]. Assume that the solution of problem
(1.1), (1.2) for f ∈ C2(I ×R

2n+1) and ρ0 ∈ Cr
c (R

n) satisfies ρ ∈ C2,r
c (I ×R

n). Let
ζ ∈ Kk,s

c be a kernel of order k ≥ 1.
For ε, h > 0 let {ρεhi }i∈Zn be the solution of the initial value problem

ρ̇εhi = −f(., ih, [ρεh]ih,∇[ρεh]ih),

ρεhi (0) = ρ0(ih)

with [ρεh]ih and ∇[ρεh]ih as in (2.3) and (2.4), respectively. If the parameters obey
the relations

r ≥ max{k + 1, �}, k ≥ 2 +
n

2
, s > � > n and h ≤ ε1+(3+n

2 )/�,

then there is a constant C = C(f, ρ, T, ζ) > 0 independent of ε and h such that for
all α ∈ N

n
0 with |α| ≤ 1 it holds that

‖∂αρ− ∂α[ρεh]‖L∞(Rn) ≤ Cε−|α|−n
2

(
εk +

h�

ε�+1

)
≤ Cεk−|α|−n

2

uniformly on [0, T ].

We will postpone the proof of this theorem. However, since its proof and the
proof of certain auxiliary results will use a discrete Lp-norm, which is quite standard
in this context, we will introduce this norm now.

Definition 2.3. Let 1 ≤ p ≤ ∞ and h > 0. For a given sequence (ρi)i∈Zn ∈ �p we
define the h-dependent �p-norm by

(2.5) ‖ρ‖p,h :=

{(
hn

∑
i∈Zn |ρi|p

)1/p
for 1 ≤ p < ∞,

supi∈Zn |ρi| for p = ∞.

Obviously, we are particularly interested in the situation ρi = ρ(ih) in which
‖ · ‖p,h becomes an approximation to the continuous Lp(R

n) norm.
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3. Auxiliary results on quasi-interpolation

The main result of this section is essential for proving our convergence theorem,
Theorem 2.2. It specifies the approximation power of our discretisation technique
for approximating functions. It generalises an earlier result of [26], particularly by
also providing estimates for derivatives.

To proof this theorem, we require two auxiliary results, Theorem 3.1 and Lemma
4.4 from [26].

The first result analyses the quadrature error of the composite rectangular rule
and is quite standard. Its proof is based on the Bramble-Hilbert lemma.

Lemma 3.1. Let � ∈ N with � > n ≥ 1. Then there exists a constant C > 0
independent of h such that for all functions ρ ∈ W �

1 (R
n) we have∣∣∣∣∣∣

∫
Rn

ρ(y)dy − hn
∑
j∈Zn

ρ(jh)

∣∣∣∣∣∣ ≤ Ch�|ρ|W �
1 (R

n).

The second result analyses the convolution error. Its proof is mainly based upon
the Taylor expansion.

Lemma 3.2. Let ζ ∈ Kk,s be a kernel function of order k ≥ 1 and ρ ∈ Cr(Rn) ∩
W r

p (R
n) for suitable constants 1 ≤ p ≤ ∞ and k ≤ r ∈ N. Then, there is a constant

C = C(ζ) > 0 such that for any ε > 0 and α ∈ N
n
0 with |α| ≤ r − k the following

holds:

‖∂αρ− ∂αρε‖Lp(Rn) = ‖∂αρ− ρ ∗ ∂αζε‖Lp(Rn) ≤ Cεk|ρ|
W

k+|α|
p (Rn)

.

The kernel itself satisfies the following norm estimates, which we will also require
later on.

Lemma 3.3. Let 1 ≤ p, q ≤ ∞ with 1
p + 1

q = 1, s ∈ N and ζ ∈ W s
p (R

n). For ε > 0

let ζε(x) = ε−nζ(x/ε), x ∈ R
n. Let α ∈ N

n
0 .

(a) If |α| ≤ s, then

‖∂αζε‖Lp(Rn) = ε−
n
q −|α|‖∂αζ‖Lp(Rn).

(b) If ζ ∈ W s
2 (R

n)∩W s
∞(Rn) and if |α| < s−n, then for every p ∈ [2,∞] there

is a constant C = C(ζ, α, p) > 0 such that for every ε > h > 0 we have

(3.1) ‖∂αζε‖p,h ≤ Cε−
n
q −|α|.

(c) If ζ ∈ Kk,s
c for any k ∈ N, then (3.1) even holds for all p ∈ [1,∞].

Proof. The first statement is obvious for p = ∞ and follows from the transformation
formula for all other p.

The second statement also immediately follows for p = ∞. For p = 2, we note
that Lemma 3.1 yields

‖∂αζε‖22,h ≤
∣∣∣∣∣hn

∑
i∈Zn

|∂αζε(ih)|2 −
∫
Rn

|∂αζε(x)|2dx
∣∣∣∣∣+ ‖∂αζε‖2L2(Rn)

≤ Ch�|g|W �
1 (R

n) + ‖∂αζε‖2L2(Rn),(3.2)
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as long as g = |∂αζε|2 ∈ W �
1 (R

n) with n < � ∈ N which is guaranteed by our
assumptions because of � := s− |α| > n and

|g|W �
1 (R

n) =
∑
|β|=�

∫
Rn

|∂β(∂αζε(x))
2|dx

≤
∑

|β|+|γ|=�

C

∫
Rn

|∂α+βζε(x)||∂α+γζε(x)|dx

≤
∑

|β|+|γ|=�

C‖∂α+βζε‖L2(Rn)‖∂α+γζε‖L2(Rn)

≤ Cε−n−2|α|−�.

This gives, together with 0 < h < ε and (3.2),

‖∂αζε‖22,h ≤ C(h�ε−n−2|α|−� + εn−2|α|) ≤ Cε−n−2|α|.

Since we also know that ‖∂αζε‖∞,h ≤ Cε−n−|α|, we can conclude via interpolation
that

‖∂αζε‖p,h ≤ ‖∂αζε‖
2
p

2,h ‖∂αζε‖
1− 2

p

∞,h

≤ Cε−(
n
2 +|α|) 2

p ε−(n+|α|)(1− 2
p )

= Cε−
n
q −|α|.

Finally, if ζ ∈ Kk,s
c , then we automatically have ζ ∈ W s

1 (R
n) ∩W s

∞(Rn). Further-
more, since the number of i ∈ Z

n with ihε in the support of ζ is bounded by a
constant times (ε/h)n, we see that

‖∂αζε‖1,h = hn
∑
i∈Zn

|∂αζ(ih/ε)| ≤ Cε−|α|.

For general p the result then follows by interpolation between p = 1 and p = ∞
again. �

After these preparations, we can state and prove a result concerning the approx-
imation power of such quasi-interpolants. Note, that (2.3) can also be defined for
a function ρ, which does not depend on time. In this case ρj is just a constant
for each j ∈ Z

n. For simplicity, we state the next result under this assumption.
However, if ρ depends on t ∈ [0, T ], then the result obviously holds pointwise for
all t ∈ [0, T ].

Theorem 3.4. Let 1 ≤ p ≤ ∞. Let ρ ∈ Cr(Rn) ∩ W r
p (R

n) and ζ ∈ Kk,s with
r, k, s ∈ N be given. Assume that r ≥ k and r, s ≥ � > n with � ∈ N. Finally,
let ε > h > 0. Then, there is a constant C = C(ζ) > 0 independent of ε and h
such that for every α ∈ N

n
0 with |α| ≤ min{r− k, s− �} the error between ρ and its

approximation [ρ] = hn
∑

i ρ(ih)ζε(· − ih) can be bounded by

(3.3) ‖∂αρ− ∂α[ρ]‖Lp(Rn) ≤ C

(
εk‖ρ‖

W
k+|α|
p (Rn)

+
h�

ε�+|α| ‖ρ‖W �
p(R

n)

)
.
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Proof. We can split the error on the left-hand side of (3.3) into a convolution and
a quadrature error:

‖∂αρ− ∂α[ρ]‖Lp(Rn) ≤ ‖∂αρ− ∂αρε‖Lp(Rn) + ‖∂αρε − ∂α[ρ]‖Lp(Rn).

Using Lemma 3.2, we see that the first term on the right-hand side can be bounded
by

‖∂αρ− ∂αρε‖Lp(Rn) ≤ Cεk|ρ|
W

k+|α|
p (Rn)

,

provided that r ≥ k + |α|. For the second term, we first note that we have for
x ∈ R

n fixed that

|∂αρε(x)− ∂α[ρ](x)| =

∣∣∣∣∣∣
∫
Rn

ρ(y)∂αζε(x− y)dy −
∑
j∈Zn

hnρ(jh)∂αζε(x− jh)

∣∣∣∣∣∣ .
Hence, if r ≥ � and s− |α| ≥ � for � > n, then we can use Lemma 3.1 to derive

|∂αρε(x)− ∂α[ρ](x)| ≤ Ch� |ρ ∂αζε(x− ·)|W �
1 (R

n)

≤ Ch�
∑
|β|=�

∫
Rn

|∂β
y (ρ(y)∂

αζε(x− y))|dy

≤ Ch�
∑

|β|,|γ|≤�

∫
Rn

|∂βρ(y)| |∂α+γζε(x− y)|dy

= Ch�
∑

|β|,|γ|≤�

|∂βρ| ∗ |∂α+γζε|(x).

Young’s inequality finally yields

‖∂αρε − ∂α[ρ]‖Lp(Rn) ≤ Ch�‖ρ‖W �
p(R

n)‖ζε‖W �+|α|
1 (Rn)

≤ C(ζ)
h�

ε�+|α| ‖ρ‖W �
p(R

n),

where we have also used Lemma 3.3 in the last step. �

Remark 3.5. We will use this result in particular to bound estimates on first order
derivatives. Hence, the smoothness r and s of ρ and ζ, respectively, have to satisfy
r ≥ max{�, k + 1} and s ≥ �+ 1 with � > n.

Finally, we want to state and prove a result, which is interesting on its own. It
shows that the kernel and its derivatives provide a Bessel sequence. We use it in
our proof to establish bounds on the L∞ errors of our approximation based on error
bounds for the coefficients in the discrete L2-norm. It seems worthwhile to mention
that for this purpose property (ii) of the kernel definition, i.e., the property that
defines the order of the kernel, is not required.

Theorem 3.6. Let 1 ≤ p, q ≤ ∞ with 1
p + 1

q = 1. Let (ai)i∈Zn ∈ �q(R) and let ζ

be a kernel as in Lemma 3.3, i.e., either ζ ∈ W s
2 (R

n) ∩W s
∞(Rn) for p ∈ [2,∞] or

ζ ∈ Kk,s
c for p ∈ [1,∞]. If α ∈ N

n
0 satisfies |α| < s − n, then there is a constant

C > 0 such that for ε > h we have

‖∂α[a]‖∞,h = sup
i∈Zn

∣∣∣∣∣∣hn
∑
j∈Zn

aj∂
αζε(ih− jh)

∣∣∣∣∣∣ ≤ C‖a‖q,hε−
n
q −|α|.
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Moreover, if ζ ∈ Kk,s
c and |α| < s−n, then for p ∈ [1,∞] there is a constant C > 0

such that

(3.4) ‖∂α[a]‖L∞(Rn) ≤ C‖a‖q,hε−
n
q −|α|.

Proof. For ζ and p as specified in the theorem the first statement follows easily by
using Hölder’s inequality and Lemma 3.3, since for each i ∈ Z

n we have∣∣∣∣∣∣hn
∑
j∈Zn

aj∂
αζε(ih− jh)

∣∣∣∣∣∣ ≤ hn
∑
j∈Zn

|aj ||∂αζε(ih− jh)|

≤ ‖a‖q,h‖∂αζε(ih− .)‖p,h
≤ ‖a‖q,h‖∂αζε‖p,h
≤ C‖a‖q,hε−

n
q −|α|.

The second statement follows similarly. For 1 ≤ p < ∞ it holds that

‖∂α[a]‖L∞(Rn) = sup
x∈Rn

∣∣∣∣∣∣hn
∑
j∈Zn

aj∂
αζε(x− jh)

∣∣∣∣∣∣
≤ ‖a‖q,h sup

x∈Rn

⎛⎝hn
∑
j∈Zn

|∂αζε(x− jh)|p
⎞⎠1/p

.

Using the compact support of ζε shows once again that the sum is only a sum over
at most C(ε/h)n terms so that we can continue with the estimate

‖∂α[a]‖L∞(Rn) ≤ C‖a‖q,h
(
hn(ε/h)nε−(n+|α|)p

)1/p

= C‖a‖q,hε−
n
q −|α|.

The remaining case p = ∞ is trivial. �

4. Proof of Convergence

In this section, we will prove Theorem 2.2. As usual, to simplify the notation,
we will suppress the time variable whenever possible.

Since our spatial discretisation technique immediately leads to an infinite system
of ordinary differential equations with solutions {ρεhi }, it is natural to use the
discrete norms defined in Definition 2.3 and to bound the error

ei = ρih − ρεhi , i ∈ Z
n,

using these norms. In this context, it is also quite natural to split the error into a
consistency and a stability error. We have

1

2

d

dt
‖e‖22,h =

1

2

d

dt
hn

∑
i∈Zn

e2i = hn
∑
i∈Zn

eiėi

= −hn
∑
i∈Zn

ei
(
f(t, ih, ρih,∇ρih)− f(t, ih, [ρεh]ih,∇[ρεh]ih)

)
= −hn

∑
i∈Zn

ei (f(t, ih, ρih,∇ρih)− f(t, ih, [ρ]ih,∇[ρ]ih))

− hn
∑
i∈Zn

ei
(
f(t, ih, [ρ]ih,∇[ρ]ih)− f(t, ih, [ρεh]ih,∇[ρεh]ih)

)
=: −(ec + es).

(4.1)
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The first term in the last expression,

(4.2) ec = ec(t) := hn
∑
i∈Zn

ei (f(t, ih, ρih,∇ρih)− f(t, ih, [ρ]ih,∇[ρ]ih)) ,

represents the consistency error of the method while the second term

(4.3) es = es(t) := hn
∑
i∈Zn

ei
(
f(t, ih, [ρ]ih,∇[ρ]ih)− f(t, ih, [ρεh]ih,∇[ρεh]ih)

)
represents the stability error. We will now bound both errors separately, starting
with the consistency error.

For the convenience of the reader, we recall our initial assumptions. We assume
that the support of the solution ρ(t, ·) is contained in a compact, convex set Ω ⊆ R

n

for all t ∈ [0, T ]. We have defined the set M and M̃ in (1.4) and (1.5), respectively,
to be

M := {(t, x, ρ(t, x),∇ρ(t, x)) ∈ R
2n+2 : t ∈ [0, T ], x ∈ Ω} ⊆ R

2n+2,

M̃ := [0, T ]× Ω1 ×Π.

Here Ω1 is the convex hull of
⋃

x∈Ω B1(x), where B1(x) is the ball of radius 1 and
centre x. Moreover, Π is a convex, compact super set of {(ρ(t, x),∇ρ(t, x)) : t ∈
[0, T ], x ∈ Ω} ⊆ R

n+1.
We have also assumed that the defining function f is sufficiently smooth and

has compact support in the compact and convex set M̃ ⊇ M . As usual, we will

consider f to be defined on all of Rn with zero value outside M̃ .
The reason for this technical definition is the following one. Suppose that our

kernel ζ has support in the unit ball and that ρ(t, ·) has support in Ω, then, obviously

[ρ] =
∑
j∈Zd

ρjh(t)ζε(· − jh)

has support in Ω1 for all 0 < ε ≤ 1. Moreover, the convexity of M̃ guarantees that

all connecting line segments between two points in M̃ are also contained in M̃ .

Proposition 4.1. Let T > 0. Let ζ ∈ Kk,s
c with k ∈ N and s > � > n for an � ∈ N

and with support in the unit ball. Let ρ be the solution of (1.1),(1.2) Assume that
ρ(t, ·) ∈ Cr

c (R
n) with r ≥ max{k + 1, �} and that the support of ρ(t, ·) is contained

in the compact set Ω ⊆ R
n for all t ∈ [0, T ]. Suppose further that f ∈ C1

c (M̃), with

M̃ defined in (1.5). Then, there is a constant C > 0 depending on f , ζ, ρ and M
such that the consistency error ec from (4.2) can be bounded by

|ec(t)| ≤ C

(
εk +

h�

ε�+1

)2

+
1

2
‖e(t)‖22,h, t ∈ [0, T ],

for all 0 < h ≤ ε1+
2
� sufficiently small.
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Proof. Our assumption on ρ immediately shows ρ ∈ W r
∞(Rn). Thus, Theorem 3.4

gives, in particular, for each i ∈ Z
n,

(4.4) |ρih − [ρ]ih| ≤ C

(
εk +

h�

ε�

)
and, since r ≥ max{k + 1, �} and s ≥ �+ 1,

(4.5) |∇ρih −∇[ρ]ih| ≤ C

(
εk +

h�

ε�+1

)
,

where the constant C > 0 depends on ρ and ζ. Next, let

Iεh := {i ∈ Z
n : ih ∈ Ωε}

and note that the cardinality of Iεh can be bounded by a constant times h−n

since Ω is compact. The explanation given above shows that for i ∈ Iεh we have
ρih = [ρ]ih = 0.

Using the Cauchy-Schwarz inequality and the mean value theorem, there are
ηi ∈ R on the line segment between ρih and [ρ]ih and ξi ∈ R

n on the line segment
between ∇ρih and ∇[ρ]ih such that

|ec| =
∣∣∣∣∣hn

∑
i∈Zn

ei (f(t, ih, ρih,∇ρih)− f(t, ih, [ρ]ih,∇[ρ]ih))

∣∣∣∣∣
=

∣∣∣∣∣hn
∑
i∈Iεh

eiDf(t, ih, ·, ·)|(ηi,ξi) · (ρih − [ρ]ih,∇ρih −∇[ρ]ih)

∣∣∣∣∣
≤ |f |

W 1
∞(˜M)

‖e‖2,h

(
hn

∑
i∈Iεh

|ρih − [ρ]ih|2 + |∇ρih −∇[ρ]ih|2
) 1

2

≤ C(f, ζ, ρ)

(
εk +

h�

ε�+1

)
‖e‖2,h

≤ C(f, ζ, ρ)

(
εk +

h�

ε�+1

)2

+
1

2
‖e‖22,h,

where we have also used (4.4) and (4.5) as well as the fact that (ηi, ξi) ∈ M1 for
ε > 0 small. �

The next step in our error analysis is to bound the stability error (4.3). Here,
the proof is more demanding and requires a bootstrap argument, i.e., we need to
make an assumption on the total error to prove the following bound, which we have
to verify later on.

Theorem 4.2. Let T > 0. Let ζ ∈ Kk,s
c with s > � > n for an � ∈ N being even

and with support in the unit ball. Let ρ be the solution of (1.1),(1.2). Assume that
ρ(t, ·) ∈ Cr

c (R
n) with r > k ≥ 1 and that the support of ρ(t, ·) is contained in the

compact set Ω ⊆ R
n for all t ∈ [0, T ]. Suppose further that f ∈ C2(M̃), where M̃ is

defined in (1.5). Assume that h ≤ ε1+2/�. Assume finally, that the error satisfies

(4.6) ‖e(t)‖2,h ≤ C1ε
2+n

2 , t ∈ [0, T ],
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with a constant C1 > 0 independent of h and ε. Then, there is a constant C > 0
independent of ε > 0 and h > 0 such that the stability error es from (4.3) can be
bounded by

|es(t)| ≤ C‖e(t)‖22,h, t ∈ [0, T ],

provided ε > 0 is sufficiently small.

Proof. We start by further splitting the error es into

es =− hn
∑
i∈Zn

ei
(
f(t, ih, [ρ]ih,∇[ρ]ih)− f(t, ih, [ρεh]ih,∇[ρεh]ih)

)
=:es1 + es2

with

es1 :=− hn
∑
i∈Zn

ei
(
f(t, ih, [ρ]ih,∇[ρ]ih)− f(t, ih, [ρ]ih,∇[ρεh]ih)

)
,(4.7)

es2 :=− hn
∑
i∈Zn

ei
(
f(t, ih, [ρ]ih,∇[ρεh]ih)− f(t, ih, [ρεh]ih,∇[ρεh]ih)

)
.(4.8)

Note that our assumption on the support of f means that all the sums are actually
finite sums, summing at most over those indices i ∈ Z

n with ih ∈ Ω1.
We will now bound each term separately, starting with (4.7). Using once again

the mean value theorem, this time only with respect to the last argument of f ,
yields positions ξi ∈ R

n on the line segment connecting ∇[ρ]ih and ∇[ρεh]ih such
that

es1 = −hn
∑
i∈Zn

ei
(
f(t, ih, [ρ]ih,∇[ρ]ih)− f(t, ih, [ρ]ih,∇[ρεh]ih)

)
= −hn

∑
i∈Zn

eiDf(t, ih, [ρ]ih, ·)|ξi ·
(
∇[ρ]ih −∇[ρεh]ih

)
= −hn

∑
i∈Zn

eiDf(t, ih, [ρ]ih, ·)|ξi

·

⎛⎝hn
∑
j∈Zn

(ρj − ρεhj )∇ζε(ih− jh)

⎞⎠
= −h2n

∑
i,j∈Zn

eiejDf(t, ih, [ρ]ih, ·)|ξi · ∇ζε(ih− jh).

(4.9)

Next, note that the assumption that the kernel ζ is an even function means, in
particular, that∇ζε(−·) = −∇ζε(·) and hence∇ζε(0) = 0. To make use of this anti-
symmetry, we partition Z

n ×Z
n disjointly into Z

n ×Z
n = Λ∪Λ∪ {(i, i) : i ∈ Z

n},
where Λ,Λ ⊆ Z

n × Z
n are such that for every i = j we have (i, j) ∈ Λ if and only

if (j, i) ∈ Λ.



1770 TOBIAS RAMMING AND HOLGER WENDLAND

Since ∇ζε(0) = 0, we see that we can ignore all entries in the sum (4.9) corre-
sponding to indices (i, i), i ∈ Z

n. Hence, we can continue to rewrite es1 by

es1 = −h2n
∑

i,j∈Zn

eiejDf(t, ih, [ρ]ih, ·)|ξi · ∇ζε(ih− jh)

= −h2n

⎛⎝ ∑
(i,j)∈Λ

+
∑

(i,j)∈Λ

⎞⎠ eiejDf(t, ih, [ρ]ih, ·)|ξi · ∇ζε(ih− jh)

= −h2n
∑

(i,j)∈Λ

eiejDf(t, ih, [ρ]ih, ·)|ξi · ∇ζε(ih− jh)

− h2n
∑

(j,i)∈Λ

ejeiDf(t, jh, [ρ]jh, ·)|ξj · ∇ζε(jh− ih)

= −h2n
∑

(i,j)∈Λ

eiejDf(t, ih, [ρ]ih, ·)|ξi · ∇ζε(ih− jh)

− h2n
∑

(i,j)∈Λ

ejeiDf(t, jh, [ρ]jh, ·)|ξj · (−∇ζε(ih− jh))

= −h2n
∑

(i,j)∈Λ

eiej
(
Df(t, ih, [ρ]ih, ·)|ξi −Df(t, jh, [ρ]jh, ·)|ξj

)
· ∇ζε(ih− jh)

= −h2n
∑

(i,j)∈Λ

eiejΔij · ∇ζε(ih− jh),

(4.10)

where we have introduced the notation

Δij := Df(t, ih, [ρ]ih, ·)|ξi −Df(t, jh, [ρ]jh, ·)|ξj ,
which obviously satisfies Δij = −Δji. Moreover, we can simply set Δij = 0 for
(i, j) ∈ Λ satisfying |ih − jh| ≥ ε, since in this situation our compactly supported
kernel makes sure that the corresponding term in (4.10) is already zero.

Having this in mind, we can now derive the following bound on es1:

|es1| ≤ h2n
∑

(i,j)∈Λ

1

2
(e2i + e2j )|Δij | |∇ζε(ih− jh)|

≤ h2n
∑

i,j∈Zn

e2i |Δij | |∇ζε(ih− jh)|

= hn
∑
i∈Zn

e2i

⎛⎝hn
∑
j∈Zn

|Δij | |∇ζε(ih− jh)|

⎞⎠
≤ ‖e‖22,h max

i∈Zn
hn

∑
j∈Zn

|Δij | |∇ζε(ih− jh)|.(4.11)

To bound this further, we need a thorough estimate for the term |Δij |, which, in
particular, has to compensate the 1/ε factor coming from |∇ζε(ih− jh)|. We have

|Δij | = |Df(t, ih, [ρ]ih, ξi)−Df(t, jh, [ρ]jh, ξj)|
≤ ‖f‖

W 2
∞(˜M)

(|ih− jh|+ |[ρ]ih − [ρ]jh|+ |ξi − ξj |)
≤ ‖f‖

W 2
∞(˜M)

(ε+ |[ρ]ih − [ρ]jh|+ |ξi − ξj |) ,(4.12)
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where we used the fact that we only have to consider indices (i, j) with |ih−jh| ≤ ε.
To continue our estimate, we use

(4.13) |ξi − ξj | ≤ |ξi −∇[ρ]ih|+ |∇[ρ]ih −∇[ρ]jh|+ |∇[ρ]jh − ξj |.

Here, the second term on the right-hand side, as well as the term |[ρ]ih − [ρ]jh| in
(4.12) can be bounded as follows. For α ∈ N

n
0 with |α| = 0 or |α| = 1 we have,

using Theorem 3.4,

|∂α[ρ]ih − ∂α[ρ]jh| ≤ |∂α[ρ]ih − ∂αρih|+ |∂αρih − ∂αρjh|+ |∂αρjh − ∂α[ρ]jh|

≤ C(ρ)

(
εk +

h�

ε�+|α|

)
+ ‖ρ‖W 1

∞(Ω)|ih− jh|

≤ C(ρ)ε,

since k ≥ 1 and h ≤ ε1+2/�. For the first and last term in (4.13) we use the fact
that ξi lies on the line segment connecting ∇[ρ]ih and ∇[ρεh]ih such that we can
derive the estimate

|Δij | ≤ ‖f‖
W 2

∞(˜M)
(ε+ |[ρ]ih − [ρ]jh|+ |ξi − ξj |)

≤ C(f, ρ)
(
ε+ ‖∇[ρ]. −∇[ρεh].‖∞,h

)
.

If we plug this into (4.11) and use Lemma 3.3 and Theorem 3.6 (which is possible
since we have s > n+ 1) we find

|es1| ≤ ‖e‖22,hC(f, ρ)
(
ε+ ‖∇[ρ]−∇[ρεh]‖∞,h

)
‖∇ζε‖1,h

≤ ‖e‖22,hC(f, ρ)
(
ε+ Cε−1−n

2 ‖ρ− ρεh‖2,h
)
ε−1

≤ ‖e‖22,hC(f, ρ)
(
ε+ Cε−1−n

2 ‖e‖2,h
)
ε−1

= C(f, ρ)
(
1 + Cε−2−n

2 ‖e‖2,h
)
‖e‖22,h.

(4.14)

Obviously, if condition (4.6) holds, i.e., if we have ‖e‖2,h ≤ C1ε
2+n

2 , then it imme-
diately follows from (4.14) that we also have

|es1| ≤ C(f, ρ)‖e‖22,h.

Finally, we need to bound the second part (4.8) of the stability error. As before,
we will use the mean value theorem and denote the intermediate positions by ξi
again. This time, we have

es2 = −hn
∑
i∈Zn

ei
(
f(t, ih, [ρ]ih,∇[ρεh]ih)− f(t, ih, [ρεh]ih,∇[ρεh]ih)

)
= −hn

∑
i∈Zn

eiDf(t, ih, ·,∇[ρεh]ih)|ξi
(
[ρ]ih − [ρεh]ih

)
= −hn

∑
i∈Zn

eiDf(t, ih, ·,∇[ρεh]ih)|ξi |

⎛⎝hn
∑
j∈Zn

(ρj − ρεhj )ζε(ih− jh)

⎞⎠
= −h2n

∑
i,j∈Zn

eiejDf(t, ih, ·,∇[ρεh]ih)|ξi |ζε(ih− jh).
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This gives the bound

|es2| ≤ h2n‖f‖
W 1

∞(˜M)

∑
i,j∈Zn

|eiej ||ζε(ih− jh)|

≤ C(f)hn
∑
i∈Z

e2i hn
∑
j∈Zn

|ζε(ih− jh)|

= C(f)

(
hn

∑
i∈Zn

e2i

)⎛⎝hn
∑
j∈Zn

ζε(jh)

⎞⎠
≤ C(f)‖e‖22,h,

(4.15)

which, together with (4.14), proves the statement of the theorem. �

Proof of Theorem 2.2. Taking the results of Proposition 4.1 and Theorem 4.2 to-
gether and assuming (4.6), we see that

1

2

d

dt
‖e‖22,h ≤ C(f, ρ)

(
εk +

h�

ε�+1

)2

+ C(f, ρ)‖e‖22,h.

Hence, applying Gronwall’s inequality to this, yields

(4.16) ‖e‖2,h ≤ C(f, ρ, T )

(
εk +

h�

ε�+1

)
uniformly for all t ∈ [0, T ]. With this, we can justify the assumption (4.6) since we
have

εk +
h�

ε�+1
≤ Cε2+

n
2 ,

provided that k ≥ 2 + n/2 and h ≤ ε1+(3+n
2 )/�.

Next, we split the L∞(Rn) error as follows:

(4.17) ‖∂αρ− ∂α[ρεh]‖L∞(Rn) ≤ ‖∂αρ− ∂α[ρ]‖L∞(Rn) + ‖∂α[ρ]− ∂α[ρεh]‖L∞(Rn).

We can bound the first term on the right-hand side using Theorem 3.4 by

‖∂αρ− ∂α[ρ]‖L∞(Rn) ≤ C(ρ)

(
εk +

h�

ε�+|α|

)
Since this expression will be dominated by the second term in (4.17), we can ignore
it. The second term is finally bounded by

‖∂α[ρ]− ∂α[ρεh]‖L∞(Rn) ≤ Cε−
n
2 −|α|‖ρ− ρεh‖2,h

≤ Cε−
n
2 −|α|

(
εk +

h�

ε�+1

)
using (3.4) from Theorem 3.6 and (4.16). �

5. Construction of high order kernels

A key ingredient of the method is the availability of high order kernels. There
are some ways of constructing such kernels, and here, we will follow ideas from [1],
see also [21], to construct compactly supported kernels of any prescribed order.
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To this end, we will employ radial kernels, i.e., kernels of the form ζ(x) = η(|x|),
x ∈ R

n, with a univariate function η : [0,∞) → R. For such radial kernels we can
easily rewrite the conditions from Definition 2.1:∫

Rn

xαζ(x)dx =

∫ ∞

0

∫
|x|=1

(xr)αζ(rx)rn−1dS(x)dr

=

∫
|x|=1

xαdS(x)

∫ ∞

0

rn−1+|α|η(r)dr.

Obviously the first integral over the unit sphere Sn−1 in R
n vanishes if |α| is

odd. Thus the conditions of Definition 2.1 can be rewritten as follows. The kernel
ζ = η(| · |) is of order k = 2� if it satisfies the following three conditions:∫ ∞

0

η(r)rn−1dr =
1

ωn−1
,(5.1) ∫ ∞

0

η(r)rn+2j−1dr = 0, 1 ≤ j ≤ �− 1,(5.2) ∫ ∞

0

η(r)rn−1+kdr < ∞,(5.3)

where ωn−1 denotes the surface area of the unit sphere Sn−1 in R
n.

We will use this to construct such kernels. To this end assume that we have fixed,
pairwise distinct values aj > 0 for 0 ≤ j ≤ � − 1 and an even, continuous, non-
negative univariate function φ : R → R with compact support and ‖φ(| · |)‖L1(Rn) =
1.

Then, we want to pick real numbers λ0, . . . , λ�−1 such that

(5.4) η(r) =

�−1∑
j=0

λjφ(r/aj),

defines a kernel of order k = 2�.
Since η also has compact support and is continuous, condition (5.3) is auto-

matically satisfied. Conditions (5.1) and (5.2) can be summarised as follows. For
0 ≤ i ≤ �− 1 we need that

1

ωn−1
δ0i =

�−1∑
j=0

λj

∫ ∞

0

φ(r/aj)r
n−1+2idr

=

�−1∑
j=0

λja
n+2i
j

∫ ∞

0

φ(s)sn−1+2ids.

Noting that the integral on the right-hand side is independent of the summation
index j and that the left-hand side is zero except for i = 0 we see that we can
rewrite this system as

δ0i =
�−1∑
j=0

λ̃ja
2i
j , 0 ≤ i ≤ �− 1,

where we have set λ̃j := λja
n
j . This means that the solution vector λ̃ ∈ R

� is the

first column of the inverse of the matrix A = (a2ij ), which simply is the transpose
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of a Vandermonde matrix in a20, . . . , a
2
�−1. This guarantees solvability. To be more

precise, we have the following result.

Proposition 5.1. Let aj > 0, 0 ≤ j ≤ � − 1, be pairwise distinct and let φ :
R → R be non-negative, even, continuous, with compact support and satisfying
‖φ(| · |)‖L1(Rn) = 1. Then, there is exactly one radial kernel ζ(x) = η(|x|), x ∈ R

n,
of order k = 2� with η of the form (5.4). The coefficients are given by

λj =
(−1)ja20 · · · a2j−1a

2
j+1 · · · a2�−1

anj (a
2
j − a20) · · · (a2j − a2j−1)(a

2
j+1 − a2j) · · · (a2�−1 − a2j)

=
1

anj

�−1∏
i=0
i �=j

a2i
a2i − a2j

, 0 ≤ j ≤ �− 1.

Proof. Using the notation from the paragraphs above, Cramer’s rule shows that

λ̃j = detAj/ detA, where Aj is the matrix resulting from A by replacing the j-th
column with the first unit vector. Since, A is the transpose of a Vandermonde
matrix, its determinant is given by

det(A) =
∏

0≤μ<ν≤�−1

(a2ν − a2μ).

Moreover, in our situation the determinant of Aj is easily determined. Setting
bj = a2j , we have

det(Aj) = det

⎛⎜⎜⎜⎜⎜⎝
1 . . . 1 1 1 . . . 1
b0 . . . bj−1 0 bj+1 . . . b�−1

b20 . . . b2j−1 0 b2j+1 . . . b2�−1
...

...
...

...
...

b�−1
0 . . . b�−1

j−1 0 b�−1
j+1 . . . b�−1

�−1

⎞⎟⎟⎟⎟⎟⎠

= (−1)j det

⎛⎜⎜⎜⎝
b0 . . . bj−1 bj+1 . . . b�−1

b20 . . . b2j−1 b2j+1 . . . b2�−1
...

...
...

...

b�−1
0 . . . b�−1

j−1 b�−1
j+1 . . . b�−1

�−1

⎞⎟⎟⎟⎠

= (−1)j

⎛⎜⎝�−1∏
i=0
i �=j

bi

⎞⎟⎠ det

⎛⎜⎜⎜⎜⎜⎝
1 . . . 1 1 . . . 1
b0 . . . bj−1 bj+1 . . . b�−1

b20 . . . b2j−1 b2j+1 . . . b2�−1
...

...
...

...

b�−2
0 . . . b�−2

j−1 b�−2
j+1 . . . b�−2

�−1

⎞⎟⎟⎟⎟⎟⎠

= (−1)j

⎛⎜⎝�−1∏
i=0
i �=j

bi

⎞⎟⎠
⎛⎜⎜⎝ ∏

0≤μ<ν≤�−1
μ,ν �=j

(bν − bμ)

⎞⎟⎟⎠
which gives the stated form. �
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Table 1. Radial functions leading to second order kernels.

n = 1 φ1,0(r) = (1− r)+ C0

φ1,1(r) =
5
4 (1− r)3+(3r + 1) C2

φ1,2(r) =
3
2 (1− r)5+(8r

2 + 5r + 1) C4

φ1,3(r) =
55
32 (1− r)7+(21r

3 + 19r2 + 7r + 1) C6

n = 2 φ2,0(r) =
6
π (1− r)2+ C0

φ2,1(r) =
7
π (1− r)4+(4r + 1) C2

φ2,2(r) =
3
π (1− r)6+(35r

2 + 18r + 3) C4

φ2,3(r) =
78
7π (1− r)8+(32r

3 + 25r2 + 8r + 1) C6

n = 3 φ3,0(r) =
15
2π (1− r)2+ C0

φ3,1(r) =
21
2π (1− r)4+(4r + 1) C2

φ3,2(r) =
165
32π (1− r)6+(35r

2 + 18r + 3) C4

φ3,3(r) =
1365
64π (1− r)8+(32r

3 + 25r2 + 8r + 1) C6

Table 2. Possible coefficients and weights for fourth and sixth
order kernels in R

n.

Order a0 a1 a2 λ0 λ1 λ2

4 1.0 4/5 -16/9 (5/4)n · (25/9)
6 1.0 4/5 3/5 1.0 −(5/4)n · (25/7) (5/3)n · 25/7

This simple proof also follows from more general results on Vandermonde ma-
trices; see for example [3, 14] and the references therein.

Here, we propose to use the following compactly supported kernels. We start

with radial kernels φ(r) = φn,�(r) = cn,�(1 − r)
d(n,�)
+ pn,�(r) from [36, 37]; see also

Table 1. These kernels are known to have smoothness C2�(Rn) and are as non-
negative, radial kernels of order 2. The cases n = 2 and n = 3 only differ in the
constant cn,l, which has to be chosen such that the kernels satisfy (5.1).

For higher order kernels we employ the construction from Proposition 5.1. Here,
we are free to choose the parameters aj . It might be interesting to discuss the
optimal choice of these parameters with respect to, for example, stability of the
evaluation of the kernels. Here, however, we made the choice given in Table 2,
which also contains the corresponding weights λj .

Note that these coefficients can be used for any radial kernel with compact
support. In the following, we will denote a kernel of smoothness s and order k by
η = ηk,s, i.e., for ζk,s(·) = ηk,s(| · |) we have ζk,s ∈ Kk,s. Hence, typical examples
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are

η2,2(r) = φn,1(r),

η4,4(r) = −16

9
φn,2(r) +

(
5

4

)n
25

9
φn,2(5r/4),

η4,6(r) = −16

9
φn,3(r) +

(
5

4

)n
25

9
φn,3(5r/4),

η6,6(r) = φn,3(r)−
(
5

4

)n
25

7
φn,3(5r/4) +

(
5

3

)n
25

7
φ3,3(5r/3).

For n = 1, some of these kernels are also depicted in Figure 1.
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Figure 1. Some of the kernels for approximation in one dimen-
sion. The picture on the left shows the classical Wendland kernels
φ1,� for � = 0, 1, 2, 3. The picture on the right shows higher order
kernels η2k,6 ∈ C6(R), k = 1, 2, 3, built from φ1,3.

6. Numerical example

We are now going to test our method by looking at a numerical example in one
space dimension. To be more precise, we consider the following Burgers equation.
For a given T > 0 and ψ ∈ Cr(R) with compact support, we are looking for the
solution ρ of

∂tρ− ρ∂xρ = [(1− ψ)ψ′](x+ t), on (0, T ]× R,

ρ|t=0 = ψ, on R.

Thus, in our initial setting, the defining function f is given by

f(t, x, ρ, ∂xρ) = ρ(t, x)∂xρ(t, x) + [(1− ψ)ψ′] (x+ t), (t, x) ∈ [0, T ]× R.

It is easy to see that ρ(t, x) = ψ(x+ t) solves the problem above. Hence, we can
control the smoothness of the solution. Moreover, if we pick the initial data ψ with
compact support in the one-dimensional ball [−δ, δ], then the support of ρ(t, ·) is in
[−t − δ,−t + δ] and hence, for a fixed T > 0, the support of ρ(t, ·), t ∈ [0, T ], is a
subset of the interval Ω = [−δ − T, δ]. Thus, the assumption on the solution from
Theorem 2.2 are easily satisfied and we can try to verify the convergence orders
claimed therein. To this end, we carried out the following two test series.
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(A) In the first series we have chosen the kernel and the solution such that
Theorem 2.2 is applicable. To be more precise, we used ζ = η4,4(| · |) ∈ K4,4

as the kernel for our scheme. The kernel has been built as described in the
last section using the underlying function φ1,2 and the coefficients given in
Table 2.

The initial data was given by ψ = δ−1η̃4,4(·/δ) with δ = 0.5. To avoid
any unwanted, positive side effects, which might result from choosing the
same function as the approximation kernel and the initial data, we have
used φ2,2 as the underlying kernel to built ψ. Of course, we have chosen
c2,2 as 9

16 for the kernel so that ‖φ2,2‖L1(R) = 1 is satisfied.

Table 3. Discrete L∞ errors for series (A) for various discretisa-
tion parameters h = 2νh and ε = 2νε .

νε
νh -6 -7 -8 -9 -10 -11 -12 -13
-8
-9 4.83e-3
-10 1.47e-3 7.09e-3
-11 1.03e-4 2.27e-3 1.05e-2
-12 1.18e-4 3.39e-5 3.31e-3 1.62e-2
-13 1.18e-4 1.71e-5 6.72e-5 5.28e-3 2.47e-2
-14 1.18e-4 1.55e-5 3.90e-6 1.11e-4 8.53e-3 3.48e-2
-15 1.18e-4 1.54e-5 1.32e-6 4.60e-6 1.86e-4 1.33e-2 4.26e-2
-16 1.54e-5 1.27e-6 2.29e-7 7.52e-6 3.19e-4 1.89e-2 4.67e-2
-17 1.27e-6 1.49e-7 1.47e-7 1.29e-5 5.42e-4 2.33e-2
-18 1.53e-7 1.57e-8 2.27e-7 2.21e-5 9.09e-4

Table 4. Discrete L∞ errors for series (B) for various discretisa-
tion parameters h = 2νh and ε = 2νε .

νε
νh -6 -7 -8 -9 -10 -11 -12 -13
-8
-9 3.12e-2
-10 2.71e-2 1.92e-2
-11 2.69e-2 1.15e-2 1.94e-2
-12 2.68e-2 1.11e-2 5.24e-3 2.44e-2
-13 2.68e-2 1.11e-2 4.54e-3 3.17e-3 3.20e-2
-14 2.68e-2 1.11e-2 4.50e-3 1.89e-3 2.86e-3 4.03e-2
-15 2.68e-2 1.11e-2 4.50e-3 1.82e-3 8.48e-4 3.27e-3 4.70e-2
-16 1.11e-2 4.50e-3 1.81e-3 7.34e-4 4.70e-4 3.96e-3 5.14e-2
-17 4.50e-3 1.81e-3 7.27e-4 3.00e-4 3.47e-4 4.62e-3
-18 1.81e-3 7.27e-4 2.90e-4 1.23e-4 3.26e-4
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(B) The purpose of the second series was to investigate whether our scheme
also shows convergence in situations with less regularity and order of the
kernel than required by our main result.

To this end, we used ζ = η2,2(| · |) = φ1,1(| · |) ∈ K2,2 as the kernel and
ψ = δ−1φ2,1(·/δ) as the initial data with c2,1 = 3

2 to achieve ‖φ2,1‖L1(R) = 1
again.

In both cases we have chosen δ = T = 0.5, meaning Ω = [−1.0, 0.5]. Our
computation was then restricted to those data sites in Ω1 = [−1.25, 0.75], which,
for computational reasons, we have chosen slightly smaller than the one we have
used in Theorem 2.2.

The computations have been done for various values of ε and h, both of the form
2−ν . For the time discretisation we have chosen an explicit Runge-Kutta method
of order 4. The numerical results indicated that there is, as expected, a CFL
condition. The theoretical analysis of the time discretisation will be the subject of
a subsequent paper. Here, we simply have chosen the time discretisation sufficiently
small such that its error was negligible.

The results can be found in Tables 3 and 4 for series (A) and (B), respectively.
The conditions of Theorem 2.2 require h ≤ ε1+3.5/�, which is why the tables only
contain entries for h < ε.

In the context of particle methods it is an often encountered assumption that
convergence is achieved in the so-called stationary setting, i.e., if the ratio between
h and ε is fixed, meaning that approximately the same number of data sites lies
in the support of each kernel. This assumption is in particular made in almost
all application papers, though it is well-known by now (see for example [26]) that
this is not true. Our results corroborate this since we can see divergence in this
situation by looking at the diagonal entries of the Tables 3 and 4.

As for the general dependence of the errors on the discretisation parameters h
and ε, the data seem to verify our findings in the following way: If we look at a
fixed column of either table, which corresponds to a fixed ε, we see that the error
becomes stationary, i.e., further refinement of the grid does not lead to convergence.
If we look at the rows of the table, which corresponds to an ε-refinement while h is
kept fixed, we see that the error eventually grows.

Finally, we have tried to estimate the crucial constants and exponents in the
error estimate using a least-squares approach.

(A) Here, Theorem 2.2 can be applied with parameters r, s = 4, k, � = 3. In
this situation, Theorem 2.2 yields an error bound of the form

(6.1) C1ε
k−0.5 + C2

h�

ε�+1.5
= C1ε

2.5 + C2
h3

ε4.5

for the approximate solution. The least-squares approximation yields the
better estimate

68.7ε3.2 + 1.8
h3.8

ε4.4
.

(B) Our main result does not apply in this situation. Nonetheless, the data
suggest that we still have convergence. The rows of Table 4 indicate that
for a fixed, small h the approximation for ε to zero converges super-linear.
A least-squares approach yields the estimate k − 0.5 = 1.32. To estimate
the exponents in the second term of (6.1) is not feasible because there are
too few values for a reasonable least-squares approximation.
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In both cases, the exponents for the first term are not too far off from the value
(k − 1

2 ) that we can expect from Lemma 2.1 and Theorem 3.6 when ignoring the
requirements on the regularity of the solution and the kernel. This could be because
the kernel and the solution are smooth except for a finite number of points, so that
errors that stem from the reduced regularity at these points are comparatively
small. The same might be the reason why the parameters of the second term turn
out to be better than expected.

In any case, this already indicates that the scheme should also be useful when
approximating solutions with lower regularity. This would be particularly valuable
in higher spatial dimensions where only very few good methods are available to the
present day. Some simple experiments with shock formation seem to be promising
and a detailed investigation is planned for the future.
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