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CWENO: UNIFORMLY ACCURATE RECONSTRUCTIONS

FOR BALANCE LAWS

I. CRAVERO, G. PUPPO, M. SEMPLICE, AND G. VISCONTI

Abstract. In this paper we introduce a general framework for defining and
studying essentially nonoscillatory reconstruction procedures of arbitrarily high
order of accuracy, interpolating data in the central stencil around a given com-
putational cell (CWENO). This technique relies on the same selection mecha-
nism of smooth stencils adopted in WENO, but here the pool of candidates for
the selection includes polynomials of different degrees. This seemingly minor
difference allows us to compute the analytic expression of a polynomial inter-
polant, approximating the unknown function uniformly within a cell, instead
of only at one point at a time. For this reason this technique is particularly
suited for balance laws for finite volume schemes, when averages of source
terms require high order quadrature rules based on several points; in the com-
putation of local averages, during refinement in h-adaptive schemes; or in the

transfer of the solution between grids in moving mesh techniques, and in gen-
eral when a globally defined reconstruction is needed. Previously, these needs
have been satisfied mostly by ENO reconstruction techniques, which, however,
require a much wider stencil than the CWENO reconstruction studied here, for
the same accuracy.

1. Introduction

Motivation. Conservation laws arise in many fields in applied mathematics, such
as gas dynamics, magneto-hydrodynamics, or even traffic flow. When a source
term is present, these equations are called balance laws, and an even wider field of
applications opens up. Balance laws describe in fact phenomena in environmental
or meteorological fields, plasmas, and astrophysics.

In many cases, fast and efficient algorithms are crucial, and this means to be able
to provide robust high order schemes, which yield accurate solutions even on coarse
grids. Moreover, it is important to be able to implement such schemes on adaptive,
and therefore nonuniform, grids. This paper is concerned with the analysis of a
class of algorithms that, starting from a set of data, permit reconstruction, with
high order accuracy, a representation in space of the underlying function.

We start from a system of balance laws:

(1) ∂tu+

n∑
i=1

∂xi
fi(u) = s(u;x, t).
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Here u(x, t) : Rn × R
+ → R

m is the unknown function, n is the number of space
dimensions, m is the number of equations, and t denotes time. The functions
fi(u) : R

m → R
m are called fluxes, and usually they are smooth known functions

of u, with Jacobians
∑

i vif
′
i diagonalizable with real eigenvalues, along all possible

directions v ∈ R
n. Finally, s : Rm × R

n × R
+ → R

m is the source term, which is a
known, bounded function of the unknown u, but it also may depend on space (as
in the shallow water equations), or even time. Suppose the equation is defined on
a domain D ⊆ R

n, with suitable initial and boundary conditions.
To integrate this system of equations numerically, one must define a grid in the

domain D. In this work, we will propose schemes that are directly applicable when
the grid is a nonuniform globally Cartesian grid, so that D is covered by the union
of rectangles D ⊆

⋃
k Ωk. Note that boundary conditions for general D could then

be dealt with immersed boundary techniques (see, e.g. [13]).
On each cell Ωk, define the cell average of the solution

(2) uk(t) =
1

|Ωk|

∫
Ωk

u(x, t) dx.

Using the method of lines, we integrate the balance law (1) on each of the Ωk,
obtaining the finite volume formulation

(3)
d

dt
uk = − 1

|Ωk|

∫
∂Ωk

f · nkds+
1

|Ωk|

∫
Ωk

s(u;x, t) dx,

where f = [f1, . . . , fn] and nk is the outward normal to the cell Ωk. To transform (3)
in a finite volume numerical scheme, a recipe for the evaluation of the fluxes across
the cell boundary must be provided, together with a numerical method to integrate
the resulting system of ODEs. This process must involve a reconstruction algorithm
that, starting from the cell averages at a given time t, reconstructs approximate
values of the solution u in all the quadrature points along the contour ∂Ωk of each
cell (to evaluate the numerical fluxes) and in all quadrature nodes within Ωk (to
compute the cell average of the source). The purpose of the present work is to
study a class of reconstructions which provide an approximation of the underlying
solution which is uniformly accurate within the whole cell. In this fashion, the
reconstruction can be evaluated simultaneously on all quadrature points needed to
approximate (3), thus only one reconstruction step is needed for each evaluation of
the right-hand side.

Background. A very popular algorithm to compute the reconstruction in high
order finite volume schemes for conservation and balance laws is WENO (Weighted
Essentially Nonoscillatory) (see the seminal paper [18] and the reviews [33,34]), but
the literature on this technique is huge. WENO is based on a piecewise reconstruct-
ing polynomial that reproduces a high order polynomial using data from a wide
stencil in regions of smoothness (thus providing high accuracy), and that degrades
automatically to lower order polynomials when a discontinuity is detected within
the large stencil. The lower order polynomials are based on smaller stencils, so
that they may avoid the discontinuity. The high order polynomial is never actually
computed, but high accuracy is in fact obtained by blending the lower order poly-
nomials with carefully designed nonlinear weights that reproduce the value that
would be given, at one particular point, by the high order polynomial. The high
order optimal polynomial is thus replicated only at one point at a time. If the
reconstruction is needed at several points, as in the quadratures required by the
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integration of (3), then several reconstruction steps must be computed, each time
with different weights.

This problem is particularly severe in balance laws, such as the shallow water
equation, where one needs to evaluate the source at quadrature points in the in-
terior of the cell. For example, optimal weights for the cell centre do not exist for
WENO constructions of order 4k − 1 for any integer k ≥ 1 (e.g., WENO3), and are
not always in [0, 1] for WENO constructions of order 4k + 1 (e.g., WENO5) (see
[30, p. 194]). There is a technique to treat negative weights [32], but it requires
computing two different reconstructions per point. Also, the evaluation of a pos-
teriori error indicators may require to compute accurate quadratures of some form
of the local residual, as in the case of the indicator based on the numerical entropy
production (see [26, 27, 29]). Here, too, the possibility of computing cheaply the
reconstruction at interior nodes is crucial.

Moreover, in nonuniform grids, WENO weights depend on the mesh geometry.
For example, in 1D, the weights depend on the ratio of the sizes of the neighbours
and of the current cell (see e.g., [29, 37]), and they also depend on the disposition
of the neighbouring cells in 2D [10, 17, 28].

A source of nonuniform grids typically is mesh adaptivity of h-type or moving
mesh algorithms. Both of these techniques need the spatial reconstruction for time
advancement, but also in order to perform another important task. In fact, they
both involve a change in the mesh that occurs after the conclusion of each time
step. In these cases, it is necessary to project the solution from one grid to the new
mesh produced by the adaptive algorithm. The cells of the new grid are subcells
of the previous ones in the case of h-AMR (see e.g., [19,31]) while they lie in more
general positions in the case of moving mesh methods (see e.g., [35]). For schemes
of order at least 3, one must be able to compute the subcell averages with the same
accuracy of the scheme and this requires reconstructions at inner quadrature points
(see, e.g., [31]).

Other schemes for which these reconstructions can be of interest are the PNPM

schemes of [9] in which at each step a reconstruction from cell averages is required
to compute a reliable reconstructing polynomial inside each cell. Here one needs
the functional expression of the polynomial and not just its point values.

Summary. The first instance in which the need to have an expression for the recon-
struction polynomial was answered in WENO-type constructions, was in the third
order central scheme of [22]. There the authors introduced a new reconstruction
procedure of order three. In this paper we extend this idea to a general technique
to obtain a high order, essentially nonoscillatory, interpolation polynomial that is
globally defined in the whole cell (§3).

The new reconstructions are based on an optimal polynomial defined on a cen-
tral large stencil and on a set of lower degree polynomials defined on substencils of
the bigger one. The selection mechanisms of the polynomials actually employed to
compute the reconstruction is similar to the WENO one (reviewed in §2), but it in-
cludes an extra polynomial of the same degree of the optimal one. For this reason,
following [22], we call the reconstructions Central WENO (CWENO). The main
difference between WENO and CWENO is that the latter does not compute recon-
structed values at given points in the cell but rather a reconstruction polynomial
defined in the whole cell.
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The convergence rates of the CWENO reconstructions, when the standard Jiang-
Shu smoothness indicators of [18] are employed, depends on the value chosen for
the small parameter ε appearing in the algorithm. This value must be chosen
carefully due to the behaviour of the smoothness indicators close to local extrema
and this issue is thus present in the WENO setting as well. Many techniques were
proposed to overcome this difficulty in the WENO framework, [1, 8, 11, 16]. The
technique of [1], consisting in choosing a value for ε as a function of the mesh size,
was extended to the CWENO setting, at order 3, by [20] on uniform grids and by [6]
on a nonuniform mesh. In §4 we show that the choices ε ∼ h2 and ε ∼ h guarantee
the optimal convergence rate for a CWENO construction of any order, under the
condition that no polynomial involved in the reconstruction is of degree smaller
than one half of the degree of the optimal polynomial.

The essentially nonoscillatory behaviour of CWENO when the data to be inter-
polated contain a discontinuity is, from a practical point of view, very similar to
that of WENO. However, from a theoretical point of view, the situation is quite dif-
ferent, due to the employment of the extra candidate polynomial of high degree. In
§5 we introduce a condition (that we call Property R) that must be satisfied by this
extra high degree candidate polynomial in order to ensure that the reconstruction
has essentially nonoscillatory properties. Furthermore, we show that this property
is satisfied by all the one-dimensional CWENO constructions of any order.

Finally, in §6 we provide extensive numerical evidence of the accuracy and
nonoscillatory behaviour of CWENO constructions of order up to 9. Furthermore,
in order to test the reconstruction at points in the interior of the computational
cells, we show applications to the Euler gas dynamics equation with source terms
and to the development of well-balanced schemes for the shallow water equation.

2. A review of WENO reconstructions

Before introducing the CWENO class of reconstructions, we briefly review the
WENO idea. Fixing a stencil {Ωj−g, . . . ,Ωj+g}, the definition of Prec,j that max-
imises the accuracy for smooth functions u(x) is clearly the polynomial Popt of
degree G = 2g which interpolates the 2g + 1 cell averages uj−g, . . . , uj+g, which
is easily computed following [33]. Obviously, such a polynomial might be very os-
cillatory if a jump discontinuity is present in the stencil. In view of this, WENO
never computes Popt directly, but makes instead a clever use of all the polynomials
of lower degree (g) whose stencil avoids the discontinuity.

Definition 1. Fix a point x̂ ∈ Ωj and an integer g. The WENO reconstruction
operator is given by

Rj(x̂) = WENO(P1, . . . , Pg+1;Popt, x̂) ∈ R,

where the Pk’s, k = 1, . . . , g + 1 are polynomials of degree g, Popt is a polynomial
of degree G = 2g which guarantees the required accuracy 2g + 1. The point value
Rj(x̂) is computed as follows:

(1) First, find a set of coefficients d1(x̂), . . . , dg+1(x̂) such that

g+1∑
k=1

dk(x̂)Pk(x̂) = Popt(x̂) and

g+1∑
k=1

dk(x̂) = 1.

These will be called optimal or linear coefficients.
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(2) Then nonlinear coefficients ωk are computed from the optimal (or linear)
ones as

(4) αk(x̂) =
dk(x̂)

(I[Pk] + ε)t
ωk(x̂) =

αk(x̂)∑g+1
i=1 αi(x̂)

,

where I[Pk] denotes a suitable regularity indicator (to be defined later)
evaluated on the polynomial Pk, ε is a small positive quantity and t ≥ 2.

(3) Finally,

(5) Rj(x̂) =

g+1∑
k=1

ωk(x̂)Pk(x̂).

The regularity indicators should measure the “smoothness” of the polynomial
Pk on the computational cell Ωj . A regularity indicator is a positive semi-definite
operator from P to R+, which typically depends on the derivatives of the polynomial
in order to detect its oscillatory behaviour. The classical example is the Jiang-Shu
indicator, defined in [18] as

(6) I[P ] =
∑
l≥1

diam(Ω)2l−1

∫
Ω

(
dl

dxlP (x)
)2

dx.

Note that the summation is in fact finite, and that on smooth data the size of I[P ]
is at most O(diam(Ω)2). In this work we will employ the Jiang-Shu indicators, but
other possibilities were explored in [8, 14].

We record here an useful property of these indicators. In what follows, h will
denote diam(Ω) for a generic cell in the grid.

Remark 1. The Jiang-Shu indicator of a polynomial P is Lipschitz continuous
with respect to the cell averages uj−r, . . . , uj+s, with r and s positive integers,
interpolated by P . In fact, P depends linearly on the data and thus IP is a positive
semi-definite quadratic form with respect to uj−r, . . . , uj+s.

Summary 1. The ingredients of the success of the WENO reconstruction are the
following.

(1) The regularity indicators (6), which are of size O(h2) on regular data, but
I[P ] � 1 in the case of discontinuous data. With f(h) � g(h) (for h → 0)
we mean that the limit of f(h)/g(h) exists, is finite and not zero.

(2) Thanks to the definition of the nonlinear weights, the reconstruction error
at point x̂ is given by

(7)

u(x̂)−Rj(x̂) = u(x̂)− Popt(x̂) +

g+1∑
k=1

(
dk(x̂)− ωk(x̂)

)
Pk(x̂)

= (u(x̂)− Popt(x̂))︸ ︷︷ ︸
O(h2g+1)

+

g+1∑
k=1

(
dk(x̂)− ωk(x̂)

)
(Pk(x̂)− u(x̂))︸ ︷︷ ︸

O(hg+1)

,

where the last equality is true since
∑g+1

k=1 dk =
∑g+1

k=1 ωk = 1. From the
above formula it is clear that the accuracy of the WENO reconstruction
equals the accuracy of Popt only if dk − ωk = O(hg) in the case of smooth
data. This is ensured by the regularity of the smoothness indicators and
by an appropriate choice of the parameter ε (see [1, 6]).



1694 I. CRAVERO, G. PUPPO, M. SEMPLICE, AND G. VISCONTI

(3) In the case of discontinuous data, suppose first that there is one smooth
substencil, so that at least one of the regularity indicators is O(h2). Then,
the normalisation procedure in (4) ensures that for all k such that I[Pk] � 1,
then ωk � 0. In this way, only the Pk’s with I[Pk] = O(h2) contribute to
the reconstruction. This is the case provided there is one singularity in the
stencil, which does not occur in the central cell.

(4) On the other hand, if the discontinuity is in the central cell, each I[Pk] �
1. In the case of finite differences (see [15, 33]) one can prove that each
candidate polynomial is monotone in the central cell and thus deduce that
the reconstructed value will not increase the total variation. In the case of
finite volumes, instead, the reconstructed data is not guaranteed to satisfy
Total Variation Diminishing (TVD) bounds, although typically spurious
oscillations are not observed.

For example, for reconstructions from point values applied to the case of Heavi-
side data, all candidate polynomials are bounded by the values before and after the
jump (see [33, p. 347]). The reconstruction is then total variation bounded for the
case of Heaviside data with a Lipschitz perturbation (see [15, Theor 4.1, p. 359]).

This procedure is extremely successful and allowed to construct very high order
essentially nonoscillatory schemes (see [34] and references therein), but it has a few
shortcomings. The linear coefficients dk(x̂) depend explicitly on the location of x̂
inside the cell Ωj . (Their values have been tabulated for the cell boundaries in one
space dimension for uniform grids [1, 33]). In order to construct a finite volume
scheme, the computation of linear and nonlinear weights is required at different
points on the cell boundary: two points in one space dimension and at least six
(on triangles) or eight (on a Cartesian mesh) for a scheme of order at least three
in two space dimensions. Even more reconstructions are needed for balance laws,
where the cell average of the source has to be evaluated, and for higher dimensions
or nonconforming grids.

Moreover, for interior points, the linear coefficients may not exist (e.g., WENO3
at cell centre) or be nonpositive (e.g., WENO5 at cell centre). Results on the
existence of dk(x̂) for general x̂ have been proven for example in [5,12]. A procedure
to circumvent the appearance of negative weights was proposed in [32], but it
requires two reconstructions per cell.

From the next section, we study the CWENO schemes, which are not affected by
any of these troubles, since the linear coefficients are not relevant for guaranteeing
the accuracy of the reconstruction in smooth cases. Thus they can be chosen rather
arbitrarily and be the same for every reconstruction point in the cell. An additional
advantage is that the computation of the αk and the ωk is performed only once per
cell and not once per reconstruction point.

3. The CWENO operator

In this section we introduce a general framework for defining and studying
CWENO reconstructions, which encompasses the one of [22] and all variations pub-
lished later in one and more space dimensions, on structured and unstructured
grids. Moreover, this will allow us to propose higher order extensions.

Definition 2. Consider a set of data (point values or cell averages) and a polyno-
mial Popt of degree G, which interpolates in some sense all the given data (optimal
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polynomial). The CWENO operator computes a reconstruction polynomial,

Prec = CWENO(Popt, P1, . . . , Pm̂) ∈ P
G,

from Popt ∈ P
G and a set of lower order alternative polynomials P1, . . . , Pm̂ ∈ P

g,
where g < G and m̂ ≥ 1. The definition of Prec depends on the choice of a set of

positive real coefficients d0, . . . , dm̂ ∈ [0, 1] such that
∑m̂

k=0 dk = 1, d0 	= 0 (called
linear coefficients) as follows:

(1) first, introduce the polynomial P0 defined as

(8) P0(x) =
1

d0

(
Popt(x)−

m̂∑
k=1

dkPk(x)

)
∈ P

G;

(2) then the nonlinear coefficients ωk are computed from the linear ones as

(9) αk =
dk

(I[Pk] + ε)t
, ωk =

αk∑m̂
i=0 αi

,

where I[Pk] denotes a suitable regularity indicator (e.g., the Jiang-Shu ones
of eq. (6)) evaluated on the polynomial Pk, ε is a small positive quantity
and t ≥ 2;

(3) and, finally,

(10) Prec(x) =

m̂∑
k=0

ωkPk(x) ∈ P
G.

Note that the polynomial P0 ∈ P
G is part of the reconstruction, that CWENO

provides a polynomial Prec that can be evaluated at any point within the cell,
and that all coefficients ωk involved in the reconstruction do not depend on the
particular points where the reconstruction is needed.

Remark 2. In the case of reconstruction from cell averages, from the definition, it is
trivial to check that, if all candidate polynomials satisfy the conservation property

1
|Ω|

∫
Ω

Poptdx = 1
|Ω|

∫
Ω

Pkdx = uΩ

for k = 1, . . . , m̂, then also P0 and Prec have the same cell average:

1
|Ω|

∫
Ω

P0dx = 1
|Ω|

∫
Ω

Precdx = uΩ.

Remark 3. The previous definitions may be cast in either one-dimensional or multi-
dimensional settings. In the latter case x = (x1, . . . , xn) ∈ R

n and P
g denotes the

space of polynomials in n variables with degree at most g.

Typically, in finite volume schemes, the optimal polynomial Popt is taken to be the
polynomial interpolating all the data in the stencil of the reconstruction in the sense
of cell averages. For example, in one space dimension, in each cell Ωj , the original
CWENO construction of [22], is a third order accurate CWENO procedure with
m̂ = 2, Popt = P (2) the parabola defined on the centred 3-cell stencil Ωj−1,Ωj ,Ωj+1,

and P1 = P
(1)
L , P2 = P

(1)
R being the two linear polynomials interpolating the

data in Ωj−1,Ωj and Ωj ,Ωj+1, respectively. The same reconstruction was recently
considered in a nonuniform mesh setting in [6, 29].
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A fifth order version CWENO(P (4), P
(2)
L , P

(2)
C , P

(2)
R ) was proposed in [4], using

a centred fourth degree polynomial interpolating the data in Ωj−2, . . . ,Ωj+2 and
the same three parabolas employed in the classical WENO5 scheme, namely those
interpolating the data in Ωj−2+r,Ωj−1+r,Ωj+r for r = 0, 1, 2, respectively.

Along the same lines, in this paper we will introduce a seventh order reconstruc-

tion CWENO7 = CWENO(P (6), P
(3)
LL , P

(3)
L , P

(3)
R , P

(3)
RR), where the optimal polyno-

mial is the sixth order P (6) = Popt interpolating the data in Ωj−3, . . . ,Ωj+3 and

P1 = P
(3)
LL , P2 = P

(3)
L , P3 = P

(3)
R , P4 = P

(3)
RR are the third order polynomials

interpolating uj−3+r, . . . , uj+r for r = 0, 1, 2, 3.
Similarly, we will also propose the ninth order reconstruction CWENO9 with

m̂ = 5, Popt the eight order polynomial interpolating the data in Ωj−4, . . . ,Ωj+4

and P1, . . . , P5 are fourth order polynomials interpolating uj−4+r, . . . , uj+r for r =
0, 1, 2, 3, 4.

A few two-dimensional CWENO reconstructions can be found in the literature,
including those of [23] where this technique was proposed and [31] where it is
generalised to nonglobally Cartesian grids.

Remark 4. We note that the coefficients dk appearing in Definition 2 do not need
to satisfy accuracy requirements and they can be thus arbitrarily chosen, provided
that they are positive and add up to 1. A possible choice of coefficients is described
just below.

We start assigning weights to the low degree polynomials, biasing towards the
central ones, because they would yield a smaller interpolation error. A reconstruc-
tion of order 2g + 1 is composed of m̂ = g + 1 polynomials of degree g. These
are the m̂ polynomials which would compose a WENO reconstruction of the same
order. Let j = 1, . . . , m̂ be the indices of the low degree polynomials. We start by
computing temporary weights:

(11) d̃j = d̃m̂+1−j = j for 1 ≤ j ≤ m̂+ 1

2
.

Then we choose the linear coefficient d0 ∈ (0, 1) of the high order polynomial P0.
The final weights are given by

dj =
d̃j∑m̂
i=1 d̃i

(1− d0).

The value of d0 must be bounded away from 0 and from 1. In fact, when d0 is
too close to 0 the polynomial P0 becomes unbounded. On the other hand, when
d0 is close to 1, the reconstruction polynomial Prec will almost coincide with Popt,
irrespectively of the oscillation indicators.

In this paper we will mainly consider the two cases d0 = 1
2 and d0 = 3

4 . For

instance, for CWENO5, and d0 = 3
4 , we have the left and right parabola with weight

d1 = d3 = 1
16 and d2 = 1

8 .

3.1. Implementation of the reconstruction in 1D. The main task for com-
puting a CWENO reconstruction efficiently is to optimise the computation of the
coefficients of the interpolating polynomials. In WENO the reconstruction is com-
puted only at one point at a time and thus the Lagrange form of the interpolating
polynomials is well suited to the task (see [33]). In contrast, here we need the
functional representation of the polynomials and therefore it is more convenient to
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start from the Newton basis and finally get the representation of the polynomials
in the basis of the monomials for the computation of the smoothness indicators.

Recall that uj denotes the cell average of u(x) on the generic cell Ωj of the grid,
which has size hj . In order to compute the CWENO reconstruction in the jth cell,
we need the explicit expression of the polynomial of degree k that interpolates the
cell averages uj−r, . . . , uj−r+k. Here r denotes the offset of the stencil with respect
to the jth cell. Note that for a typical CWENO reconstruction one needs g + 1
polynomials of degree g with r = 0, . . . , g and a polynomial of degree G = 2g with
offset r = g. Note also that g out of the g + 1 polynomials of degree g employed in
the reconstruction for cell Ωj are used also for the reconstruction in the cell Ωj+1,
so that one needs to compute only one new polynomial per cell.

It is thus convenient to compute all divided differences of the set of cell averages
as a preprocessing stage to the computation of the reconstruction. In particular,
denote the divided differences of the cell averages by

(12) δ̃j,1 = uj , δ̃j,p =
δ̃j+1,p−1 − δ̃j,p−1∑j+p−1

i=j hi

for p > 1.

For later convenience, let us introduce also the undivided differences

(13) δj,p = δ̃j,p

∣∣∣
∀i:hi=1

,

which are useful for computations on uniform grids.
Following [33] we note that a polynomial p(x) of degree k interpolating a set of

consecutive cell averages can be easily computed by differentiating the polynomial
q(x) of degree k + 1 that interpolate the quantities Si =

∑
l≤i hlul in the interpo-

lation nodes xi + hi/2. It is easy to see that, for the sake of computing p(x), the
zeroth order term in q(x) is not relevant. Thus the only divided differences that
are needed are the ones listed in (12).

From now on, let us focus on a reference cell j = 0 and assume that its cell centre

is at x0 = 0. Let p
(k)
r (x) be the degree k polynomial with stencil offset r. Applying

the Newton interpolation, one finds that its primitive is

(14) q(k+1)
r (x) =

k+1∑
i=1

δ̃−r,i

i−1∏
l=0

(x− x−r−1/2+l) + constant term

and we write it in the basis of the monomials as

(15) q(k+1)
r (x) =

k+1∑
i=1

δ̃−r,i

i∑
m=1

γ̃k
r,i,mxm + constant term,

where γ̃k
r,i,m is the weight of the divided difference of order i and offset−r (i.e., δ̃−r,i)

appearing in the coefficient of the monomial xm. Note that only the coefficients

γ̃k
r,i,m for m > 0 appear in the derivative of q

(k+1)
r (x). An explicit expression for

γ̃k
r,i,m can be gained by comparing (14) and (15). One finds that, for the linear

term,

γ̃k
r,1,1 = 1, γ̃k

r,i,1 = (−1)i−1
i−1∑
n=0

∏
l=0,...,i−1

l �=n

xl−r−1/2, i > 1
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and in general that

(16)

γ̃k
r,i,m = (−1)i−m

i−1∑
n1=0

i−1∑
n2=n1+1

· · ·
i−1∑

nm=nm−1+1

∏
l=0,...,i−1
l �=n1,...,nm

xl−r−1/2, m < i

γ̃k
r,m,m = 1,

γ̃k
r,i,m = 0, m > i.

Finally, the sought polynomial p
(k)
r is found differentiating q

(k+1)
r :

(17) p(k)r (x) =

k+1∑
i=1

δ̃−r,i

i∑
m=1

Γ̃k
r,i,mxm−1, Γ̃k

r,i,m = mγ̃k
r,i,m.

Note that the values of γ̃k
r,i,0 are not needed in the expression for p

(k)
r (x).

Moreover, the formulas (16) may be rewritten in terms of the cell sizes in the
neighbourhood by exploiting the identity

xl−r−1/2 = −
−1∑

i=l−r

hi + sign(l − r)
h0

2
+

l−r−1∑
i=1

hi,

in which one of the two summations is always empty, depending on the sign of l−r.
Of course considerable simplifications occur on uniform grids, where one can

write

(18)

q(k+1)
r (x) =

k+1∑
i=1

δ̃−r,i

i−1∏
l=0

(x− (−r − 1/2 + l)h) + constant term

=
k+1∑
i=1

δ−r,i

i−1∏
l=0

(x̃− (−r − 1/2 + l)) + constant term,

where we recall that δ−r,i are the undivided differences and we have set x̃ = x/h.
The above polynomial can be put in the form (15) with

(19) γ̃k
r,i,m = (−h)i−m

i−1∑
n1=0

i−1∑
n2=n1+1

· · ·
i−1∑

nm=nm−1+1

∏
l=0,...,i−1
l �=n1,...,nm

(l − r − 1/2).

An alternative form is

(20) q(k+1)
r (x) =

k+1∑
i=1

δ−r,i

i∑
m=1

γk
r,i,mxm + constant term

with

(21) γk
r,i,m = (−1)i−m

i−1∑
n1=0

i−1∑
n2=n1+1

· · ·
i−1∑

nm=nm−1+1

∏
l=0,...,i−1
l �=n1,...,nm

(l − r − 1/2).

Finally,

(22) p(k)r (x) =

k+1∑
i=1

δ−r,i

i∑
m=1

Γk
r,i,mxm−1, Γk

r,i,m = mγk
r,i,m.
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Table 1. Table of the Γ coefficients of (22) used in the computa-
tion of CWENO reconstructions up to order 7 on uniform grids.

Γ3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
6 2

71/4 15 3
22 43 24 4

−71/16 45/2 105/2 30 5
27/8 −341/8 −45 25 30 6

−225/64 1813/16 777/16 −245/2 −175/4 21 7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

Γ2 =

⎡⎢⎢⎢⎢⎣
1
4 2

23/4 9 3
−1 7 12 4
9/16 −25/2 −15/2 10 5

⎤⎥⎥⎥⎥⎦

Γ1 =

⎡⎢⎢⎣
1
2 2

−1/4 3 3
0 −5 0 4

⎤⎥⎥⎦ Γ0 =

⎡⎢⎢⎣
1
0 2

−1/4 −3 3
1 7 −12 4

⎤⎥⎥⎦

In Table 1 we use four matrices to list the values of the coefficients Γk
r,i,m com-

puted from (21) and (22), needed for the CWENO reconstructions up to order 7.
The coefficients Γk

r,i,m of the polynomial of degree k and shift r are the elements
(i,m) in the top-left (k+ 1)× (k+ 1) submatrix of Γr, r = 0, 1, 2, 3. Note that the
elements of Γr are independent of k.

We point out that Table 1 is the finite volume analogous of the Table 2.1 pub-
lished in [33] for finite difference schemes and that formulas (17) and (22) can be
used to generate the coefficients in more general cases, analogously to (2.20) and,
respectively, (2.21) of [33].

For example, for CWENO7, we need all coefficients of Γ3 to build Popt and also
the top 4 × 4 submatrices from each Γr, r = 0, 1, 2, 3 (including Γ3) to build the
coefficients of the four cubic polynomials which compose the reconstruction. Obvi-
ously, for CWENO5, we have to consider the matrices Γr, r = 0, 1, 2. The weights of
the divided differences in Popt are in the five rows of Γ2; the coefficients of the three
parabolas are in the 3× 3 submatrices of Γr, r = 0, 1, 2. We remark that formulas
(21) and (22) give the coefficients for the all higher order cases.

In general, if the final accuracy of the reconstruction is 2g+1, we need the stencil
Ω−g, . . . ,Ωg. Here we must compute the polynomial Popt which has offset g and
contains monomials of degree m up to 2g and all polynomials of degree g with offset
r = 0, . . . , g. Therefore they can all be stored in a matrix Γr and the coefficients
needed for the polynomial of degree g with shift r are in the top-left (g+1)×(g+1)
submatrix of the matrix Γr.

4. Analysis of the CWENO reconstruction in the smooth case

This topic corresponds to point 2 in the list of Summary 1. In order to perform
the analysis of the CWENO reconstruction, let us focus on a fixed computational
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cell Ω0 and assume that its cell centre is x0 = 0. The CWENO procedure will
be applied to the set of exact cell averages uj of a given function u(x). Let us
assume that Popt ∈ P

G interpolates the cell averages of Ω0 and of a suitable number
of neighbours, so that its approximation order is O(hG+1), if the function u(x)
is sufficiently regular. Furthermore the polynomials Pr ∈ P

g are typically chosen
to interpolate g + 1 < G + 1 cell averages inside the stencil of Popt and their
approximation order is O(hg+1). The reconstruction error at a point x ∈ Ω0 is thus
given by

(23)

u(x)− Prec(x) = u(x)− Popt(x) +

m̂∑
r=0

(dr − ωr)Pr(x)

= (u(x)− Popt(x))︸ ︷︷ ︸
O(hG+1)

+

m̂∑
r=0

(dr − ωr) (Pr(x)− u(x))︸ ︷︷ ︸
O(hg+1)

,

where the last equality is true since
∑m̂

r=0 dr =
∑m̂

r=0 ωr = 1. From the above
formula it is then clear that the accuracy of the CWENO reconstruction equals the
accuracy of its first argument Popt only if (dr−ωr) = O(hG−g) in the case of smooth
data, as in standard WENO.

As we will see, CWENO, exactly as WENO, can be influenced by the value chosen
for ε in (4) and (9). While obviously a value that is too large will promote the onset
of spurious oscillations, a value that is too small may induce a degradation of the
convergence order close to local extrema. This effect was first noticed in the WENO
setting in [16] and a technique consisting in a postprocessing of the WENO weights
known as WENOM was proposed in the same paper and later extended to higher
order in [11]. Another approach involving additional smoothness indicators, known
as WENOZ has also been studied (see [8] and references therein). In [1] the authors
devise a way to relate the value of ε to the mesh size in order to guarantee the
correct convergence order and this technique has been extended to the CWENO
setting in [20] for uniform meshes and exploited also on nonuniform meshes in one
and two space dimensions, [6] and [31], respectively.

For this reason we are mainly interested in the choice

(24) ε = ε̂hp, for p = 1, 2

where h is the mesh size.
We state first a general result on the accuracy order of the polynomial P0 com-

puted in step 1 of the CWENO reconstruction.

Remark 5. P0 is of degree G, but its accuracy order is g:

P0(x)− u(x) =
1

d0

⎡⎣Popt(x)−
∑
r≥1

drPr(x)− d0u(x)

⎤⎦
=

1

d0

⎡⎣Popt(x)−
∑
r≥1

drPr(x)−

⎛⎝1−
∑
r≥1

dr

⎞⎠u(x)

⎤⎦
=

1

d0

(
Popt(x)− u(x)

)
+

∑
r≥1 dr

d0

(
u(x)− Pr(x)

)
.

Thus the accuracy order of P0 will coincide with the smallest one of the Pr’s.
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The remaining part of this section is devoted to the proof of the following result
on the order of accuracy on smooth data.

Proposition 1. The CWENO reconstruction with Popt of degree G and P1, . . . , Pm̂

of degree g is G+ 1 order accurate on smooth solutions, provided that G ≤ 2g and
ε = ε̂hp with p = 1, 2.

In order to prove that the accuracy of CWENO is O(hG+1) on smooth data,
one has to show that ωr − dr is at least O(hG−g). This study can be performed
extending to our case the technique introduced by [1] in the case of WENO and
which allows to rewrite ωr − dr in terms of differences among the indicators of the
candidate polynomials. For this target, we need the following lemma.

Lemma 1. If the polynomial p(x) =
∑g

i=0 aix
i of degree g is interpolating the cell

averages of a smooth enough function u(x), then its coefficients satisfy

(25) ak =
1

k!
u(k)(0) +O(hg−k+1), k = 0, 1, . . . , g.

Proof. Recall that p(x) can be computed by differentiating the polynomial q(x) of
degree g + 1 that interpolates the values of the primitive function U(x) of u(x)
at cell interfaces (see [33]). Then (25) is simply the classical results on the error
for polynomial interpolation q(k+1)(x)− U (k+1)(x) = O(hg−k+1) evaluated at x =
0. �

Remark 6. Note that (25) holds true also for the polynomial P0 ∈ P
G, but only for

i = 0, . . . , g. In fact, letting Popt =
∑G

i=0 bix
i and Pr =

∑g
i=0 ar,ix

i and using the
definition of P0, one finds

(26) P0(x) =
G∑
i=0

a0,ix
i =

G∑
i=0

(
bi
d0

−
m̂∑
r=1

ar,i
dr
d0

)
xi.

Next, using (25) for Popt and Pr for r = 1, . . . , m̂ one gets

a0,i =
1

d0i!

((
1−

m̂∑
r=1

dr

)
u(i)(0) +O(hg−i+1)

)
and, finally,

(27) a0,i =
1

i!
u(i)(0) +O(hg−i+1), i = 0, . . . , g.

From now on, we focus on the classical Jiang-Shu indicators of (6), whose Taylor
expansions are characterized in the following result.

Lemma 2. The Jiang-Shu indicator (6), in terms of the coefficients of a generic
polynomial, centred in 0, is given by

(28) I

[
g∑

i=0

aix
i

]
=

g∑
l=1

g∑
j=l

g∑
i=j,

i+j even

j!i!

(j − l)!(i− l)!

22l+1−j−i−δi,j

j + i− 2l + 1
ajaih

j+i,

where δi,j denotes the Kronecker delta.
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Proof. Equation (28) follows immediately from the expression of (6), recalling that

(29)

(
dl

dxlP (x)
)2

=

(
g∑

k=l

k!

(k − l)!
akx

k−l

)2

=

g∑
k=l

[
k!

(k − l)!

]2
a2k x

2(k−l) + 2

g−1∑
k=l

g∑
i=k+1

k!i!

(k − l)!(i− l)!
akaix

k+i−2l

and

(30)

∫
Ωj

xkdx =

{
0 if k + 1 odd,
hk+1

2k(k+1)
if k + 1 even.

�

We can now turn to the proof of the main result.

Proof of Proposition 1. The CWENO procedure starts by computing

(31) α0 =
d0

(ε+ I[P0])t
αr =

dr
(ε+ I[Pr])t

, r = 1, . . . , m̂.

As in [1] we use the generalization of the third binomial formula to get

(32) αr =
dr

(ε+ I[Pr])t
=

dr
(ε+ I[P0])t

[
1 +

I[P0]− I[Pr]

ε+ I[Pr]

t−1∑
s=0

(
ε+ I[P0]

ε+ I[Pr]

)s
]
,

for r = 1, . . . , m̂. In order to proceed, we need the Taylor expansions of the differ-
ences between the indicators I[Pr]. From (25) and (28), it follows that
(33)

I[Pr] =

g∑
l=1

g∑
j=l

g∑
i=j,

i+j<g+2,
i+j even

1

(j − l)!(i− l)!

22l+1−j−i−δi,j

j + i− 2l + 1
u(j)(0)u(i)(0)hj+i +O(hg+2),

for r = 0, . . . , m̂. We now turn to the terms appearing in (32). Recalling (24) and
since (33) implies that I[P0]− I[Pr] = O(hg+2), we have that

(34)

t−1∑
s=0

(
ε+ I[P0]

ε+ I[Pr]

)s

=

t−1∑
s=0

(
ε̂hp + I[P0]

ε̂hp + I[Pr]

)s

= t+O(hg+2−p).

For the terms

(35)
I[P0]− I[Pr]

ε+ I[Pr]

we observe that (33) holds true for all polynomials involved in the reconstruction
and thus for the numerator we have that

I[P0]− I[Pr] = O(hg+2).

Instead, for the denominator of (35), we observe that (28) implies that I[Pr] =
a21h

2 +O(h4) and, recalling the choice of ε in (24), we find

ε̂hp+I[Pr]=Ahp

⎛⎜⎜⎝1 +

g∑
l=1

g−1∑
j=l

j �=p−1

g∑
i=j,

i+j even

j!i!

(j − l)!(i− l)!

22l+1−j−i−δi,j

j + i− 2l + 1

ajai
A

hj+i−p

⎞⎟⎟⎠ ,
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where A = ε̂ if p = 1 and A = ε̂+ a21 if p = 2. Now

1

ε̂hp + I[Pr]
=

1

Ahp
(1 +O(hp))

so that

I[P0]− I[Pr]

ε+ I[Pr]
=

O(hg+2)

Ahp
(1 +O(hp)) = O(hg+2−p).

Recalling (34) and (32), we have

αr =
1

(ε+ I[P0])t

[
dr + dr

I[P0]− I[Pr]

ε+ I[Pr]

t−1∑
s=0

(
ε+ I[P0]

ε+ I[Pr]

)s
]

=
1

(ε+ I[P0])t
[
dr +O(hg+2−p)

(
t+O(hg+2−p)

)]
=

1

(ε+ I[P0])t
[
dr +O(hg+2−p)

]
and thus(

m̂∑
s=0

αs

)−1

= (ε+ I[P0])
t

[
m̂∑
s=0

ds +O(hg+2−p)

]
= (ε+ I[P0])

t
[
1 +O(hg+2−p)

]
.

Finally, using (32) and the previous relation, we have

(36) ωr =
αr∑m̂
s=0 αs

= dr
[
1 +O(hg+2−p)

]
.

Equation (36) shows that ωk − dk = O(hg+2−p) and thus the accuracy is maximal
provided that g + 2− p ≥ G− g. �

We point out that, starting from (25), all expressions hold in the limit h → 0.
Obviously, for finite values of h, the behaviour of the reconstruction is determined
by the relative size of ε̂hp and the indicators. Especially in the case p = 0, when ε̂ is
too small with respect to h, one typically observes a degradation in the convergence
rate. On the other hand, if ε̂ is too large, one might observe spurious oscillations,
since ε̂ would override the indicators.

Another case in which the size of ε can change the behaviour of the reconstruction
is when we are close to a local extremum. It typically happens that the local
extremum does not lie in the stencil of all Pr’s. Suppose that an extremum is
located only in the stencil of Pr̂ for some r̂ ∈ {1, . . . , m̂}.

In this case a more refined analysis would consist in replacing (29) by the Taylor
expansions of I[Pr] centred in the middle of the respective stencils, thus obtaining
I[Pr̂] = O(h4) while the remaining smoothness indicators would be larger, and this
would induce the scheme to select only the r̂th stencil, thus degrading accuracy.
For this reason, it is important that ε is large enough to override the selection of
stencils containing extrema, in the smooth case. For this reason we suggest to
employ ε ≈ h2 or even ε ≈ h, as in [6, 31].
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5. Analysis in the discontinuous case

This section contains a discussion of the behaviour of CWENO in the case of
discontinuous data. While the discussion of the previous section on the smooth
case extends partial contributions of previous authors to reconstructions of arbitrary
order of accuracy, the discontinuous case, to the best of our knowledge, has never
been analysed in detail. In this section we will consider CWENO as an interpolation
algorithm of a known function u(x). We will thus suppose that it is possible to
choose the mesh size to ensure that at most one discontinuity is present in the
stencil of Popt.

If a discontinuity is present in the stencil of Popt, then the reconstruction is
expected to degrade to a combination of the Pk’s whose stencil lies in smooth
regions. In this respect, the reconstruction behaves as WENO. In the WENO
setting, this fact is almost trivial: only the Pk’s contribute to the reconstruction
and they are all interpolating polynomials, thus the behaviour of their indicators
matches exactly the presence or absence of a discontinuity in the corresponding
stencil.

In the CWENO setting, the same final result can be proven only if an additional
property is verified by the indicators. In fact, in CWENO, also the high order
polynomial P0 contributes nontrivially to Prec and thus the behaviour of its indicator
should be taken into account as well. However, P0 is not an interpolating polynomial
and thus, for the correct behaviour of the reconstruction in the discontinuous case,
it is important that the following holds.

Definition 3 (Property R). A reconstruction CWENO(Popt, P1, . . . , Pm̂) satisfies
Property R if, whenever a jump-discontinuity is present in the stencil, so that
I[Popt] � 1 for h → 0, then also I[P0] � 1.

We will later prove that Property R holds for all the one-dimensional recon-
structions considered in this paper. Here we show a general result of the impact of
Property R on the behaviour of CWENO on discontinuous data.

Theorem 1. Assume that Property R holds true for a CWENO procedure and that
ε = O(h). If the reconstruction is applied to discontinuous data, but at least one of
I[P1], . . . , I[Pm̂] is of size O(h2), then ωk ∼ 0 for every k ∈ {0, . . . , m̂} such that
I[Pk] � 1.

Proof. Since the data are discontinuous, then I[Popt] � 1 and, thanks to Property
R, also I[P0] � 1. Let K be the set {k : I[Pk] � 1}. Then the hypothesis guarantees
that there exists at least one l 	∈ K for which I[Pl] = O(h2). Therefore αl is at
least of magnitude h−2 and thus from (9) we find that ωl � 1 and ωk = O(h2) for
every k ∈ K. �

As a corollary, provided that at least one of P1, . . . , Pm̂ insists on a smooth
stencil, the reconstruction degrades to a combination of the Pk’s defined on smooth
stencils and thus will be Essentially Nonoscillatory. With reference to summary 1,
Property R corresponds to point 1 and Theorem 1 to point 3.

Notice that Property R is not trivial, despite the fact that P0 is a convex com-
bination of the interpolating polynomials Popt and of all the Pk’s. In fact, at least
for the Jiang-Shu indicators, the square inside the integrals in equation (6) mixes
in a nonlinear way the contributions of all the polynomials involved. For example,
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consider m̂ = 1, where we have P0 = αPopt + (1− α)P1 (for α = 1/d0) and

(37) I[P0] = α2I[Popt]+(1−α)2IP1
+α(1−α)

∑
l≥1

h2l−1

∫
Ω

(
dl

dxlPopt

)(
dl

dxlP1

)
dx.

In the formula above, I[Popt] and I[P1] are always nonnegative, but there is no way
to control the sign of the cross terms.

We start by showing direct computations regarding property R for the third
order CWENO reconstruction of [22], but for generic d0 ∈ (0, 1). We recall that in
this case the stencil consists of the three cells Ωj+l, l = −1, 0, 1, P (2) = Popt ∈ P

2

is the parabola interpolating in the sense of cell averages a given function u(x) on

the whole stencil, while P
(1)
L and P

(1)
R are the two left and right linear functions

interpolating the cell averages uj−1, uj and uj , uj+1, respectively.

Example 1. Consider the operator CWENO(P (2), P
(1)
L , P

(1)
R ), with dL = dR as

defined by [22], and apply it to the cell averages of a Heaviside function and in
particular to

uj−1 = 1, uj = 0, uj+1 = 0.

By direct computation one finds that

(38)
I[P0]

I[P (2)]
=

3d20 − 6d0 + 16

16d20
.

Recalling that we are interested only in the domain d0 ∈ (0, 1], since the derivative
of (38) vanishes at d0 = 16/3, this expression attains its minimum on the boundary
and precisely at d0 = 1, where it attains the value 13/16. Moreover, this ratio is
clearly continuous provided d0 ≥ δ > 0. Thus we have that, for every choice of
0 < δ ≤ d0 ≤ 1, I[P0] � 1 whenever I[P (2)] � 1.

We now turn to the general case, showing that Property R is verified by all
one-dimensional CWENO reconstruction procedures with d0 	= 0.

Theorem 2. Let CWENO(Popt, P1, . . . , Pm̂) be a reconstruction with Popt ∈ P
G

and Pk of degree at most g < G for all k = 1, . . . , m̂, with d0 > δ > 0. If a
jump discontinuity is present in the stencil of the reconstruction polynomial, then
I[P0] � 1.

Proof. Since I[P0] is bounded for h → 0 by definition (6), in order to prove the
statement we verify that I[P0] is larger than a quantity of order h0. From the
definition of the Jiang-Shu indicators (6), we notice that

I[P0] =

G∑
l=1

h2l−1

∫
Ω

(
dl

dxl
P0

)2

dx > h2G−1

∫
Ω

(
dG

dxG
P0

)2

dx.

Using (26), the Gth derivative of P0 becomes

dG

dxG
P0 = G!

bG
d0

=
(G+ 1)!

d0
δ̃−g,G+1,

where the leading coefficient bG of the optimal polynomial Popt has been computed
as follows. Since Popt is an interpolant polynomial, using equation (17) for k = G
and (16), we get

bG = δ̃−g,G+1Γ̃
G
g,G+1,G+1 = (G+ 1)δ̃−g,G+1.
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The Gth derivative of P0 thus contains only the highest order divided difference of
the optimal polynomial Popt, which, in case of a discontinuity, diverges at a rate
h−G. In fact, one can find

δ̃−g,G+1 =

∑G
i=0(−1)i

(
G
i

)
u−g+i

(G+ 1)!hG
∼ C

hG
,

where C 	= 0 can depend on the size of the jump but not on h. We can finally
compute

I[P0] > h2G−1

∫
Ω

(
(G+ 1)!

d0
δ̃−g,G+1

)2

dx ∼
(
(G+ 1)!

d0

)2

C2,

which concludes the proof. �

5.1. Discontinuity in the reconstruction cell. We now turn to point 4 of Sum-
mary 1. Let us consider the case in which the reconstruction is sought for the cell
averages of a function with a discontinuity located inside the central cell. Clearly
in this case all stencils of the polynomials involved in the reconstruction contain
the troubled cell.

Consider first the cell averages of u(x) = H(x) + v(x), where v(x) is a Lipschitz
continuous function and H(x) is a Heaviside function with jump located in the
reconstruction cell. First note that, thanks to Remark 1, which implies that I[P ] =
I[P ]|v≡0 + O(h), the reconstructed values will differ at most by O(h) from those
that one would obtain in the case v ≡ 0.

Without loss of generality we now consider the case in which uj = 1 for j < 0,
u0 = D ∈ (0, 1) and uj = 0 for j > 0.

We compute the CWENO reconstruction for D ∈ (0, 1), d0 ∈ (0, 1] at a generic
point x in the central cell. For CWENO3 we choose the remaining coefficients
symmetrically, i.e., dL = dR = (1 − d0)/2, as in Proposition 1. For CWENO5 we
have one more parameter and we take dL = dR = dC/2, i.e., dC = (1− d0)/2, dL =
dR = (1 − d0)/4. For CWENO7 we again give more weight to the central stencils
taking dL = dR = (1− d0)/3 and dLL = dRR = (1− d0)/6 (see also (11)).

We are thus left with the free parameters D and d0 and applying the reconstruc-
tion we obtain a function U(x;D, d0). From these data, we fix d0 and we extract
md0

(D) = minx U(x;D, d0) and Md0
(D) = maxx U(x;D, d0). Figure 1 shows the

plots of md0
(D) and Md0

(D) for all schemes and for several values of d0 which are
typical, namely d0 = 1/2 (often employed in the literature), d0 = 3/4 (used in the
numerical experiments of this paper), and d0 = 9/10 (which overweights the central
polynomial). It is clear that for all values considered, the reconstructed data are
bounded by [0, 1] for all values of D and thus no spurious oscillations are created
and the total variation remains bounded.

It is noteworthy that the functions md0
(D) and Md0

(D) depend so weakly on
d0. Moreover, we found comparable results for other choices of the coefficients in
CWENO5 and CWENO7. Obviously, for d0 very close to 0 or 1, md0

(D) and Md0
(D)

would change significantly. However, taking extreme values for d0 does not make
sense in practice: for d0 → 0, P0 becomes undefined, while the limit d0 → 1 leads
to Prec → Popt irrespectively of the oscillation indicators.
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Figure 1. Discontinuity in the reconstruction cell. Minimum and
maximum values attained by the reconstruction polynomial in the
cell, as a function of the location D of the discontinuity, for several
values of d0. Left: CWENO3 with dL = dR = (1 − d0)/2. Middle:
CWENO5 with dC = (1 − d0)/2, dL = dR = (1 − d0)/4. Right:
CWENO7 with dL = dR = (1− d0)/3, dLL = dRR = (1− d0)/6.

6. Numerical experiments

The purpose of the tests appearing in this section is to study the accuracy of the
reconstructions proposed in this work, and to verify the nonoscillatory properties
of the resulting schemes. Thus we will consider the standard tests which are com-
monly used in the literature on high order methods for conservation laws: linear
advection of smooth and nonsmooth waves, shock formation in Burgers’ equation,
and Riemann problems for Euler gas dynamics. In all of these cases, we will com-
pare our results with solutions obtained with WENO schemes. Here, our results are
comparable with standard WENO.

Next, we will consider problems with sources, where CWENO reconstructions
are, we think, an improvement over standard WENO, because they allow easily to
evaluate the reconstructions at all quadrature points simultaneously. Again, we
exhibit convergence histories and nonoscillatory properties, using problems from
shallow water and gas dynamics with source terms. Finally, we study the well-
balancing of the schemes built on the new reconstructions.

We construct numerical schemes applying the method of lines and the Local
Lax-Friedrichs flux with the CWENO3, CWENO5 and the newly proposed CWENO7
and CWENO9 reconstructions. The time integrators are Runge-Kutta schemes of
matching order. In particular, the third order scheme employs the classical third
order (strong stability preserving) SSP Runge-Kutta with three stages [18], the
fifth order scheme the fifth order scheme with six stages of [3, §3.2.5], the scheme
of order seven relies on the nine-stages scheme of [3, p. 196] and the scheme of
order nine employs the scheme with eighteen stages of order ten of [7]. Clearly,
other Runge-Kutta or multistep schemes and different Riemann solvers could be
used instead.

Source terms are integrated with a Gaussian quadrature formula matching the
order of the scheme when well-balancing is not an issue. In the case of the shal-
low water equations, we employ a scheme which is well-balanced for the lake at
rest solution, constructed with the hydrostatic reconstruction technique of [2], the
desingularization procedure proposed in [21] and the Richardson extrapolation for
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the quadrature of the source term. With reference to the latter, we employ the
following quadratures S(q) of order q,

S(4) = (4S2 − S1)/3,

S(6) = (64S4 − 20S2 + S1)/45,

S(8) = (4096S8 − 1344S4 + 84S2 − S1)/2835,

S(10) = 1.450463049417298S16 − 0.481599059376837S8 + 0.031604938271605S4

− 0.000470311581423S2 + 0.000001383269357S1,

where Sn denotes the quadrature of the source term computed with the composite
trapezoidal rule with n intervals on each cell. The first of these formulas was
published in [24] and the other ones were derived by us following the ideas of that
paper.

6.1. Schemes for conservation laws. In conservation laws, finite volume schemes
on a fixed grid need reconstruction algorithms only to evaluate the numerical so-
lution at the boundary of a cell. These data are used by the numerical fluxes to
approximately solve local generalised Riemann problems.

Test 1. Linear transport of smooth data, low frequency case.

The convergence rates appearing in Figure 2 are obtained using an initial condi-
tion from [1]. We solve ut + ux = 0 on [−1, 1] with periodic boundary conditions,
up to T = 2, with initial condition

u0(x) = sin

(
πx− 1

π
sin(πx)

)
.

The low order CWENO3 scheme has d0 = 1
2 , while for the higher order schemes

we show results with d0 = 1
2 (empty circles) and d0 = 3

4 (dots). Each group of
curves is characterised with the desired slope (3, 5, 7, and 9, respectively, dashed
black lines). The black solid curves are the reference results, obtained with the
classical WENO scheme of the same order. Note that in all cases the errors almost
coincide, with a very slight edge for the CWENO schemes with d0 = 3

4 .

Test 2. Linear transport of smooth data, high frequency case.

This test is drawn from [31]. It studies the propagation of a sine wave with a
localised high frequency perturbation. As before, we solve ut + ux = 0 on [−1, 1]
with periodic boundary conditions, up to T = 2, but now the initial condition is

u0(x) = sin (πx) + 1
4 sin(15πx) e

−20x2

.

The results are presented in Figure 3. Again, the correct rates are achieved in all
cases. Note the high gain in accuracy obtained with the high order schemes even
on coarse grids.

Test 3. Burgers’ equation: shock interaction.

This is a test on shock formation and shock interaction. We consider Burgers’
equation in [−1, 1] with initial condition

u0(x) = 0.2− sin(πx) + sin(2πx)

and periodic boundary conditions. The exact solution develops two shocks, which
eventually collide, merging into a single discontinuity. We show three snapshots
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Figure 2. Convergence rates for CWENO and WENO schemes of
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Figure 4. Burgers’ equation and shock interaction: CWENO
schemes. Evolution of the solution (left). Zoom slightly before
(middle) and after (right) shock interaction.

on the same panel in Figures 4 and 5, with two zoom areas, which are enlarged
on the right. The dashed black curve is the initial condition. The second curve is
the solution at the time in which the two shocks develop (T = 1/(2π)). The third
curve is slightly before shock interaction (T = 0.6), with a detail enlarged in the
figure appearing in the centre (zoom 1). The last curve is taken shortly after shock
interaction (T = 1), and a zoom of the interaction region is shown in the right
panel (zoom 2).

Figure 4 shows the results obtained with CWENO schemes, with order 3, 5, 7,
and 9 (black, blue, green and red curves, respectively). The number of grid points
is N = 160. It is clear that the schemes do not produce spurious oscillations, and
have an excellent resolution of discontinuities. As the order is increased, the profiles
become sharper. For comparison, we also show the same results, obtained with the
WENO scheme in Figure 5. Note that the results are very similar.

Test 4. Gas dynamics: Lax’s Riemann problem.

The equations of gas dynamics for an ideal gas in one space dimension are

∂t

⎛⎝ ρ
ρu
E

⎞⎠+ ∂x

⎛⎝ ρu
ρu2 + p
u(E + p)

⎞⎠ = 0,



CWENO: UNIFORMLY ACCURATE RECONSTRUCTIONS FOR BALANCE LAWS 1711

-1 -0.5 0 0.5 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Burgers equation with WENO reconstructions

u0
W3
W5
W7
W9 t=0t=0.156

t=0.602

t=1

zoom 1

zoom 2

0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16
0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24 Zoom 1

u0
W3
W5
W7
W9

0.15 0.16 0.17 0.18 0.19 0.2
0.7

0.75

0.8

0.85

0.9

0.95

1

1.1 Zoom 2

u0
W3
W5
W7
W9

Figure 5. Burgers’ equation and shock interaction: standard
WENO schemes. Evolution of the solution (left). Zoom slightly
before (middle) and after (right) shock interaction.

where ρ is the gas density, u the velocity, p the pressure, and E the energy per
unit volume. The pressure is linked to the other variables through the equation of
state of an ideal gas, namely p = (E − 1

2ρu
2)(γ − 1), and we take γ = 1.4. The

Riemann problem by Lax has the following left and right states: ρL = 0.445, uL =
0.6989, pL = 3.5277 and ρR = 0.5, uR = 0, pR = 0.571. The solution develops a rar-
efaction wave traveling left, a contact discontinuity and a shock, both with positive
speeds. The most interesting region is the density peak which occurs between the
contact and the shock wave, where high order essentially nonoscillatory schemes are
known to develop spurious oscillations. For this reason, we show only a zoom on the
density peak. It is well known that essentially nonoscillatory and WENO schemes
develop oscillations with amplitude decreasing under grid refinement, while their
amplitude increases with the order of the scheme, at a given mesh width.

The oscillations are originated by the interaction between waves in the first stages
of the solution, when the discontinuities are so close that the algorithm cannot find
a smooth stencil. Thus, they can be partly cured computing the reconstruction
along characteristic fields, where the waves are approximately decoupled, [30].

Figure 6 contains the density peak obtained with CWENO3 (left) and CWENO5
(right) schemes. The continuous lines correspond to reconstructions computed



1712 I. CRAVERO, G. PUPPO, M. SEMPLICE, AND G. VISCONTI

0.7 0.75 0.8 0.85 0.9
1.2

1.22

1.24

1.26

1.28

1.3

1.32

1.34

1.36

1.38

1.4
Lax test - CWENO3

exact
100
200
400

0.7 0.75 0.8 0.85 0.9
1.2

1.22

1.24

1.26

1.28

1.3

1.32

1.34

1.36

1.38

1.4
Lax test - CWENO5

exact
100
200
400

Figure 6. Lax’s test. Zoom on the density peak. CWENO3 (left)
and CWENO5 (right) on several grids. The reconstruction is com-
puted along characteristic directions (continuous lines) and on con-
servative variables (dotted lines).

along characteristic directions, for which the data in the whole stencil are pro-
jected along characteristic direction, before the reconstruction is computed, while
the dashed curves are the standard reconstruction on conservative variables. Each
figure contains the data obtained with N = 100, 200 and 400 grid points (black,
blue and red curves, respectively). The improvement obtained with characteris-
tic projection is quite dramatic, especially for the higher order schemes. In these
two cases the spurious oscillations disappear. Note also the improvement in the
resolution of the waves with the high order CWENO5.

The following figure (Figure 7) contains the results obtained with CWENO7 and
CWENO9 (top row). As a comparison, the same results with the standard WENO7
and WENO9 schemes are included in the bottom row plots of the same figure.
As expected, the spurious oscillations become wilder for these high order schemes,
unless the reconstruction is computed along characteristic directions.

The results discussed so far show that the new reconstructions are comparable to
standard WENO reconstructions, not only as far as accuracy is concerned, but also
in terms of nonoscillatory, or essentially nonoscillatory, properties. In both cases,
for high order schemes, it is essential to employ characteristic projections, which
could also be done in an adaptive way, as suggested in [25] and[27].

6.2. Schemes for balance laws. In balance laws, the reconstruction algorithm
is used not only to evaluate the solution at the boundary of the cell, but also at
interior nodes. In fact, the cell averages of the source term are evaluated with high
order quadratures, which typically involve also interior nodes. Here, the CWENO
technique permits us to compute the cell averages of the source term with a single
reconstruction.

Test 5. Shallow water equations: convergence rates on a nonflat riverbed.

We consider the shallow water system, namely

(39) ∂t

(
h
q

)
+ ∂x

(
q

q2/h+ 1
2gh

2

)
=

(
0

−ghzx

)
.
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Figure 7. Lax’s test. Zoom on the density peak. CWENO7 (top
left) and CWENO9 (top right), WENO7 (bottom left) and WENO9
(bottom right) on several grids. The reconstruction is computed
along characteristic directions (continuous lines) and on conserva-
tive variables (dotted lines).

Here h denotes the water height, q is the discharge and z(x) the bottom topography,
while g is the gravitational constant.

Following [38], we compute the flow with initial data given by

(40) z(x) = sin2(πx), h(0, x) = 5 + ecos(2πx), q(0, x) = sin(cos(2πx)),

with periodic boundary conditions on the domain [0, 1]. At time t = 0.1 the solution
is still smooth and we compare the numerical results with a reference solution
computed with the fourth order scheme and 16384 cells. The 1-norm of the errors
appears in Table 2. The well-balanced quadrature is computed using Richardson’s
extrapolation, based on the trapezoidal rule. This means that the source term
average is computed using the two boundary value reconstructions and additionally
3, 7, and 15 internal reconstructions to achieve 5th, 7th, and 9th order accuracy,
respectively. We emphasise that all these reconstructed data are computed from a
single CWENO reconstruction polynomial, using the same weights for all coefficients.
Note that the order of accuracy is perfectly met, until machine precision is reached.

This test would be extremely demanding on a standard WENO reconstruction,
since the nonlinear weights must be changed for each quadrature node.
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Table 2. Errors and convergence rates for the shallow water equa-
tions on a nonflat riverbed.

CWENO3 CWENO5 CWENO7 CWENO9
N error rate error rate error rate error rate
16 4.62e-02 5.53e-03 1.34e-03 6.92e-04
32 1.04e-02 2.16 4.13e-04 3.74 7.39e-05 4.18 2.83e-05 4.61
64 2.10e-03 2.30 1.75e-05 4.56 6.74e-07 6.78 1.23e-07 7.85
128 3.14e-04 2.74 5.78e-07 4.92 5.02e-09 7.07 3.45e-10 8.48
256 3.55e-05 3.15 1.82e-08 4.99 3.91e-11 7.00 7.44e-13 8.86
512 2.42e-06 3.88 5.71e-10 4.99 3.08e-13 6.99

Table 3. Well-balancing errors on the discharge for a rough-
bottom lake at rest.

method error in q
N=100 N=200 N=400 N=800

CWENO9 7.4471e-16 1.4354e-15 1.8279e-15 2.5115e-15
CWENO7 2.1206e-15 3.0564e-15 7.1562e-15 1.6473e-14
CWENO5 1.7490e-15 3.0874e-15 5.3284e-15 9.9496e-15
CWENO3 1.9032e-15 3.5655e-15 4.7854e-15 7.6668e-15

Test 6. Shallow water equations: well-balancing test on a rough bottom.

This is a classical test, to explore the well-balancing properties of a scheme (see
[24]). We consider a flat lake z(x)+h(x) ≡ 1.5, with water at rest. The bottom cell
averages are randomly extracted from a uniform distribution on [0, 1]. Thus the
function z(x) is extremely irregular, but nonetheless the exact solution preserves the
flat surface, and the water should remain still. A well-balanced scheme preserves
this solution at machine precision.

We report in Table 3 the values of the discharge computed by all CWENO schemes
tested in this work for several grids. It is clear that in all cases the discharge is
zero within machine precision, so that the quadrature of the source is indeed well-
balanced in all cases, notwithstanding the fact that, again, it is computed with a
single polynomial for all quadrature nodes.

The data on the water height have the same precision, and are not reported for
brevity.

Test 7. Shallow water equation: dam break over a hump.

This test studies the movement of a shock and a rarefaction on a shallow water
problem, with nonconstant bottom topography. The initial conditions for the water
surface H(x) = h(x) + z(x) and the discharge are

H(x, t = 0) =

{
1.5 x < 0,

0.5 x > 0,
and q(x, t = 0) ≡ 0,

on [−2, 2], and the bottom topography is z(x) = 0.3 e−10x2

. The final time is t =
0.2. This set up contains a discontinuity on the amount of water, in correspondence
with a hump in the bottom topography. As the solution develops, a shock moves
towards the right, while a rarefaction wave travels left.
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Figure 8. Dam break over a hump. Top left: water height at
time t = 0.2. The remaining plots are zooms on the tail of the
rarefaction and the jump, for CWENO5,CWENO7, and CWENO9.
The black solid line is with characteristic projections.

The results on the water surface for N = 200 are shown in Figure 8, with zooms
on the most difficult parts of the solution for the CWENO schemes of order 5, 7,
and 9. Again, the numerical solution exhibits spurious oscillations behind the shock
(red curve, with + markers), which can be leveled out using the characteristic pro-
jection, before evaluating the reconstruction (black solid lines). The same behaviour
can be observed in the solution for the discharge.

Test 8. Gas dynamics: Riemann problem in spherical coordinates.

In the case of radial symmetry, the gas dynamics equations can be written as
a 1D system, with a source term, which takes into account the geometrical effect,
[36, §1.6.3]. Radially symmetric solutions of the Euler equations in R

n may be
computed by solving

∂t

⎛⎝ ρ
ρu
E

⎞⎠+ ∂r

⎛⎝ ρu
ρu2 + p
u(E + p)

⎞⎠ = −n− 1

r

⎛⎝ ρu
ρu2

up

⎞⎠ .

We compute the so-called “explosion problem” in two space dimensions, which
has a shock tube like initial data. In our case, we take Sod’s test data, namely
(ρL, uL, pL) = (1, 0, 1) for r < 0.5 and (ρR, uR, pR) = (0.125, 0, 0.1) for r > 0.5.
The final time of the simulation is t = 0.25.
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Figure 9. Sod’s explosion problem: density profiles for several
CWENO schemes (left), zoom on the contact and shock wave with
the reconstruction computed along conservative variables (middle),
and along characteristic variables (right).

In order to avoid difficulties with the boundary conditions in the singular point
r = 0, and taking into account that the computed solution will have null velocity u
(and thus null source term) close to r = 0, because of the initial data, we computed
the solutions for r ∈ [−1, 1] with symmetric initial data and free-flow boundary
conditions. Gaussian quadrature formulas of appropriate order are employed to
compute the cell average of the source term and the grid is chosen in order to avoid
quadrature nodes at the singular point x = 0. The solution at final time obtained
with N = 400 cells is shown in Figure 9, restricted to the domain r ∈ [0, 1]. Again,
we show the density profiles, since the density contains the main features of the
flow. The zoom in the density profile centred on the contact wave is shown for
the reconstruction computed along conservative variables (central plot), and along
characteristic variables (right plot). Each plot contains the solution obtained with
all four different schemes tested in this work. The cyan curve is given by CWENO3,
and the improvement in the resolution of the contact wave obtained increasing
the accuracy of the scheme is quite apparent. Here, too, only one reconstruction
polynomial is needed for each Runge Kutta stage. Also in this test the dramatic
improvement obtained with the projection along characteristic variables is striking.

7. Conclusions

In this paper we introduced a class of spatial reconstruction procedures that
are characterised by computing a reconstruction function whose accuracy is uni-
form across the whole cell, instead of reconstructed point values, as in the stan-
dard WENO reconstruction. This class of algorithms contains the already proposed
CWENO3 of [22], CWENO5 of [4] and the two-dimensional third order reconstruc-
tion of [31].

In particular, within this framework, we focused on one-dimensional reconstruc-
tion procedures of any odd order 2g + 1 (which were never considered before for
g > 2) and proved that the nonlinear mechanism for stencil selection guarantees the
desired accuracy of order 2g + 1 when the procedure is applied to smooth enough
data. The nonoscillatory properties of the reconstruction in the presence of discon-
tinuities in the input data are studied more deeply than in previous papers and a
sufficient condition (property R) is given, to direct the choice of the parameters ap-
pearing in the reconstruction, to avoid spurious oscillations. Moreover, it is shown
that any the one-dimensional CWENO scheme satisfy property R.
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We think that this is the first time that the potential of these reconstructions is
explored in the case of balance laws, and their properties are systematically studied.

The new schemes perform on par withWENO reconstructions regarding accuracy
on smooth data and the production of spurious oscillations close to discontinuities,
but they are, in our opinion, more versatile than WENO, because they result in
a whole reconstructing polynomial which can be evaluated where needed. This is
very important on balance laws, nonuniform grids, moving mesh algorithms. In
fact, in CWENO schemes, the accuracy requirements involve only the degree of the
candidate polynomials and not the values of suitably chosen linear coefficients. This
means that, in a CWENO procedure, the linear coefficients can be chosen indepen-
dently of the point at which the reconstruction is to be evaluated and independently
of the relative size of the neighbouring cells.

With these new schemes, unlike WENO, it is possible to compute boundary value
reconstructions on uniform or nonuniform grids (to compute numerical fluxes),
and, at the same time, evaluate the reconstruction at points in the interior of
the computational cells, for evaluating quadratures of source terms, with the same
reconstruction polynomial. The same polynomial can also be used to compute
quantities that employ quadrature formulas in the cell, as in the initialisation of
cell averages after a grid refinement on h-adaptive schemes or after mesh movement
in moving mesh techniques. Another important application is the computation of
cell averages of functions of the conserved variables arising in the computation of
local residuals for a posteriori error control, as in the case of the numerical entropy
error indicator. A very important application can be found in finite volume schemes
for balance laws, in the computation of cell averages of source terms. This latter
application in particular is tested in this paper, for accuracy orders up to 9.

In this paper we also introduce formulas to compute the reconstructions, in one
space dimension, from the divided differences of the data in the case of nonuniform
grids, and we provide tables of coefficients, obtained from undivided differences in
the case of uniform grids. We note that the structure of these tables, whose entries
do not depend on the degree of the polynomial to be computed, allows easily to
raise or lower the degree of the reconstruction. The exploitation of this feature for
p-adaptivity will be the subject for future work.

This paper is mainly concerned on CWENO reconstructions in one space dimen-
sion. The extension to multidimensional in the case of Cartesian grids is straight-
forward, but it is also possible to extend these techniques to unstructured grids
along the lines of [31].
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