
MATHEMATICS OF COMPUTATION
Volume 87, Number 312, July 2018, Pages 1913–1934
http://dx.doi.org/10.1090/mcom/3277

Article electronically published on November 6, 2017

FAST POLYNOMIAL TRANSFORMS BASED ON

TOEPLITZ AND HANKEL MATRICES

ALEX TOWNSEND, MARCUS WEBB, AND SHEEHAN OLVER

Abstract. Many standard conversion matrices between coefficients in clas-
sical orthogonal polynomial expansions can be decomposed using diagonally-
scaled Hadamard products involving Toeplitz and Hankel matrices. This allows
us to derive algorithms with an observed complexity of O(N log

2
N), based on

the fast Fourier transform, for converting coefficients of a degree N polyno-
mial in one polynomial basis to coefficients in another. Numerical results show
that this approach is competitive with state-of-the-art techniques, requires no
precomputational cost, can be implemented in a handful of lines of code, and
is easily adapted to extended precision arithmetic.

1. Introduction

Expansions of polynomials as finite series in orthogonal polynomial bases have
applications throughout scientific computing, engineering, and physics [3, 10, 37].
The most popular expansions are in the Chebyshev and Legendre basis,

(1) pN (x) =

N∑
k=0

cchebk Tk(x) =

N∑
k=0

clegk Pk(x), x ∈ [−1, 1],

where pN is a degree N polynomial and Tk and Pk are the degree k Chebyshev and
Legendre polynomials, respectively. Chebyshev expansions are used because of their
near-optimal approximation properties and associated fast transforms [14, 26, 43]

and Legendre expansions for their L2 orthogonality [31, Table 18.3.1] as well as
other recurrence relations that they satisfy [17]. A useful working paradigm is to
represent a smooth function on a finite interval using the Chebyshev basis and
to convert it to a different polynomial basis, such as Legendre, whenever it is
algorithmically convenient to do so [17]. It is therefore important to have fast
transforms for converting a vector of coefficients in one polynomial basis to another.

Given two sequences of orthogonal polynomials {φ0, φ1, . . .} and {ψ0, ψ1, . . .},
there is an (N +1)× (N +1) upper-triangular conversion matrix (sometimes called

Received by the editor May 10, 2016, and, in revised form, November 20, 2016, and March 9,
2017.

2010 Mathematics Subject Classification. Primary 65T50, 65D05, 15B05.

Key words and phrases. Conversion matrix, Toeplitz, Hankel, Hadamard product.

The work of the first author was supported by the National Science Foundation grant
No. 1522577.

The work of the second author was supported by the UK Engineering and Physical Sciences
Research Council (EPSRC) grant EP/H023348/1 for the University of Cambridge Centre for
Doctoral Training, the Cambridge Centre for Analysis, and the London Mathematical Society
Cecil King Travel Scholarship 2015.

c©2017 American Mathematical Society

1913

http://www.ams.org/mcom/
http://dx.doi.org/10.1090/mcom/3277

1914 ALEX TOWNSEND, MARCUS WEBB, AND SHEEHAN OLVER

the connection coefficients matrix), A, such that

β = Aα, pN (x) =
N∑

k=0

αkφk(x) =
N∑

k=0

βkψk(x),

where α = (α0, . . . , αN)T and β = (β0, . . . , βN)T . In this paper we describe how to
compute the matrix-vector product Aα in an observed complexity of O(N log2N)
when {φ0, φ1, . . .} and {ψ0, ψ1, . . .} are sets of classical orthogonal polynomials such
as Chebyshev, Legendre (see Sections 3 and 5.1), ultraspherical (see Section 5.2),
Jacobi (see Section 5.3), and Laguerre (see Section 5.4).

There are many existing fast algorithms for computing Aα that exploit a vari-
ety of structures, including: (1) a hierarchical off-diagonal low rank structure [1],
(2) an eigenvalue decomposition involving a semiseparable matrix [23, 24, 35], and
(3) trigonometric-like behavior of orthogonal polynomials via asymptotic expan-
sions [16, 28, 33, 39]. In this paper, we exploit a new observation that all standard
conversion matrices can be decomposed using diagonally-scaled Hadamard prod-
ucts involving Toeplitz and Hankel matrices.1 This structure allows us to derive
FFT-based algorithms for computing Aα that can be implemented in many pro-
gramming languages using just a handful of lines of code. We believe this algorithm
is conceptually simpler than previous approaches, while being competitive in terms
of computational speed (see Sections 4 and 5).

It is easy to see the structure that we exploit by considering an example. Consider
the (N +1)× (N +1) Legendre-to-Chebyshev conversion matrix, which converts a
vector of Legendre coefficients to Chebyshev coefficients for a degree N polynomial.
Following [1, eqn. (2.18)] (see also [40, (4.9.4)]), it is given by
(2)

ccheb = Mcleg, Mjk =

⎧⎪⎪⎨
⎪⎪⎩

1
πΛ

(
k
2

)2
, 0 = j ≤ k ≤ N, k even,

2
πΛ

(
k−j
2

)
Λ
(

k+j
2

)
, 0 < j ≤ k ≤ N, k − j even,

0, otherwise,

where2 Λ(z) = Γ(z + 1/2)/Γ(z + 1), Γ(z) is the gamma function, and ccheb =

(ccheb0 , . . . , cchebN)T and cleg = (cleg0 , . . . , clegN)T are the Chebyshev and Legendre co-
efficients of pN (x) in (1), respectively. The explicit formula in (2) reveals that after
a trivial diagonal scaling, the matrix M can be written as a Hadamard product
between an upper-triangular Toeplitz matrix, from the Λ(k−j

2) term, and a Hankel

matrix, from the term Λ(j+i
2). Thus, for the matrix M in (2) we can write

(3) M = D1(T ◦H)D2,

where D1 and D2 are diagonal matrices, T is an upper-triangular Toeplitz matrix,
H is a Hankel matrix, and ‘◦’ is the Hadamard matrix product, i.e., entrywise
multiplication between two matrices (see (7) for explicit formulas for D1, D2, T and
H). We find that the structure in (3) holds for many of the standard conversion
matrices (see Section 5).

At first it is not obvious why the decomposition in (3) is useful for deriving a fast
matrix-vector product because for general Toeplitz and Hankel matrices we are not

1
A Toeplitz matrix, T , is a matrix that is constant along each diagonal, i.e., Tjk = tj−k. A

Hankel matrix, H, is a matrix that is constant along each anti-diagonal, i.e., Hjk = hj+k.
2
We note that Λ(z) = B(1/2, z + 1/2)/

√
π, where B(α, β) is the Beta function [31, (5.12.1)].

FAST POLYNOMIAL TRANSFORMS BASED ON TOEPLITZ & HANKEL MATRICES 1915

Outline for fast polynomial basis conversion: Computing β = Aα.

Cost
1. Decompose A into A = D1(T ◦H)D2 (see Section 5) -

2. Calculate H ≈
∑K

r=1 ar �r �
T
r (see Section 2.1) O(N log2N)

3. Compute v = D2α O(N)

4. Compute w = (T ◦H)v using (5) and the FFT [29] O(N log2N)

5. Compute β = D1w O(N)

O(N log2N)

Figure 1. A summary of the O(N log2N) algorithm for convert-
ing between many classical orthogonal polynomial bases, including
Chebyshev, Legendre, ultraspherical, Jacobi, and Laguerre poly-
nomial bases. The algorithmic complexity of the second step is,
more precisely, expected to be O(N log2N log(1/ε)) and numerical
evidence is provided (see Figure 4) but a full theoretical justifica-
tion is elusive. For the algorithmic complexity of the fourth step
see Section 3.2.

aware of a fast algorithm for computing (T ◦H)v. However, for conversion matrices
the Hankel matrix in (3) is often real and positive semidefinite and hence, is severely
ill-conditioned [4]. Moreover, Theorem 3 shows that all positive semidefinite Hankel
matrices in (3) can be approximated, up to an accuracy of 0 < ε < 1, by a rank
K = O(logN log(1/ε)) matrix. To give an example value for K in practice, if we
take the H from the Legendre-to-Chebyshev matrix given in (2), with N+1 = 5000

and ε = 10−14, then there exists a rank K = 30 matrix Ĥ such that ‖H − Ĥ‖2 <
ε‖H‖2.

For an integer K, we construct a rank K approximation of H in O(K2N) op-
erations using the pivoted Cholesky algorithm (see Section 2.1) to obtain the ap-
proximation,

(4) H ≈
K∑
r=1

ar �r �
T
r .

Since K needs to be no larger than O(logN log(1/ε)) we can compute (4) in a total

of O(N log2N log(1/ε)2) operations. Moreover, using (A ◦ � �T)v = (D�AD�)v,
where D� = diag(�), we can write

(5) (T ◦H) v ≈
K∑
r=1

ar

(
D�r

TD�r

)
v,

where each term is a diagonally-scaled Toeplitz matrix whose matrix-vector product
can be computed inO(N logN) operations via the fast Fourier transform (FFT) [29,
Sec. 3.4]. There are K terms in (5), so the matrix-vector product (T ◦H) v can be

computed, up to an expected error of O(ε), in O(KN logN+K2N) operations. For
the majority of this paper we write algorithmic complexities without the explicit
dependency on ε. A more careful analysis of the error incurred in the approximation
in (5) can be found in Section 3.3.

1916 ALEX TOWNSEND, MARCUS WEBB, AND SHEEHAN OLVER

The approach for fast polynomial basis conversion (see Figure 1) requires no
hierarchical data structures, no precomputational setup cost, and no matrix parti-
tioning. The fundamental step is a fast Toeplitz matrix-vector product and the cost
of the matrix-vector product is precisely O(K) FFTs of size 2N − 1 [29, Sec. 3.4].
The fact that our algorithm relies on the FFT means that the implementation is au-
tomatically tuned to personal computer architectures, thanks to FFTW [12]. Our
algorithm is now the default algorithm for polynomial basis conversion in the MAT-
LAB software system called Chebfun [11] (see the commands leg2cheb, cheb2leg,
ultra2ultra, and jac2jac) and the Julia package called ApproxFun.jl [30], via
the package FastTransforms.jl [41] (see commands leg2cheb and cheb2leg).

More generally, matrix decompositions of the form A ◦B, where A has a known
fast matrix-vector product and B can be approximated by a low rank matrix, are
often useful for deriving fast matrix-vector products. The algorithmic challenge is to
construct a low rank approximation to B in quasilinear complexity. Decompositions
of the form A ◦ B have been exploited to derive a simple nonuniform FFT [2], a
discrete Legendre transform [18], and a fast evaluation of exponential sums [21].
We hope that this list continues to grow in the future.

This paper is structured as follows. In Section 2 we describe a pivoted Cholesky
algorithm for constructing low rank approximations of real, symmetric, and positive
semidefinite matrices and use it to compute (T ◦ H)v in O(N log2N) operations,
where T is an (N + 1)× (N + 1) Toeplitz matrix and H is a real, symmetric, and
positive semidefinite Hankel matrix. In Section 3 we write M = D1(T ◦H)D2 as
in (3) and show that the Hankel part, H, can be approximated, up to an error of 0 <
ε < 1, by a rank K = O(logN log(1/ε)) matrix. In Section 4 we compare various
algorithms for converting Legendre-to-Chebyshev basis conversion. In Section 5 we
show that our algorithm allows for fast matrix-vector products involving many of
the standard conversion matrices and we give numerical results throughout that
section.

2. A fast matrix-vector product for

certain Toeplitz-dot-Hankel matrices

We say that a matrix A is a Toeplitz-dot-Hankel matrix if A can be written as
a Hadamard product of a Toeplitz and Hankel matrix, i.e., A = T ◦H, where T is
a Toeplitz matrix, H is a Hankel matrix, and ‘◦’ denotes the Hadamard product.
In this section, we suppose that H is a real, symmetric, and positive semidefinite
Hankel matrix and that it is approximated, up to an error of 0 < ε < 1, by a rank
K matrix. Later, in Section 3 we show that this holds for the Hankel part of the
Legendre-to-Chebyshev conversion matrix in (2) when K = O(logN log(1/ε)).

Once we have constructed the low rank approximation in (4), costing O(K2N)
operations, a fast matrix-vector product is immediate as (5) shows that (T ◦H)v
can be computed as a sum of matrix-vector products involving a Toeplitz matrix.

2.1. Low rank approximation of a real positive semidefinite matrices us-
ing the pivoted Cholesky algorithm. Suppose thatH is approximated up to an
error of ε by a rank K matrix. We would like to compute a rank K approximation
to H, i.e., a1, . . . , aK and �1, . . . , �K in (4).

In principle, one could construct a best rank K approximation of H by comput-
ing the singular value decomposition (SVD) of H and taking the first K left and
right singular vectors as well as the first K singular values. Naively, this costs a

FAST POLYNOMIAL TRANSFORMS BASED ON TOEPLITZ & HANKEL MATRICES 1917

prohibitive O(N3) operations, which can be reduced to O(N2 logN) operations if
the Hankel structure is exploited [46]. Instead, we describe an algorithm that costs

only O(K2N) operations based on a pivoted Cholesky algorithm. It can be ap-
plied to any real, symmetric, and positive semidefinite matrix and does not exploit
the Hankel structure of H. In practice, if the singular values of H decay rapidly,
then the rank K approximation constructed by our pivoted Cholesky algorithm is
observed to be near-best (see Figure 4). Our algorithm is very similar to the piv-
oted Cholesky algorithm described in [19], except we avoid square roots and have a
different stopping criterion. One can trace back the origin of our algorithm to the
rank revealing literature [15, 20].

Set H(0) = H and assume that H is a nonzero, real, symmetric, and positive
semidefinite matrix. First, the maximum on the diagonal of H is selected, say
Hp1p1

, which is also the absolute global maximum entry of H [13, Thm. 4.2.8].
Then, one step of the Cholesky algorithm is performed with the entry (p1, p1) as
the pivot, i.e.,

(6) H(1) = H(0) −H(0)
:,p1

H(0)
p1,:

/H(0)
p1p1

,

where H(0)
:,p1

and H(0)
p1,:

denotes the p1th column and p1th row of H(0), respectively.

The matrix H(1) has a zero p1th column and p1th row. The Cholesky step in (6) is

closely related to the Schur complement of the (p1, p1) entry in H(0) and the matrix

H(1) is guaranteed to be real, symmetric, and positive semidefinite. Furthermore,

the rank of H(1) is exactly one less than H(0) [27, Cor. 19.2].

Next, the maximum on the diagonal of H(1) is found, say H(1)
p2p2

. If H(1)
p2p2

= 0
or is sufficiently small, then the process is terminated; otherwise, another Cholesky
step is taken with the entry (p2, p2) as the pivot, i.e.,

H(2) = H(1) −H(1)
:,p2

H(1)
p2,:

/H(1)
p2p2

.

Again, the matrix H(2) is guaranteed to be real, symmetric, and positive semi-

definite and has a rank that is exactly one less than H(1). The pivoted Cholesky
algorithm continues until the maximum on diagonal is either zero or sufficiently
small. Since the rank of H is at most N and the rank decreases by precisely one
after each Cholesky step, the algorithm terminates in at most N steps. For the
algorithm to be computationally more efficient than the SVD one hopes to need
just K � N steps.

Suppose that the pivoted Cholesky algorithm takes K steps before terminating.

Since H(0), . . . , H(K−1) are symmetric matrices, we can write the rth Cholesky step
as follows:

H(r) = H(r−1) − ar �r �
T
r , �r = H(r−1)

:,pr
, ar = (H(r−1)

prpr
)−1.

Therefore, we use the rth pivoted Cholesky step to construct the rth term in (4),
where after K steps the rank K approximation to H is constructed.

The pivoted Cholesky algorithm described so far requires a total of O(KN2)
operations because at each step an (N + 1) × (N + 1) matrix is updated. Now

we will describe how to construct the same rank K approximant to H in O(K2N)
operations, which is a significant saving when K � N .

The main idea to reduce the computational cost is to note that it is not necessary
to update the whole matrix at each Cholesky step. For example, consider the Hankel

1918 ALEX TOWNSEND, MARCUS WEBB, AND SHEEHAN OLVER

0 50 100 150 200 250 300
0

50

100

150

200

250

300

Figure 2. The pivoted Cholesky algorithm is applied to the Han-
kel part of the Legendre-to-Chebyshev conversion matrix in (2)
when N = 300. The Cholesky algorithm takes 27 pivots (blue
dots) and evaluates the matrix at the 27 corresponding columns
(black lines). One can see that the majority of the entries in the
Hankel part of M are not required during the pivoted Cholesky
algorithm, allowing for the computational cost to be reduced from
O(N2) to O(N) operations.

part, H, of the matrix M in (2) for N = 300. Figure 2 shows the pivot locations
selected by the pivoted Cholesky algorithm, where a total of 27 steps was required
to construct a low rank approximant of H that is accurate up to double precision.
This means that only 27 columns from H are required to compute (4) (see black
vertical lines on Figure 2). Therefore, we rewrite the pivoted Cholesky algorithm so
that it only updates the diagonal entries (required to determine the pivot locations)
and those 27 columns of H. This allows for a significant computational saving when
K � N .

Let d = (H00, . . . , HNN)
T
be the diagonal entries of H. In the first step, instead

of (6), we only update the diagonal as follows:

d ←− d− (H(0)
:,p1

)2/H(0)
p1p1

,

where we have used the fact that HT = H and (H(0)
:,p1

)2 is the vector H(0)
:,p1

squared
entry-by-entry. The diagonal can then be used to determine the location of the
second pivot. For the second step, we again only update the diagonal,

d ←− d− (H(1)
:,p2

)2/H(1)
p2p2

,

where (H(1)
:,p2

)2 means that the vectorH(1)
:,p2

is squared entry-by-entry. Since the pivot
locations at each step are determined by the diagonal entries, one can select the
pivoting entries by only updating the diagonal vector d. At the rth Cholesky step

the column H(r−1)
:,pr

is required, which is not directly available from the matrix H.

FAST POLYNOMIAL TRANSFORMS BASED ON TOEPLITZ & HANKEL MATRICES 1919

Pivoted Cholesky algorithm for real, symmetric, and positive semi-
definite matrices

Input: A real, symmetric, and positive semidefinite matrix, H, and an accu-
racy goal 0 < ε < 1.

Output: Vectors �1, . . . , �K and a1, . . . , aK such that H ≈
∑K

r=1 ar �r �
T
r .

Set d = (H00, . . . , HNN)T , the diagonal of H

for r = 1, 2, . . . , N

pr = argmax0≤j≤N dj
Set �r = H:,pr

for j = 1, . . . , r − 1

�r ←− �r − �j(�j)pr
/(�j)pj

end

Set ar = 1/(�r)pr

d ←− d− ar(�r)
2

if max0≤j≤N dj ≤ εmax0≤j≤N Hjj , then stop
end

Figure 3. Pseudocode for pivoted Cholesky algorithm, which
costs O(K2N) operations. This algorithm only requires the matrix
H to be real, symmetric, and positive semidefinite, not necessarily
Hankel.

We calculate this by first constructing H:,pr
and by applying each of the previous

r − 1 Cholesky steps to H:,pr
(see also [19]). Figure 3 presents a summary of the

algorithm. A simple operation count reveals that the algorithm costs O(K2N)
operations.

One may be legitimately concerned that the low rank approximants constructed
by the pivoted Cholesky algorithm in Figure 3 are of poor quality, as they are not
strictly the best low rank approximants. More precisely, suppose thatHK is the best
rank K approximant of H in the matrix 2-norm computed via the SVD and H̃K =∑K

r=1 ar �r �
T
r is constructed via the pivoted Cholesky algorithm. Loosely speaking,

is it possible that ‖H − HK‖2 is much smaller than ‖H − H̃K‖2? When H has
moderately decaying singular values, we believe not. One representative numerical
experiment is shown in Figure 4 (left), where the low rank approximants constructed
by the pivoted Cholesky algorithm are compared against those from the SVD for
the Hankel part of the matrix M in (2) when N = 1000. All other investigations
have revealed similar results [19, 42]. The best mathematical statement we know

of is [19, Thm. 3.2], which shows that ‖H − H̃K‖2 ≤ 4K(N + 1)‖H −HK‖2. This
suggests that the pivoted Cholesky procedure could compute low rank approximants
of H that are severely suboptimal. A more descriptive inequality between ‖H −
H̃K‖2 and ‖H−HK‖2 that adequately describes the power of the pivoted Cholesky
algorithm for constructing low rank approximants is a remaining mathematical
challenge and may require a much deeper understanding on the numerical stability
of Gaussian elimination (see [42, Chap. 4]). In principle, we could have presented
a variant on the pivoted Cholesky algorithm to ensure that it is a so-called strong

1920 ALEX TOWNSEND, MARCUS WEBB, AND SHEEHAN OLVER

1 5 10 15 20 25
10-15

10-10

10-5

100

pivoted
Cholesky

SVD

2
-n
o
rm

er
ro
r

Rank

Cholesky’s near-best approximants

101 102 103 104 105 106
10-4

10-3

10-2

10-1

100

101

O(
N
log
2 N

)

O
(N

3)

pi
vo
te
d
Ch
ol
es
kySV

D

Cholesky’s execution time

N

E
x
ec
u
ti
o
n
ti
m
e
(s
ec
o
n
d
s)

Figure 4. Left: The low rank approximants constructed by the
pivoted Cholesky are often near-best. Here, the Hankel part of M
in (2) is considered when N = 1000 and the 2-norm error between
the SVD and pivoted Cholesky rank K approximants is compared.
Right: The pivoted Cholesky algorithm is computationally more ef-
ficient than the SVD at constructing low rank approximants. Here,
the execution times are compared for the Hankel part of M when
10 ≤ N ≤ 106. At each N the algorithms construct a low rank
approximant that is accurate to essentially double precision. Since
K = O(logN) for the Hankel part of M , the cost of the pivoted

Cholesky algorithm is O(N log2N) operations, while the cost of

the SVD is O(N3) operations.

rank-revealing algorithm [15]. However, this makes the pivoted Cholesky algorithm

have a cost of O(N2) operations and such a modification seems unnecessary in
practice.

Our pivoted Cholesky algorithm costs O(K2N) operations. In Figure 4 (right)
we compare the execution time for computing the SVD and the pivoted Cholesky
algorithm on the Hankel part of the matrix M in (2) for obtaining an accuracy

of essentially double precision. One can see that even when N = 106, the pivoted
Cholesky algorithm can be employed to construct (4), whereas the SVD is limited
to N ≤ 5000. In some applications the size of the matrix M is fixed and one
wishes to convert between two polynomial bases for many different polynomials of
the same degree. In such a situation, the pivoted Cholesky algorithm can construct
a low rank approximation for the Hankel part just once and it can be reused for
each matrix-vector product.

3. The Hankel part of the Legendre-to-Chebyshev matrix

Let N be an integer. The (N + 1) × (N + 1) Legendre-to-Chebyshev matrix,
denoted by M , in (2) can be written as a diagonally-scaled Toeplitz-dot-Hankel
matrix. That is, M = D1(T ◦ H)D2, where D1 = 2

πdiag(
1
2 , 1, . . . , 1), D2 = IN+1

FAST POLYNOMIAL TRANSFORMS BASED ON TOEPLITZ & HANKEL MATRICES 1921

the (N + 1)× (N + 1) identity matrix, and

(7)
Tjk =

{
Λ
(

k−j
2

)
, 0 ≤ j ≤ k ≤ N, k − j even,

0, otherwise,

Hjk = Λ
(

j+k
2

)
, 0 ≤ j, k ≤ N.

Here Λ(z) = Γ(z+1/2)/Γ(z+1), where Γ(z) is the gamma function. In this section
we show that H is: (1) real, symmetric, and positive semidefinite (see Section 3.1)
and (2) H can be approximated, up to an accuracy of 0 < ε < 1, by a rank
K = O(logN log(1/ε)) matrix (see Section 3.2).

3.1. The Hankel part of the Legendre-to-Chebyshev matrix is positive
semidefinite. The Hankel matrix H in (7) is immediately seen to be real and
symmetric. To show that it is positive semidefinite, we recall that the Hamburger
moment problem states that a real Hankel matrix is positive semidefinite if and
only if it is associated to a nonnegative Borel measure supported on the real line.

Lemma 1 (Hamburger moment problem). A real (N+1)×(N+1) Hankel matrix,
H, is positive semidefinite if and only if there exists a nonnegative Borel measure
μH supported on the real line such that

(8) Hjk =

∫ ∞

−∞
xj+kdμH(x), 0 ≤ j, k ≤ N.

Proof. For a proof, see [34, Thm. 7.1]. �

We show that the Hankel matrix in (7) is positive semidefinite by expressing its
entries in the form of (8).

Theorem 2. The Hankel matrix, H, in (7) is positive semidefinite.

Proof. It can be verified that

Hjk = Λ
(

j+k
2

)
=

1√
π
B
(

j+k+1
2 , 1

2

)
=

1√
π

∫ 1

0

t
j+k+1

2 (1−t)−
1
2 dt, 0 ≤ j, k ≤ N,

where B(·, ·) is the Beta function [31, (5.12.1)]. The last equality follows directly
from the integral representation for the Beta function [31, (5.12.1)]. By substituting

t = x2, we arrive at the formula

Hjk =
2√
π

∫ 1

0

xj+k(1− x2)−
1
2 dx, 0 ≤ j, k ≤ N.

By setting dμH(x) = (2/
√
π)χ(0,1)(1 − x2)−1/2dx in Lemma 1, where χ(0,1) is

the characteristic function for the interval (0, 1), we conclude that H is a positive
semidefinite matrix. �

Theorem 2 shows that H is positive semidefinite and therefore, the pivoted
Cholesky algorithm described in Section 2.1 is applicable. We now show that H
can be well-approximated by a rank K matrix where K � N .

1922 ALEX TOWNSEND, MARCUS WEBB, AND SHEEHAN OLVER

3.2. The Hankel part of the Legendre-to-Chebyshev matrix is numeri-
cally of low rank. In Section 3.1 we showed that H in (7) is real, symmetric, and
positive semidefinite. Such Hankel matrices are severely ill-conditioned, and Beck-

ermann has proved the remarkably tight bound of κ2(H) ≥ 0.0037×(33.97)N/N [4],
where κ2(H) denotes the condition number of H in the matrix 2-norm. This shows
that H is in fact exponentially ill-conditioned, so one might expect that the singu-
lar values σ1(H), . . . , σN+1(H) of H decay rapidly to zero. Indeed, they do, as the
following theorem shows.

Theorem 3. Let N be an integer and H an (N +1)× (N +1) real positive definite
Hankel matrix. Then, its singular values rapidly decay:

σj+2k(H) ≤ 16

[
exp

(
π2

4 log(8�(N + 1)/2�/π)

)]−2k+2

σj(H), 1 ≤ j+2k ≤ N+1.

Moreover, for any 0 < ε < 1, there exists a rank K matrix Ĥ such that ‖H−Ĥ‖2 ≤
ε‖H‖2, where

(9) K = 2

⌈
2 log (8�(N + 1)/2�/π) log (16/ε)

π2

⌉
+ 2 = O(logN log(1/ε)).

Proof. See [6, Sec. 5.2]. �

While the result in [6] is stated for real positive definite Hankel matrices, it
immediately includes positive semidefinite Hankel matrices too. This is because a
positive semidefinite Hankel matrix can be arbitrarily approximated by a positive
definite Hankel matrix. This means that all the Hankel parts of the conversion
matrices in this paper have a numerical rank of at most O(logN log(1/ε)), where
the implicit constants are known from (9).

In practice, we use the pivoted Cholesky algorithm (see Section 2.1) to construct

a low rank approximant for H in O(K2N) operations. Using the formula in (5)

we can then calculate ccheb = Mcleg via a sum of O(K) diagonally-scaled Toeplitz

matrix-vector products. Hence, we have described an O(N log2N) algorithm for

computing ccheb = Mcleg (see Figure 1).

3.3. Error analysis for the Legendre-to-Chebyshev matrix. We now inves-
tigate the error incurred in the matrix-vector product resulting from approximating
a matrix of the form D1(T ◦ H)D2 by D1(T ◦ Ĥ)D2. Our analysis below shows
that it is a valid approximation for the Legendre-to-Chebyshev matrix, but a more
careful analysis is required for some of the other conversion matrices.

Theorem 4. Let 0 < ε < 1 and set K be the integer in (9). Let Ĥ be the rank K

approximation to H so that ‖H − Ĥ‖2 ≤ ε‖H‖2. Then, for any (N + 1)× 1 vector
we have

‖D1(T ◦H − T ◦ Ĥ)D2v‖2 ≤ ‖D1‖max‖D2‖max‖T‖max16
√
2

ρ

(ρ2 − 1)1/2
ε‖H‖2‖v‖2,

where ‖A‖max denotes the maximum absolute entry of A and ρ is given in (10).

FAST POLYNOMIAL TRANSFORMS BASED ON TOEPLITZ & HANKEL MATRICES 1923

Proof. We first derive a bound on ‖H − Ĥ‖F , where ‖ · ‖F denotes the Frobenius
matrix norm. From the definition of the Frobenius norm, we find that

‖H − Ĥ‖2F =
N∑

k=K+1

σk(H)2 = σK+1(H)2
N−K−1∑

k=0

σ(K+1)+k(H)2

σK+1(H)2
.

To use Theorem 3, we note that σk+1(H) ≤ σk(H) so that

‖H − Ĥ‖2F ≤ 2σK+1(H)2
∞∑
k=0

σ(K+1)+2k(H)2

σK+1(H)2
,

where σj(H) = 0 if j > N . From Theorem 3 we conclude that
(10)

‖H − Ĥ‖2F ≤ 256
∞∑
k=0

ρ−2k+2σK+1(H)2, ρ = exp

(
π2

4 log(8�(N + 1)/2�/π)

)
.

Moreover, since σK+1(H) ≤ ε‖H‖2, we obtain the bound

‖H − Ĥ‖F ≤ 16
√
2

ρ

(ρ2 − 1)1/2
ε‖H‖2.

Since we have∥∥∥D1(T ◦H − T ◦ Ĥ)D2v
∥∥∥
2
≤ ‖D1‖2‖D2‖2‖T ◦H − T ◦ Ĥ‖2‖v‖2,

the result follows by noting that ‖D1‖2 = ‖D1‖max, ‖D2‖2 = ‖D2‖max, and

‖T ◦H − T ◦ Ĥ‖2 ≤ ‖T ◦H − T ◦ Ĥ‖F ≤ ‖T‖max‖H − Ĥ‖F . �

For any N ≤ 108, we find that ρ/(ρ2 − 1)1/2 ≤ 2. Moreover, in the special case
of the Legendre-to-Chebyshev conversion matrix (see (7)), we have ‖D1‖max = 1,
‖D2‖max = 1, ‖T‖max =

√
π and ‖H‖2 ≤ 2

√
N + 1. Thus,

(11) ‖D1(T ◦H − T ◦ Ĥ)D2v‖2 ≤ 64
√
2π(N + 1)ε‖v‖2.

In Figure 5 we observe an absolute error of O(
√
N logN) in our transform when v

has entries drawn from independent identically distributed Gaussians. Therefore,
we observe a better error than that predicted by (11) since ‖v‖2 is expected to be

of O(
√
N) in size. When the vector v has decaying entries, as is common when the

vector contains coefficients derived from expansion coefficients of a smooth function,
we observe (see Figure 5) that the error in our Legendre-to-Chebyshev transform
is essentially independent of N .

4. Numerical results for Legendre-to-Chebyshev conversion

All the numerical results were performed on a 3.1 GHz Intel Core i7 Macbook Pro
2015 with MATLAB 2015b or Julia v0.4.5 [7]. In these numerical experiments we

employ three different algorithms for computing the matrix-vector product ccheb =

Mcleg:

• Direct: The direct algorithm computes ccheb by first constructing the (N+
1)×(N+1) matrixM one row at a time and then calculating the dot product

with cleg. Therefore, the vector ccheb is computed entry-by-entry, costing a
total of O(N2) operations and requiring O(N) storage.

1924 ALEX TOWNSEND, MARCUS WEBB, AND SHEEHAN OLVER

102 103
10-17

10-16

10-15

10-14

O(n0)
O(n-0.5)
O(n-1)
O(n-1.5)

N

A
b
so
lu
te

er
ro
r

O(N
0.5 logN)

101 102 103 104 105 106
10-4

10-3

10-2

10-1

100

101

New
ASY
Direct

O
(N

2)

O(
N
lo
g
2 N

)

E
x
ec
u
ti
o
n
ti
m
e
(s
ec
o
n
d
s)

N

Figure 5. Left: Errors in computing ccheb = Mcleg with vari-

ous decay rates in cleg. A vector is created using randn(N) in
Julia and then the vector is scaled so the nth entry is O(n0),

O(n−0.5), O(n−1), O(n−1.5). The dashed line shows the observed

error growth in the case when cleg does not decay. Right: Exe-
cution times between the direct (yellow), ASY (red), and the new
algorithm described in this paper (blue). The new algorithm pre-
sented in this paper is about 2 or 3 times faster than ASY, while
being more accurate and only requiring a handful of lines of code
to implement.

• ASY: The algorithm that we call ASY here is described in [16]. It com-

putes the matrix-vector product ccheb = Mcleg in O(N log2N/ log logN)
operations by using a trigonometric asymptotic formula for Legendre poly-
nomials. Before this paper, it was the algorithm employed in the leg2cheb
command in Chebfun [11].

• New: The algorithm described in this paper. It is summarized in Figure 1,
costing O(N log2N) operations.

Other algorithms for computing the matrix-vector product ccheb = Mcleg in fewer
than O(N2) operations are given in the pioneering paper by Alpert and Rokhlin [1]
as well as [24, 33].

As a first test we take arbitrarily distributed vectors cleg with various rates of
decay and consider the accuracy of our algorithm described in this paper against
an extended precision computation (performed using the BigFloat type in Julia).3

Figure 5 (left) shows the absolute maximum errors in the computed vectors ccheb

for 10 ≤ N ≤ 104. In [16, Fig. 5.1] analogous errors were calculated for the
direct and ASY algorithms. In Table 1 we summarise the observed error growth in
the absolute maximum for the three different algorithms. In many applications the
Legendre expansion in (1) represents a polynomial interpolant of a smooth function.
In this setting, if the function is Hölder continuous with parameter greater than 0,
then we observe that our new algorithm has essentially no error growth with N .

3
In particular, the vector corresponding to, say, N = 100 with O(n

−1
) decay can be reproduced

exactly by the Julia code srand(0); c = randn(101)./(1:101). The fixed random seed is used
for the sake of reproducibility.

FAST POLYNOMIAL TRANSFORMS BASED ON TOEPLITZ & HANKEL MATRICES 1925

Table 1. Observed absolute maximum error growth in comput-

ing ccheb = Mcleg when cleg has different decay rates. The error
growth of the ASY algorithm given in [16, Fig. 5.1] were com-
puted using the implementation of leg2cheb found in version 5.3
of Chebfun [11]. These are worse than those presented here be-
cause the ASY algorithm now uses Reinsch’s modification of the
Legendre recurrence as recommended in [39]. We observe that if
the Legendre expansion in (1) comes from a polynomial interpolant
of a Hölder continuous function with parameter > 0, then our new
algorithm has essentially no error growth.

Decay of the vector cleg

O(1) O(n−0.5) O(n−1) O(n−1.5)

Direct O(N1.5/ logN) O(N/ logN) O(N0.5/ logN) O(logN)

ASY O(N) O(N0.5) O(logN) O(1)

New O(N0.5 logN) O(1) O(1) O(1)

For a second test, in Figure 5 (right) we compare the execution times for the

three algorithms. Despite the direct algorithm requiring O(N2) operations, it is
computationally more efficient when N ≤ 512. The new algorithm presented here
is 2 or 3 times faster than the ASY algorithm for large N , while being conceptually

simpler and more accurate for nondecaying vectors cleg. Based on these numerical
experiments, the leg2cheb command in Chebfun [11] and the leg2cheb in Fast-
Transforms.jl [41] use the direct algorithm when N ≤ 512 and the new algorithm
otherwise.

5. Other polynomial basis conversions

So far the paper has focused on the task of converting Legendre coefficients for
pN in (1) to Chebyshev coefficients. In this section we consider other standard

polynomial basis conversions, showing how our O(N log2N) algorithm summarized
in Figure 1 remains applicable.

5.1. Chebyshev-to-Legendre conversion. To compute the Legendre coefficients
of a given polynomial pN in fewer than O(N2) operations, one can first compute
the Chebyshev coefficients using the discrete cosine transform (DCT) of its values
at Chebyshev points in O(N logN) operations [14], then use a fast Chebyshev-to-
Legendre conversion. Alternatively, a direct transform taking values of the poly-
nomial in the complex plane to Legendre coefficients is given in [22] and a fast
transform for converting values of the polynomial at Legendre points to Legendre
coefficients is given in [18].

The inverse of the Legendre-to-Chebyshev matrix M−1, denoted by L in [1],

converts Chebyshev coefficients to Legendre coefficients, i.e., cleg = Lccheb in (1).

1926 ALEX TOWNSEND, MARCUS WEBB, AND SHEEHAN OLVER

Explicit formulas for the entries of L = M−1 are given as follows [1, (2.19)]:

(12) Ljk =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, j = k = 0,√
π

2Λ(j) , 0 < j = k ≤ N,

−k(j + 1
2)

(
Λ(k−j−2

2)
k−j

)(
Λ(j+k−1

2)
j+k+1

)
, 0 ≤ j < k ≤ N, k − j even,

0, otherwise,

where Λ(z) = Γ(z+1/2)/Γ(z+1) and Γ(z) is the gamma function. The fact that L
can be written as L = D1(T ◦H)D2 is almost immediate from (12). In particular,
we have D1 = diag(12 ,

3
2 ,

5
2 , . . . ,

2N+1
2), D2 = − 1

4diag(
4√
π
, 1, 2, 3, . . . , N), and

Tjk =

{
Γ
(

k−j−1
2

)
/Γ

(
k−j+2

2

)
, 0 ≤ j ≤ k ≤ N, k − j even,

0, otherwise,

Hjk =

{
Γ
(

j+k
2

)
/Γ

(
j+k+3

2

)
, 0 ≤ j, k ≤ N, j + k > 0,

1, j = k = 0.

Unfortunately, the matrix H is not positive semidefinite. This turns out not to
matter, because the submatrix H̃ =

(
Hjk

)
1≤j,k≤N

is positive semidefinite by the

following identity (see Lemma 1),

Hjk =
4√
π

∫ 1

0

xj+k−1(1− x2)1/2dx, 1 ≤ j, k ≤ N,

Moreover, Theorem 3 shows that H̃ can be approximated, up to an error of 0 < ε <

1, by a rank O(logN log(1/ε)) matrix. Hence, when computing cleg = Lccheb, we

compute the first entry of cleg directly, and use the algorithm described in Figure
1 on

(
Ljk

)
1≤j,k≤N

to compute the remaining entries. The resulting algorithm is

implemented in the cheb2leg commands in Chebfun [11] and FastTransforms.jl [41].
In Figure 6 we repeat the same experiments as for the Legendre-to-Chebyshev

conversion in Section 4. In Figure 6 (left) we compute the maximum error of the

resulting vector cleg for different decay rates in ccheb. Due to the O(N) growth in

the entries of D1, we find that the conversion requires a decay faster than O(n−1) in

ccheb to have essentially no error growth. This holds when pN in (1) is a Chebyshev
interpolant of a Hölder continuous function with Hölder parameter > 1/2. The
observed error growth is less than that observed for the Chebyshev-to-Legendre
algorithm in [16, Fig. 5.2].

In Figure 6 (right) we show the execution times of the three algorithms: (1) Di-

rect, an algorithm that costsO(N2) operations and requiresO(N) memory based on

generating the whole matrix L one row at a time, (2) ASY, anO(N log2N/ log logN)
complexity algorithm described in [16, Sec. 4], and (3) New, the algorithm described
in this paper (see Figure 1). Our new algorithm is faster than direct whenN ≥ 1,000
and is about 2 or 3 times faster than the ASY algorithm for large N .

5.2. Ultraspherical-to-ultraspherical conversion. The ultraspherical polyno-

mial of degree k and parameter λ > 0 is denoted by C
(λ)
k [31, Tab. 18.3.1]. If

FAST POLYNOMIAL TRANSFORMS BASED ON TOEPLITZ & HANKEL MATRICES 1927

102 103
10-17

10-16

10-15

10-14

10-13

10-12

O(n0)
O(n-0.5)
O(n-1)
O(n-1.5)

N

A
b
so
lu
te

er
ro
r

O(N)

O(
√
N)

O(logN)

101 102 103 104 105 106

10-3

10-2

10-1

100

101 New
ASY
Direct

O
(N

2)

O(
N
lo
g
2 N

)

E
x
ec
u
ti
o
n
ti
m
e
(s
ec
o
n
d
s)

N

Figure 6. Left: Errors in computing cleg = Lccheb with various

decay rates in ccheb. Arbitrary vectors are generated in precisely
the same manner as in Section 4. The dashed lines show the ob-
served error growth for the various decay rates. Right: Execution
times between the direct (yellow), ASY (red), and the new algo-
rithm described in this paper (blue).

λ > 0, then {C(λ)
0 , C

(λ)
1 , . . . , } is a family of orthogonal polynomials that are or-

thogonal with respect to the weight function (1 − x2)λ−1/2 on [−1, 1]. Ultras-
pherical polynomials can be seen as a generalization of Legendre polynomials since

Pk(x) = C
(1/2)
k (x) [31, (18.7.9)]. For papers on computing and converting ultras-

pherical expansions see, for example, [8, 23].
Let λ1 > 0 and λ2 > 0. The degree N polynomial pN in (1) can be expanded in

the two ultraspherical polynomial bases associated to λ1 and λ2, i.e.,

pN (x) =

N∑
k=0

c
(λ1)
k C

(λ1)
k (x) =

N∑
k=0

c
(λ2)
k C

(λ2)
k (x).

There is an upper-triangular conversion matrix, A, such that c(λ2) = Ac(λ1). We

desire a fast algorithm for computing the matrix-vector product c(λ2) = Ac(λ1).
There are several cases to consider: (1) λ1 − λ2 is an integer, (2) |λ1 − λ2| < 1,
and (3) |λ1 − λ2| > 1, but the difference is not an integer. Despite the same
formulas for the entries of the conversion matrix in all cases, we must consider each
case separately because the Hankel part of the conversion matrix is only positive
semidefinite when |λ1 − λ2| < 1.

Case 1: λ1 − λ2 is an integer. If λ1−λ2 is an integer, then an O(N) matrix-vector
product is immediate from the recurrence relation [31, (18.9.7)]. For example, if
λ2−λ1 is a positive integer, then we can factor A into the product of sparse matrices
as follows:
(13)

A = PNSλ2−1 · · ·Sλ1+1Sλ1
PT
N , Sλ =

⎛
⎜⎜⎜⎝
1 − λ

λ+2
λ

λ+1 − λ
λ+3

λ
λ+2 − λ

λ+4

. . .
. . .

⎞
⎟⎟⎟⎠ .

1928 ALEX TOWNSEND, MARCUS WEBB, AND SHEEHAN OLVER

where PN =
[
IN+1 O

]
is the (N + 1)×∞ projection matrix. The matrix-vector

product c(λ2) = Ac(λ1) can be computed in O(N) operations by applying each
truncated sparse factor in turn. Since Sλ is banded and upper-triangular for all

λ > 0, the matrix-vector product c(λ2) = Ac(λ1) can also be computed in O(N)
operations when λ2 < λ1 by using backward substitution. The factorization in (13)
is one key decomposition for the ultraspherical spectral method [32].

Case 2: |λ1 − λ2| < 1. Now assume that |λ1−λ2| < 1, then the conversion matrix,

A, in c(λ2) = Ac(λ1) has the following explicit formula [23, (3.6)]:
(14)

Ajk =

⎧⎨
⎩

Γ(λ2)(j+λ2)
Γ(λ1)Γ(λ1−λ2)

(
Γ(k−j

2 +λ1−λ2)
Γ(k−j

2 +1)

)(
Γ(k+j

2 +λ1)
Γ(k+j

2 +λ2+1)

)
, 0 ≤ j ≤ k, k − j even,

0, otherwise.

The formula in (14) reveals that the matrix A can be written as a diagonally-scaled
Toeplitz-dot-Hankel matrix. More precisely, let D1 = diag (λ2, λ2 + 1, . . . , λ2 +N),
let D2 = IN+1 be the (N + 1)× (N + 1) identity matrix, and

Tjk =

⎧⎨
⎩

Γ(λ1−λ2)Γ(k−j
2 +λ1−λ2)

Γ(k−j
2 +1)

, 0 ≤ j ≤ k ≤ N, k − j even,

0, otherwise,

Hjk =
Γ(λ2)Γ

(
k+j
2 + λ1

)
Γ(λ1)Γ

(
k+j
2 + λ2 + 1

) , 0 ≤ j, k ≤ N.

Since the entries of the Hankel part can be expressed as

Hjk =
2Γ(λ2)

Γ(λ1)Γ(λ2 − λ1 + 1)

∫ 1

0

xj+kx2(λ1−1/2)(1− x2)λ2−λ1dx, 0 ≤ j, k ≤ N,

we know from Lemma 1 that H is real, symmetric, and positive semidefinite (note
that λ2 − λ1 > −1 and 2(λ1 − 1/2) > −1 so that the measure μH is locally finite).
From Theorem 3 we know that H can be approximated, up to an error of ε, by a
rank K = O(logN log(1/ε)) matrix. Therefore, the algorithm that is summarized

in Figure 1 is applicable in this case and can be used to compute c(λ2) = Ac(λ1) in
O(N log2N) operations.

Case 3: |λ1 − λ2| > 1, but the difference is not an integer. If |λ1 − λ2| > 1, then
we reduce the quantity |λ1 − λ2| by converting to either increase or reduce λ1 by
one (see Case 1). This is repeated if necessary until |λ1 − λ2| < 1 and the criterion
for Case 2 is satisfied.

Conversions such as ultraspherical-to-Chebyshev and Chebyshev-to-ultra-
spherical are associated to upper-triangular matrices that can also be written
as diagonally-scaled Toeplitz-dot-Hankel matrices. Fast O(N log2N) algorithms
based on Figure 1 for these conversions are also possible using the formulas in [23,
Lem. 3.1].

5.3. Jacobi-to-Jacobi conversion. The Jacobi polynomial of degree k and pa-

rameter (α, β) is denoted by P
(α,β)
k , where α, β > −1 [31, Tab. 18.3.1]. The family

of orthogonal polynomials {P (α,β)
0 , P

(α,β)
1 , . . . , } is orthogonal with respect to the

weight function (1 − x)α(1 + x)β on [−1, 1]. Here, P
(α,β)
k have the simplest and

FAST POLYNOMIAL TRANSFORMS BASED ON TOEPLITZ & HANKEL MATRICES 1929

standard normalization of P
(α,β)
k (1) =

(
α+k
k

)
[31, (18.6.1)]. Mathematically, alter-

native normalizations only introduces multiplication with two additional diagonal
matrices; however, numerically one should be concerned with overflow and under-
flow issues. The Jacobi polynomials can be seen as a generalization of Chebyshev,
Legendre, and ultraspherical polynomials; see [31, Sec. 18.7].

For α, β, γ, δ > −1, the degree N polynomial pN (x) in (1) can be expanded in
Jacobi bases as follows:

(15) pN (x) =

N∑
k=0

c
(α,β)
k P

(α,β)
k (x) =

N∑
k=0

c
(γ,δ)
k P

(γ,δ)
k (x),

where there is an upper-triangular matrix, A, such that c(γ,δ) = Ac(α,β). By the

reflection formula P
(α,β)
k (−x) = (−1)kP

(β,α)
k (x) [31, Tab. 18.6.1], it is sufficient to

assume that β = δ in (15).4 A different fast algorithm using off-diagonal low rank
structure of the conversion matrix, which has a fast quasilinear complexity online
cost and an O(N2) precomputation is given in [38]. Another fast algorithm for
computing Jacobi expansions coefficients of analytic functions is described in [44].

As in Section 5.2 there are several cases to consider when computing c(γ,δ) =

Ac(α,β), where β = δ, in fewer than O(N2) operations: (1) α− γ is an integer, (2)
|α− γ| < 1 and α+ β > −1, (3) |α− γ| < 1 and α+ β ≤ −1, and (4) |α− γ| > 1,
but the difference is a not an integer.

Case 1: α− γ is an integer. First, suppose that α− γ is an integer. A fast matrix-

vector product for c(γ,β) = Ac(α,β) is almost immediate via the recurrence rela-
tion [31, 18.9.5] and [31, Tab. 18.6.1]. That is, assuming that γ > α we can factor
A as follows:

A=PNS(γ−1,β) · · ·S(α,β)P
T
N , S(α,β)=

⎛
⎜⎜⎜⎜⎜⎝

1 − α+1
α+β+3

α+β+2
α+β+3 − α+2

α+β+5
α+β+3
α+β+5 − α+3

α+β+7

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎠ ,

where PN =
[
IN+1 0

]
is the (N + 1) ×∞ projection matrix. The matrix-vector

product c(γ,β) = Ac(α,β) can be computed in O(N) operations by applying each
truncated sparse factor in turn. If γ < α, then since each S(α,β) is bidiagonal

and upper-triangular c(γ,β) = Ac(α,β) can still be computed in O(N) operations by
using backward substitution.

Case 2: |α− γ| < 1 and α+ β > −1. When |α − γ| < 1 there is no known sparse
factorization for the conversion matrix as in Case 1. However, the following explicit
formula for its entries is known [24, 25]:

Ajk =
(2j + γ + β + 1)

Γ(α− γ)

Γ(k + β + 1)

Γ(k + α+ β + 1)

Γ(j + γ + β + 1)

Γ(j + β + 1)

× Γ(k − j + α− γ)

Γ(k − j + 1)

Γ(k + j + α+ β + 1)

Γ(k + j + γ + β + 2)
,

4
If β �= δ, then a Jacobi (α, β) expansion can first be converted to a Jacobi (α, δ) expansion

and then a Jacobi (γ, δ) expansion.

1930 ALEX TOWNSEND, MARCUS WEBB, AND SHEEHAN OLVER

10 2 103
10-15

10-14

10-13

10-12

10-11

10-10

O(n0)
O(n-0.5)
O(n-1)
O(n-1.5)

N

A
b
so
lu
te

er
ro
r

O(N logN
)

O(
√
N logN)

O(logN)

101 102 103 104 105 106

10-3

10-2

10-1

100

101 New
Direct

O
(N

2)

O(
N
lo
g
2 N

)

E
x
ec
u
ti
o
n
ti
m
e
(s
ec
o
n
d
s)

N
Figure 7. Left: Errors in computing c(−1/4,

√
2/2) = Ac(0,

√
2/2)

with various decay rates in c(0,
√
2/2). Arbitrary vectors are gener-

ated in precisely the same manner as in Section 4 and Section 5.1.
The dashed lines show the observed error growth for the various
decay rates. Right: Execution times between the direct (yellow),
ASY (red), and the new algorithm described in this paper (blue).

where 0 ≤ j ≤ k ≤ N . The entries of A are zero otherwise. A careful inspection of
this formula reveals that it can also be expressed as a diagonally-scaled Toeplitz-
dot-Hankel matrix.

Moreover, the entries of the Hankel matrix can be expressed as follows:

(16) Hjk =
1

Γ(γ − α+ 1)

∫ 1

0

xj+kxα+β(1− x)γ−αdx, 0 ≤ j, k ≤ N,

proving that H is real, symmetric, and positive semidefinite (see Lemma 1) since
α + β > −1 and γ − α > −1. Theorem 3 shows that H can be approximated, up
to an error of ε, by a rank O(logN log(1/ε)) matrix. Therefore, the O(N log2N)
complexity algorithm summarized in Figure 1 can be employed for Jacobi conversion
in this case.

The jac2jac algorithm in Chebfun and FastTransforms.jl implements this and
the other three cases. In Figure 7 (left) we test the accuracy of our algorithm by

using it to compute c(−1/4,
√
2/2) = Ac(0,

√
2/2) for various decay rates in the vector

c(0,
√
2/2). In Figure 7 (right) we compare the execution time of this algorithm and a

direct approach. We observe that our algorithm is faster in this case when N ≥ 512.

Case 3: |α− γ| < 1 and α+ β ≤ −1. This is a situation where the Jacobi conver-

sion matrix in c(γ,β) = Ac(α,β) can be written as a diagonally-scaled Toeplitz-dot-
Hankel matrix; however, the Hankel part is not positive semidefinite (see (16)). This

is similar to what happens in Section 5.1. Indeed, the submatrix H̃ =
(
Hjk

)
1≤j,k≤N

is in fact positive semidefinite because α+ β+1 > −1. Hence, we can do the same

trick when we compute c(γ,β) = Ac(α,β): apply the first row directly, and use the
algorithm described in Figure 1 on

(
Ajk

)
1≤j,k≤N

for the remaining entries.

5.3.1. Case 4: |α− γ| > 1, but the difference is a not an integer. If |α − γ| > 1,
then either α < γ − 1 or α > γ + 1. If α < γ − 1, then we convert the Jacobi
(α, β) expansion to (α+1, β) using Case 1, repeating if necessary until |α− γ| < 1.

FAST POLYNOMIAL TRANSFORMS BASED ON TOEPLITZ & HANKEL MATRICES 1931

Similarly, if α > γ+1, then we convert the Jacobi (α, β) expansion to (α−1, β) using
Case 1. Again, repeating until |α − γ| < 1. Thus, this case reduces the difference
between α and γ until the criterion for either Case 2 or Case 3 is applicable.

The four cases above are implemented in the jac2jac commands in Chebfun [11]
and FastTransforms.jl [41] with the syntax jac2jac(v,a,b,g,d). Based on the
particular values of a, b, g, and d various cases above are exercised. For all

parameter ranges the cost of the conversion is at most O(N log2N) operations.
This algorithm is also employed for the commands jac2cheb and cheb2jac by ex-

ploiting the fact that Tk(x) = P
(−1/2,−1/2)
k (x)/P

(−1/2,−1/2)
k (1) [31, (18.7.3)]. One

can also compute the Jacobi-to-Chebyshev and Chebyshev-to-Jacobi conversions in
O(N log2N/ log logN) operations using asymptotic expansions of Jacobi polynomi-
als [39].

5.4. Laguerre-to-Laguerre conversion. We are not aware of major applica-
tions for Laguerre-to-Laguerre conversions, though related conversions are discussed
in [9]. Due to the simplicity of the conversion, we include it in this section.

For α > −1 the generalized Laguerre polynomial of degree k is given by L
(α)
k (x) =

Γ(n+α+1)
Γ(α+1)Γ(n+1) 1F1(−n, α+1;x) [31, Tab. 18.5.12]. The sequence L

(α)
0 , L

(α)
1 , . . . forms

a family of polynomials that are orthogonal with respect to the weight function
xαe−x on [0,∞).

Suppose that α1 > −1 and α2 > −1. Then, there is an upper-triangular matrix,

A, that converts expansion coefficients in the L(α1) basis to coefficients in the L(α2)

basis. If α1 − α2 is an integer, then an O(N) complexity algorithm for computing
the matrix-vector product is almost immediate thanks to the recurrence relation
given in [31, (18.9.13)]. If α1−α2 is not an integer, then there is an explicit formula
for the entries of A given by [31, (18.18.18)]

Ajk =

{
1

Γ(α1−α2)
Γ(k−j+α1−α2)

Γ(k−j+1) , 0 ≤ j ≤ k ≤ N,

0, otherwise.

One observes that this conversion matrix is a diagonally-scaled Toeplitz matrix,
which is also a diagonally-scaled Toeplitz-dot-Hankel matrix by taking the Hankel
part as the matrix of all ones. A fastO(N logN) algorithm follows by a fast Toeplitz
matrix-vector product based on the FFT [29].

5.5. Conversion between other polynomial bases. In related work it was
found that the conversion operator between the Chebyshev polynomials of the sec-
ond kind Uk(x), and normalized orthogonal polynomials whose Jacobi operator is
a trace-class perturbation of the Jacobi operator for Uk(x) (of which all Jacobi
polynomials are examples), is Toeplitz-plus-compact in an appropriate norm [45].
For this broader class of orthogonal polynomials, whether after dividing out the
Toeplitz part of the conversion matrix we are left with a matrix of numerically low
rank (such as a diagonally-scaled positive semidefinite Hankel matrix) is an open
question.

One may also consider conversion between two polynomial bases where the
supports of the two measures of orthogonality are not equal, e.g., Hermite-to-
Chebyshev conversion. Such conversion matrices can be exponentially ill-
conditioned [5, p. 93] and the conversion may be ill-advised for computational

1932 ALEX TOWNSEND, MARCUS WEBB, AND SHEEHAN OLVER

purposes. That being said, there may be structure, such as Toeplitz-dot-Hankel or
otherwise, in these conversion matrices. At present we have not explored this.

Expressions for connection coefficients are also known between many other fam-
ilies of orthogonal polynomials including the Wilson and Racah polynomials [36].
We hope that the associated conversion matrices are also structured.

Conclusion

Many of the standard conversion matrices for converting between expansions
coefficients in orthogonal polynomial bases can be written as a diagonally-scaled
Hadamard product between a Toeplitz and Hankel matrix. This leads to an
O(N log2N) complexity for basis conversion for a polynomial of degree N . The
resulting algorithm is conceptually simple, FFT-based, and requires no precompu-
tation, while being competitive in terms of computational time with existing fast
algorithms. We hope this paper motivates fast matrix-vector products involving
matrices that has the decomposition A ◦ B, where A has a known fast matrix-
vector product and B can be approximated by a low rank matrix.

Acknowledgments

We thank the School of Mathematics and Statistics at The University of Sydney
for awarding Alex Townsend a travel grant that allowed him to visit the school in
February 2016. We thank the Cecil King Foundation and the London Mathematical
Society for awarding Marcus Webb the Cecil King Travel Scholarship to visit The
University of Sydney from January to April 2016. We thank Laurent Demanet and
Haihao Lu for serendipitously discussing Toeplitz-dot-Hankel matrices with the first
author a year earlier. We are grateful to Bernhard Beckermann for a discussion on
the singular values of real, symmetric, and positive semidefinite Hankel matrices.
We also thank Nick Hale and Mikaël Slevinsky for discussions on related topics over
many years and providing excellent comments that improved this paper and our
implementations of the algorithms. We thank the referees and editor for their time
and consideration.

References

[1] B. K. Alpert and V. Rokhlin, A fast algorithm for the evaluation of Legendre expansions,
SIAM J. Sci. Statist. Comput. 12 (1991), no. 1, 158–179. MR1078802

[2] C. Anderson and M. D. Dahleh, Rapid computation of the discrete Fourier transform, SIAM

J. Sci. Comput. 17 (1996), no. 4, 913–919. MR1395355
[3] R. Askey, Orthogonal polynomials and special functions, Society for Industrial and Applied

Mathematics, Philadelphia, Pa., 1975. MR0481145
[4] B. Beckermann, The condition number of real Vandermonde, Krylov and positive definite

Hankel matrices, Numer. Math. 85 (2000), no. 4, 553–577. MR1771780
[5] B. Beckermann and E. Bourreau, How to choose modified moments?, J. Comput. Appl. Math.

98 (1998), no. 1, 81–98. MR1656990
[6] B. Beckermann and A. Townsend, On the Singular Values of Matrices with Displacement

Structure, SIAM J. Matrix Anal. Appl. 38 (2017), no. 4, 1227–1248. MR3717820
[7] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia: a fresh approach to numerical

computing, SIAM Rev. 59 (2017), no. 1, 65–98. MR3605826
[8] M. J. Cantero and A. Iserles, On rapid computation of expansions in ultraspherical polyno-

mials, SIAM J. Numer. Anal. 50 (2012), no. 1, 307–327. MR2888315
[9] G. S. Chirikjian and A. B. Kyatkin, Harmonic Analysis for Engineers and Applied Scien-

tists, CRC Press, Second edition, 2000

http://www.ams.org/mathscinet-getitem?mr=1078802
http://www.ams.org/mathscinet-getitem?mr=1395355
http://www.ams.org/mathscinet-getitem?mr=0481145
http://www.ams.org/mathscinet-getitem?mr=1771780
http://www.ams.org/mathscinet-getitem?mr=1656990
http://www.ams.org/mathscinet-getitem?mr=3717820
http://www.ams.org/mathscinet-getitem?mr=3605826
http://www.ams.org/mathscinet-getitem?mr=2888315

FAST POLYNOMIAL TRANSFORMS BASED ON TOEPLITZ & HANKEL MATRICES 1933

[10] W. S. Don and D. Gottlieb, The Chebyshev-Legendre method: implementing Legendre methods
on Chebyshev points, SIAM J. Numer. Anal. 31 (1994), no. 6, 1519–1534. MR1302673

[11] T. A. Driscoll, N. Hale, and L. N. Trefethen, Chebfun Guide, Pafnuty Publications,
Oxford, 2014.

[12] M. Frigo and S. G. Johnson, The design and implementation of FFTW3, Proc. IEEE, 93
(2005), pp. 216–231.

[13] G. H. Golub and C. F. Van Loan, Matrix computations, 4th ed., Johns Hopkins Studies in the

Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 2013. MR3024913
[14] W. M. Gentleman, Implementing Clenshaw-Curtis quadrature. II. Computing the cosine

transformation, Comm. ACM 15 (1972), 343–346. MR0327002
[15] M. Gu and L. Miranian, Strong rank revealing Cholesky factorization, Electron. Trans. Nu-

mer. Anal. 17 (2004), 76–92. MR2040798
[16] N. Hale and A. Townsend, A fast, simple, and stable Chebyshev-Legendre transform using

an asymptotic formula, SIAM J. Sci. Comput. 36 (2014), no. 1, A148–A167. MR3163249
[17] N. Hale and A. Townsend, An algorithm for the convolution of Legendre series, SIAM J. Sci.

Comput. 36 (2014), no. 3, A1207–A1220. MR3217220
[18] N. Hale and A. Townsend, A fast FFT-based discrete Legendre transform, IMA J. Numer.

Anal. 36 (2016), no. 4, 1670–1684. MR3556400
[19] H. Harbrecht, M. Peters, and R. Schneider, On the low-rank approximation by the pivoted

Cholesky decomposition, Appl. Numer. Math. 62 (2012), no. 4, 428–440. MR2899254
[20] N. J. Higham, Analysis of the Cholesky decomposition of a semi-definite matrix, Reliable

numerical computation, Oxford Sci. Publ., Oxford Univ. Press, New York, 1990, pp. 161–
185. MR1098323

[21] S. Kunis and I. Melzer, Fast evaluation of real and complex exponential sums, Electron.
Trans. Numer. Anal. 46 (2017), 23–35. MR3614469

[22] A. Iserles, A fast and simple algorithm for the computation of Legendre coefficients, Numer.
Math. 117 (2011), no. 3, 529–553. MR2772418

[23] J. Keiner, Computing with expansions in Gegenbauer polynomials, SIAM J. Sci. Comput. 31
(2009), no. 3, 2151–2171. MR2516147

[24] J. Keiner, Fast Polynomial Transforms, Logos Verlag Berlin GmbH, 2011.

[25] P. Maroni and Z. da Rocha, Connection coefficients between orthogonal polynomials and
the canonical sequence: an approach based on symbolic computation, Numer. Algorithms 47
(2008), no. 3, 291–314. MR2385739

[26] J. C. Mason and D. C. Handscomb, Chebyshev polynomials, Chapman & Hall/CRC, Boca
Raton, FL, 2003. MR1937591

[27] G. Marsaglia and G. P. H. Styan, Equalities and inequalities for ranks of matrices, Linear
and Multilinear Algebra 2 (1974/75), 269–292. MR0384840

[28] A. Mori, R. Suda, and M. Sugihara, An improvement on Orszag’s fast algorithm for Legendre
polynomial transform (Japanese, with English and Japanese summaries), Trans. Inform. Pro-
cess. Soc. Japan 40 (1999), no. 9, 3612–3615. MR1724286

[29] M. K. Ng, Iterative methods for Toeplitz systems, Numerical Mathematics and Scientific
Computation, Oxford University Press, New York, 2004. MR2108963

[30] S. Olver, R. M. Slevinsky, et al., https://github.com/ApproxFun/ApproxFun.jl, v0.1.0,
2016.

[31] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark (eds.), NIST handbook of
mathematical functions, U.S. Department of Commerce, National Institute of Standards and
Technology, Washington, DC; Cambridge University Press, Cambridge, 2010. With 1 CD-
ROM (Windows, Macintosh and UNIX). MR2723248

[32] S. Olver and A. Townsend, A fast and well-conditioned spectral method, SIAM Rev. 55 (2013),
no. 3, 462–489. MR3089410

[33] S. A. Orszag, Fast eigenfunction transforms, Science and Computers, Academic Press, New
York, (1986), pp. 23–30.

[34] V. V. Peller, Hankel operators and their applications, Springer Monographs in Mathematics,
Springer-Verlag, New York, 2003. MR1949210

[35] D. Potts, G. Steidl, and M. Tasche, Fast algorithms for discrete polynomial transforms, Math.
Comp. 67 (1998), no. 224, 1577–1590. MR1474655

[36] J. Sánchez-Ruiz and J. S. Dehesa, Some connection and linearization problems for polynomi-
als in and beyond the Askey scheme, Proceedings of the Fifth International Symposium on

http://www.ams.org/mathscinet-getitem?mr=1302673
http://www.ams.org/mathscinet-getitem?mr=3024913
http://www.ams.org/mathscinet-getitem?mr=0327002
http://www.ams.org/mathscinet-getitem?mr=2040798
http://www.ams.org/mathscinet-getitem?mr=3163249
http://www.ams.org/mathscinet-getitem?mr=3217220
http://www.ams.org/mathscinet-getitem?mr=3556400
http://www.ams.org/mathscinet-getitem?mr=2899254
http://www.ams.org/mathscinet-getitem?mr=1098323
http://www.ams.org/mathscinet-getitem?mr=3614469
http://www.ams.org/mathscinet-getitem?mr=2772418
http://www.ams.org/mathscinet-getitem?mr=2516147
http://www.ams.org/mathscinet-getitem?mr=2385739
http://www.ams.org/mathscinet-getitem?mr=1937591
http://www.ams.org/mathscinet-getitem?mr=0384840
http://www.ams.org/mathscinet-getitem?mr=1724286
http://www.ams.org/mathscinet-getitem?mr=2108963
http://www.ams.org/mathscinet-getitem?mr=2723248
http://www.ams.org/mathscinet-getitem?mr=3089410
http://www.ams.org/mathscinet-getitem?mr=1949210
http://www.ams.org/mathscinet-getitem?mr=1474655

1934 ALEX TOWNSEND, MARCUS WEBB, AND SHEEHAN OLVER

Orthogonal Polynomials, Special Functions and their Applications (Patras, 1999), J. Comput.
Appl. Math. 133 (2001), no. 1-2, 579–591. MR1858314

[37] J. Shen, Efficient spectral-Galerkin method. I. Direct solvers of second- and fourth-order
equations using Legendre polynomials, SIAM J. Sci. Comput. 15 (1994), no. 6, 1489–1505.
MR1298626

[38] J. Shen, Y. Wang, and J. Xia, Fast structured Jacobi-Jacobi transforms, preprint, 2016.
[39] R. M. Slevinsky, On the use of Hahn’s asymptotic formula and stabilized recurrence for a

fast, simple, and stable Chebyshev–Jacobi transform, to appear in IMA Numer. Anal., 2017.
[40] G. Szegö, Orthogonal polynomials, American Mathematical Society Colloquium Publications,

Vol. 23. Revised ed, American Mathematical Society, Providence, R.I., 1959. MR0106295
[41] R. M. Slevinsky, S. Olver, et al. https://github.com/MikaelSlevinsky/FastTransforms.jl,

v0.0.6, 2016.
[42] A. Townsend and L. N. Trefethen, Continuous analogues of matrix factorizations, Proc. A.

471 (2015), no. 2173, 20140585, 21. MR3285359
[43] L. N. Trefethen, Approximation theory and approximation practice, Society for Industrial

and Applied Mathematics (SIAM), Philadelphia, PA, 2013. MR3012510
[44] H. Wang and D. Huybrechs, Fast and highly accurate computation of Chebyshev expansion

coefficients of analytic functions, arXiv preprint. arXiv: 1404.2463 (2014).
[45] M. Webb and S. Olver, Spectra of Jacobi operators via connection coefficient matrices,

arXiv preprint. arXiv: 1702.03095 (2017).
[46] W. Xu and S. Qiao, A fast symmetric SVD algorithm for square Hankel matrices, Linear

Algebra Appl. 428 (2008), no. 2-3, 550–563. MR2374566

Department of Mathematics, Cornell University, Ithaca, New York 14853

E-mail address: townsend@cornell.edu

Department of Computer Science, KU Leuven, 3001 Leuven, Belgium

E-mail address: marcus.webb@cs.kuleuven.be

Department of Mathematics, Imperial College, London SW7 2AZ, United Kingdom

E-mail address: s.olver@imperial.ac.uk

http://www.ams.org/mathscinet-getitem?mr=1858314
http://www.ams.org/mathscinet-getitem?mr=1298626
http://www.ams.org/mathscinet-getitem?mr=0106295
http://www.ams.org/mathscinet-getitem?mr=3285359
http://www.ams.org/mathscinet-getitem?mr=3012510
http://www.ams.org/mathscinet-getitem?mr=2374566

	1. Introduction
	2. A fast matrix-vector product for certain Toeplitz-dot-Hankel matrices
	2.1. Low rank approximation of a real positive semidefinite matrices using the pivoted Cholesky algorithm

	3. The Hankel part of the Legendre-to-Chebyshev matrix
	3.1. The Hankel part of the Legendre-to-Chebyshev matrix is positive semidefinite
	3.2. The Hankel part of the Legendre-to-Chebyshev matrix is numerically of low rank
	3.3. Error analysis for the Legendre-to-Chebyshev matrix

	4. Numerical results for Legendre-to-Chebyshev conversion
	5. Other polynomial basis conversions
	5.1. Chebyshev-to-Legendre conversion
	5.2. Ultraspherical-to-ultraspherical conversion
	5.3. Jacobi-to-Jacobi conversion
	5.4. Laguerre-to-Laguerre conversion
	5.5. Conversion between other polynomial bases

	Conclusion
	Acknowledgments
	References

