Let M be a (not necessarily semi-finite) von Neumann algebra. We prove that there exists a finite von Neumann algebra N so that for $1 \leq q < p < 2$, $L^p(M)$ embeds isomorphically into $L^q(N)$ (as Banach spaces). The proof uses non-commutative generalizations of technics from r.i. function spaces and a non-commutative analogue of a classical result of Rosenthal on embedding reflexive subspaces of L^1-spaces into L^p-spaces. (Received January 31, 2006)