The classical Gauss-Bonnet Theorem identifies the global integral of Gauss curvature G on a surface M with a topological invariant. K.P. Grotemeyer (1963) gave a moment variant of Gauss-Bonnet for a closed surface in \mathbb{R}^3: $\int_M (\vec{a} \cdot \vec{n})^2 G \, dv = \frac{2\pi}{3} \chi(M)$. Here \vec{n} is the normal vector field and \vec{a} is a constant unit vector. We give an extension of this result to even-dimensional hypersurfaces in space forms. (Received September 05, 2006)