Gorenstein Invariant Subrings of Regular Algebras under Hopf Algebra Actions.

Watanabe’s Theorem states that if a finite group G acts on a commutative polynomial ring $A = k[V]$ as elements of $\text{SL}_n(V)$, then the ring of invariants A^G is a Gorenstein ring. We consider generalizations of this theorem in the setting where the group algebra kG is replaced by a finite dimensional semi-simple Hopf algebra H, and A is a noetherian Artin-Schelter regular algebra that is an H-module algebra, with each homogeneous component A_j an H-module. Defining an extension of Jorgensen and Zhang’s notion of the homological determinant of a group action to Hopf algebra actions, we prove the following generalization of Watanabe’s Theorem:

Theorem. If the homological determinant of the H-action on A is trivial, then the invariant subring A^H is an Artin-Schelter Gorenstein ring.

Examples of Hopf algebra actions on regular algebras are also presented. (Received August 11, 2008)