1010-13-17 **Grady D. Bullington*** (bullingt@uwosh.edu), University of Wisconsin Oshkosh, 800 Algoma Blvd, 121 Swart Hall, Oshkosh, WI 54901. *Generalizing Sperner's lemma to a free module over an* SPIR.

Sperner's Lemma states that if \mathcal{A} is an anti-chain (i.e., collection of incomparable subsets) from the power set $\mathcal{P}([n])$ of an *n*-element set, then $|\mathcal{A}| \leq {n \choose \lfloor \frac{n}{2} \rfloor}$. Rota and Harper provide *q*-analogues of a string of generalizations of Sperner's lemma by Lubel, Yamamoto, Meshalkin, Bollabás and Erdös with the following theorem; if \mathcal{A} is an *l*-chain-free family of subspaces of a finite vector space \mathbb{F}_q^n , then $\sum_{A \in \mathcal{A}} \frac{1}{\binom{n}{\dim(A)}_q} \leq l$ and $|\mathcal{A}|$ is bounded by the sum of the *l* largest Gaussian coefficients $\binom{n}{k}_q$.

In the talk, the above will be extended to the setting of a finitely-generated module over a finite SPIR. One will be able to see how Rota and Harper's theorem is the intersection of multiple results in this new environment. (Received June 27, 2005)