1010-41-87 Q. I. Rahman and Q. M. Tariq* (tqazi@vsu.edu), Department of Mathematics \& computer Science, Virginia State University, Petersburg, VA 23806. On 'self-reciprocal' polynomials.
Let f be a polynomial of degree at most n such that $|f(z)| \leq 1$ on the unit circle. By Bernstein's inequality $\left|f^{\prime}(z)\right| \leq n$ on the same cicle, where equality holds if and only if $f(z) \equiv \mathrm{e}^{\mathrm{i} \gamma} z^{n}$. If f has no zeros inside the unit circle then the upper bound for $\left|f^{\prime}(z)\right|$ can be replaced by $n / 2$. The same is true if f satisfies the condition $f(z) \equiv z^{n} \overline{f(1 / \bar{z})}$, which implies that f cannot have more than $n / 2$ zeros inside the unit circle. A polynomial f that satisfies the condition $f(z) \equiv z^{n} f(1 / z)$ also cannot have more than $n / 2$ zeros inside the unit circle but, curiously enough, there exists a polynomial f of this kind for which $\max _{|z|=1}\left|f^{\prime}(z)\right|$ can be at least as large as $n-1$ times $\max _{|z|=1}|f(z)|$; the precise upper bound remains unknown except for $n=2$. The purpose of the talk is to present some observations about polynomials that satisfy the condition $f(z) \equiv z^{n} f(1 / z)$, and their relevance. (Received August 21, 2005)

