Let G denote a bipartite Q-polynomial distance-regular graph with vertex set X and diameter $D \geq 3$. Let V denote the vector space over real numbers consisting of column vectors with real entries and rows indexed by X. For $z \in X$, let \hat{z} denote the vector in V with a 1 in the z-coordinate, and 0 in all other coordinates. Fix $x, y \in X$ such that $d(x, y)=2$. For $0 \leq i, j \leq D$ we define $w_{i j}=\sum \hat{z}$, where the sum is over all $z \in X$ such that $d(x, z)=i$ and $d(y, z)=j$. We define $W=\operatorname{span}\left\{w_{i j} \mid 0 \leq i, j \leq D\right\}$. In this talk we consider the space $M W=\operatorname{span}\{m w \mid m \in M, w \in W\}$, where M is the Bose-Mesner algebra of G. We obtain our results about $M W$ using Terwilliger's "balanced set" characterization of the Q-polynomial property.

Finally, let $\theta_{0}, \theta_{1}, \cdots, \theta_{D}$ denote the Q-polynomial ordering of the eigenvalues of G. It is well known that this sequence satisfies

$$
\theta_{i-1}+\theta_{i+1}=\beta \theta_{i} \quad(1 \leq i \leq d-1)
$$

for some real scalar β. Let q denote a complex scalar such that $q+q^{-1}=\beta$. Using the idea of Terwilliger we give $q+q^{-1}$ as a simple rational expression involving the intersection numbers and some other combinatorial coefficients. (Received August 24, 2005)

