The Schur product $M \circ N$ of two $m \times n$ matrices M and N is the $m \times n$ matrix with $i j$-entry $M_{i, j} N_{i, j}$. If the entries of M are non-zero, the Schur inverse $M^{(-)}$satisfies $M \circ M^{(-)}=J$, where J is the all-ones matrix. Finally, an $n \times n$ matrix W is a type-II matrix if

$$
W^{(-)}=n\left(W^{-1}\right)^{T}
$$

(Hadamard matrices provide one class of examples.)
Type-II matrices have interesting connections to link invariants and to association schemes. In this talk I will summarize some of their basic properties, and show how they arise in connection with a range of combinatorial objects. (Received August 29, 2005)

