Chi Kwong Li (ckli@math.wm.edu), Department of Mathematics, College of William and Mary, Williamsburg, VA 23187-8795, Yiu Tung Poon*, Department of Mathematics, Iowa State University, Ames, IA 50011, and Nung Sing Sze (nungsingsze@graduate.hku.hk), Department of Mathematics, The University of Hong Kong, Hong Kong, Hong Kong. Linear maps transforming the higher numerical ranges.
Let $k \in\{1, \ldots, n\}$. The k-numerical range of $A \in M_{n}$ is the set

$$
W_{k}(A)=\left\{\left(\operatorname{tr} X^{*} A X\right) / k: X \text { is } n \times k, X^{*} X=I_{k}\right\}
$$

and the k-numerical radius of A is the quantity

$$
w_{k}(A)=\max \left\{|z|: z \in W_{k}(A)\right\} .
$$

Suppose $k>1, k^{\prime} \in\left\{1, \ldots, n^{\prime}\right\}$ and $n^{\prime}<C(n, k) \min \left\{k^{\prime}, n^{\prime}-k^{\prime}\right\}$. It is shown that there is a linear map $\phi: M_{n} \rightarrow M_{n^{\prime}}$ satisfying $W_{k^{\prime}}(\phi(A))=W_{k}(A)$ for all $A \in M_{n}$ if and only if $n^{\prime} / n=k^{\prime} / k$ or $n^{\prime} / n=k^{\prime} /(n-k)$ is a positive integer. Moreover, if such a linear map ϕ exists, then there are unitary matrix $U \in M_{n^{\prime}}$ and nonnegative integers p, q with $p+q=n^{\prime} / n$ such that ϕ has the form

$$
A \mapsto U^{*}[\underbrace{A \oplus \cdots \oplus A}_{p} \oplus \underbrace{A^{t} \oplus \cdots \oplus A^{t}}_{q}] U
$$

or

$$
A \mapsto U^{*}[\underbrace{\psi(A) \oplus \cdots \oplus \psi(A)}_{p} \oplus \underbrace{\psi(A)^{t} \oplus \cdots \oplus \psi(A)^{t}}_{q}] U,
$$

where $\psi: M_{n} \rightarrow M_{n}$ has the form $A \mapsto\left[(\operatorname{tr} A) I_{n}-(n-k) A\right] / k$. Linear maps $\widetilde{\phi}: M_{n} \rightarrow M_{n^{\prime}}$ satisfying $w_{k^{\prime}}(\widetilde{\phi}(A))=w_{k}(A)$ for all $A \in M_{n}$ are also studied. Furthermore, results are extended to triangular matrices. (Received August 26, 2005)

