Wayne Barrett* (wayne@math.byu.edu), Department of Mathematics, Brigham Young
University, Provo, UT 84602, Jason Grout, Department of Mathematics, Brigham Young University, Provo, UT 84602, Don March, Department of Mathematics, University of Florida, Gainesville, FL 32611, Hein van der Holst, Department of Mathematics, Eindhoven University of Technology, Eindhoven, Netherlands, and Raphael Loewy, Department of Mathematics, Technion-Israel Institute of Technology, Haifa, Israel. The Minimal Rank Problem and Forbidden Subgraphs. Preliminary report.
Given a field F and an undirected graph G on n vertices, let $S(F, G)$ be the set of all symmetric $n \times n$ matrices over F whose nonzero off-diagonal entries occur in exactly the positions corresponding to the edges of G. Let $\operatorname{mr}(F, G)$ be the minimum rank of all matrices in $S(F, G)$. The graphs for which $\operatorname{mr}(F, G) \leq 2$ have been characterized in two ways and the description depends on whether or not F is finite or infinite and whether or not char $F=2$.

This talk will discuss the characterization in terms of forbidden subgraphs. For example, there are 6 forbidden subgraphs for the class of graphs with $\operatorname{mr}(\mathbb{R}, G) \leq 2$ while, on the other extreme, there are 7 forbidden subgraphs for those with $\operatorname{mr}\left(F_{2}, G\right) \leq 2$. The two lists have important similarities and differences. Finding a complete list of forbidden subgraphs for $\operatorname{mr}(F, G) \leq 3$ is much more difficult, although a result of G. Ding says that the list is finite if F is. We give a progress report on the forbidden subgraph list for $F=F_{2}$ and $F=\mathbb{R}$. (Received August 26, 2005)

