odd-order neutral Δ-differential delay equations on a time scale. Preliminary report.
On a time scale \mathbb{T} we consider the neutral quasi- Δ-differential delay equation

$$
\begin{equation*}
L(x(t)-P(t) x(g(t)))+Q(t) x(h(t))=0 \tag{1}
\end{equation*}
$$

where L is an odd-order- Δ quasi-differential operator. We assume that $\sup \mathbb{T}=\infty$ and that both $g(t)$ and $h(t) \rightarrow \infty$ as $t \rightarrow \infty$ and $g(t)<t$ for all large $t . P(t)$ and $Q(t)$ are both nonnegative. A solution x of this equation is a continuous function for which the Δ-derivatives in L exists and (1) is satisfied on some interval $[a, \infty)$. In this work we place interval conditions on the way g and h map \mathbb{T} to \mathbb{T} that allow us to establish sufficient conditions for oscillation of all solutions of (1) under various assumptions on P and Q. Examples for $T=\mathbb{R}$ and $T=\mathbb{Z}$ are given. (Received June 13, 2005)

