Guantao Chen*, Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, and Arthur Busch and Michael S Jacobson. Partitioning Tournaments into Two Transitive Subtournaments. Preliminary report.
A tournament is transitive if it contains no direct cycle. Let $T[V, E]$ be a tournament with vertex set V and edge set E. A partition $A \cup B$ of V is called a transitive partition if $[A]$ and $[B]$, the subtournaments induced by A and B respectively, are transitive. The non-decreasing sequence of out-degrees of T is called the score sequence of T and denoted by $s(T)$. A sequence S nonnegative integers is called a score sequence if there exists a tournament T such that $s(T)=S$. Let \mathcal{S} be the set of tournaments T such that $s(T)=S$.

Acosta et al. proved that if S is a score sequence of length n and $n_{1} \leq n_{2} \leq \cdots \leq n_{k} \leq(n+1) / 2$ such that $\sum_{i=1}^{k} n_{i}=n$ then there is $T \in \mathcal{T}(S)$ such that $V(T)$ has a partition $\cup_{i=1}^{k} V_{i}$ such that $\left[V_{i}\right]$ is transitive for each i.

We showed that if S is a score sequence of length n and there is a $T \in \mathcal{T}(S)$ having a transitive partition $A \cup B$ such that $|A| \geq|B|$ then, for each positive integer k such that $|A| \geq k \geq n / 2$, there exists a $T^{*} \in \mathcal{T}(S)$ such that T^{*} has a transitive partition $C \cup D$ with $|C|=k$. Our result gives the above result as an immediate consequence. (Received September 07, 2007)

