Susil Kumar Jena* (susil_kumar@yahoo.co.uk), Professor, Dept. of Electronics \& Telecom Eng, KIIT University, Bhubaneswar, Orissa 751024, India. The Method of Infinite Ascent Applied on $A^{3}+n B^{3}=C^{3}$.
In the VII Joint International Meeting of the American Mathematical Society and the Sociedad Matematica Mexicana held in Zacatecas, Mexico during May 23-26, 2007, we have shown how to apply this Method of Infinite Ascent to the diophantine equation $A^{6}+n B^{3}=C^{2}$ for generating infinite number of integral solutions for (A, B, C) from a single solution of the said equation. In this paper we will apply the same method to the diophantine equation $A^{3}+n B^{3}=C^{3}$ for generating infinite number of integral solutions (A, B, C) for any value of n, where $n=m(m+1)$, m) being any integer different from plus or minus 1. However, these are not the only values of n for which the title equation has solution in integers. In this case also the infinitude characteristics of the said equation will hold good. (Received September 03, 2007)

