1033-35-48 **Ugur G. Abdulla*** (abdulla@fit.edu), Department of Mathematical Sciences, Florida Institute of Technology, 150 West University Blvd, Melbourne, FL 32901. Wiener's Criterion at ∞ for the Heat Equation and its Measure-theoretical Counterpart.

We introduce a notion of regularity (or irregularity) of the point at infinity (∞) for the unbounded open set $\Omega \subset \mathbb{R}^{N+1}$ concerning the heat equation, according as whether the parabolic measure of ∞ is zero (or positive). A necessary and sufficient condition for the existence of a unique bounded solution to the parabolic Dirichlet problem in arbitrary unbounded open subset of \mathbb{R}^{N+1} is established. It is expressed in terms of the Wiener's criterion for the regularity of ∞ . A geometric iterated logarithm test for the well-posedness of the parabolic Dirichlet problem in arbitrary open subset of \mathbb{R}^{N+1} $(N \geq 2)$ is proved. A domain is produced for which the parabolic Dirichlet problem always has a unique bounded solution for the heat equation $u_t = \Delta u$, and infinitely many for the equation $u_t = (1 - \epsilon)\Delta u$ for all $0 < \epsilon < 1$. We also demonstrate parabolic "exterior cone" condition at ∞ . (Received August 24, 2007)