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TWISTOR GEOMETRY AND GAUGE FIELDS

A. G. SERGEEV

Abstract. The main topic of this survey article is an exposition of basics of the
theory of twistors and of applications of this theory to solving equations of gauge
field theory, such as, e.g., Yang–Mills equations, monopole equations, etc.
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Foreword

The main goal of this course is to present basics of twistor geometry and its applica-
tions to the solution of gauge field theory equations such as Yang–Mills equations and
so on.

Twistors were introduced by Roger Penrose who used them to describe solutions of
conformally invariant equations of field theory in Minkowski space. The aim of his
“twistor program” was to employ the twistor correspondence to associate with solutions
of these equations some objects of complex analytic geometry (such as sections of holo-
morphic bundles, cohomology with coefficients in sheaves of holomorphic functions, and
so on) in the twistor space. As it was remarked by Penrose himself, this program is in
its essence close to Einstein’s idea underlying the general relativity theory. By this idea
the physical bodies in the metric, created by the gravity force of astronomical objects,
should move along geodesics. Roughly speaking, the equations of gravity “disappear”;
only Riemannian geometry remains. Similar to that, one can say that, after switching to
the twistor description, the conformally invariant equations “disappear”; only complex
geometry remains.

The first part of the course, devoted to the twistor geometry, starts from the con-
struction of the twistor model of Minkowski space and continues with the description of
twistor correspondence. This correspondence assigns to geometric objects in Minkowski
space the associated objects of complex geometry in twistor space. Along with the twistor
model we also consider the Klein model of Minkowski space in which this space is iden-
tified with a quadric in the 5-dimensional projective space CP5. Then we construct the
twistor bundles over arbitrary Riemannian manifolds of even dimension following the
well-known paper of Atiyah–Hitchin–Singer.

In the second part of the course the introduced twistor theory is applied to the study of
solutions of gauge field theory equations. As the first example we consider the Yang–Mills
duality equations in R4 and their solutions called instantons. The Atiyah–Ward theorem
yields the twistor interpretation of instantons and the Atiyah–Drinfeld–Hitchin–Manin
constructions, based on this theorem, allows one to completely describe the moduli space
of instantons.

The next example of gauge field theory equations is provided by the monopole equa-
tions in R3, also called Bogomolny equations. Their twistor interpretation was proposed
by Nahm.

Other examples are related to the 2-dimensional models. As a first model we consider
the self-dual Yang–Mills–Higgs equations in R2, called otherwise the vortex equations.
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The moduli space of their solutions is described by the theorem of Taubes. Another
example of 2-dimensional models is provided by Hitchin equations on Riemann surfaces.
These equations are closely related to the Higgs bundles given by the pairs (E,Φ) con-
sisting of a holomorphic vector bundle E and a holomorphic section Φ (Higgs field) of
the bundle of endomorphisms of E. The Hitchin–Kobayashi correspondence establishes
a relation between the stable Higgs bundles and solutions of Hitchin equations.

In conclusion we deal with the 2-dimensional σ-models, or in mathematical terminol-
ogy, harmonic maps of the 2-dimensional sphere into Riemannian manifolds. The twistor
interpretation of such maps was studied in detail by Eells and his colleagues.

All considered, equations have a deep physical meaning, and their study is equally
interesting both for physicists and mathematicians.

This paper is based on the lecture course delivered by the author during the spring
semester of 2018 at the Scientific-Educational Center of the Steklov Mathematical Insti-
tute. The author is grateful to all listeners of the course and especially to I. V. Maresin
for their remarks which helped to improve the original text of the paper.

Part 1. Twistor geometry

1.1. Twistor model of Minkowski space

1.1.1. Minkowski space. The Minkowski space M is a 4-dimensional real vector space
provided with the Lorentz metric. The square of the length of a vector x = (x0, x1, x2, x3)
∈ M in this metric is given by the formula

|x|2 = (x0)2 − (x1)2 − (x2)2 − (x3)2.

The group L of linear transformations of M , preserving the Lorentz metric, is called the
Lorentz group.

The vectors x with zero length |x|2 = 0, are of special interest. Such vectors are called
light vectors or null vectors. The light line is a straight line with a light tangent vector.
The light lines, passing through the point 0, form the light cone with vertex at 0:

C = C0 = {x ∈ M : |x|2 = 0} = {x ∈ M : (x0)2 = (x1)2 + (x2)2 + (x3)2}.
The interior of the light cone V = {x ∈ M : |x|2 > 0} consists of two components: the
future cone

V+ = {x ∈ M : |x|2 > 0, x0 > 0}
and the past cone

V− = {x ∈ M : |x|2 > 0, x0 < 0}.
The light cone Cx0

with vertex at an arbitrary point x0 ∈ M is defined in a similar way:

Cx0
= {x ∈ M : |x− x0|2 = 0}.

The complex Minkowski space CM is the complexification of the Minkowski space
M coinciding with the 4-dimensional complex vector space consisting of vectors z =
(z0, z1, z2, z3) ∈ C4. As in the real case, a vector z ∈ CM is called the complex light
vector if

|z|2 := (z0)2 − (z1)2 − (z2)2 − (z3)2 = 0.

The complex light cone with vertex at a point z0 ∈ CM is given by the equation (z−z0)
2 =

0. The complex analogs of the future and light cones are provided by the future tube

CM+ = {z = x+ iy ∈ CM : |y|2 > 0, y0 > 0}
and past tube

CM− = {z = x+ iy ∈ CM : |y|2 > 0, y0 < 0}.
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The Euclidean space E is a 4-dimensional real vector space in CM given by the
equations

z0 = x0, z1 = ix1, z2 = ix2, z3 = ix3,

where x0, x1, x2, x3 are arbitrary real numbers.

1.1.2. Spinor model of Minkowski space. The Pauli map associates with a vector
x ∈ M the complex 2× 2-matrix X according to the formula

M � x = (x0, x1, x2, x3) �−→ X =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
.

Using the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
the Pauli map may be written in the form

x �−→ X = x0σ0 + x1σ1 + x2σ2 + x3σ3,

where σ0 = I is the identity 2× 2-matrix.
The Pauli map realizes Minkowski space M as the space Herm(2) of Hermitian 2× 2-

matrices. The squared Lorentz norm |x|2 of a vector x ∈ M under this map is sent to
detX.

There is an action of the group SL(2,C) of complex 2× 2-matrices with unit determi-
nant on the space Herm(2) of Hermitian matrices by the rule

X �−→ AXA∗, X ∈ Herm(2),

where A ∈ SL(2,C), and A∗ is the Hermitian conjugate matrix A∗ = Āt. This action
preserves detX and so, by the Pauli correspondence, generates a linear transform of
Minkowski space, preserving the Lorentz metric. Note, however, that matrices ±A gen-
erate the same Lorentz transform; in other words, the group SL(2,C) is a double covering
of the Lorentz group L (prove the last statement!).

The complex Pauli map, given by the formula

CM � z �−→
3∑

μ=0

ziσi =: Z ∈ C[2× 2],

realizes the complex Minkowski space CM as the space C[2×2] of complex 2×2-matrices.
Under this map the future tube CM+ is transformed to the matrix upper halfplane

H+ = {Z ∈ C[2× 2] : ImZ :=
1

2i
(Z − Z∗) � 0}.

The inequality ImZ � 0 means that the Hermitian matrix ImZ is positively definite,
i.e., its eigenvalues are positive. If we apply to H+, by analogy with the scalar case, the
Cayley transform

Z �−→ W = (I − iZ)−1(I + iZ),

then the matrix upper halfplane H+ will be sent to the matrix disk

D = {W ∈ C[2× 2] : I −W ∗W � 0}.
It is a classical Cartan domain of the 1st kind. The space Herm(2) of Hermitian matrices
under the Cayley map transforms into the distinguished boundary of the matrix disk D
coinciding with the group U(2) of unitary 2× 2-matrices.

Using the composite map from M to the compact group U(2), we can construct a
compactification of the space M by defining it as the inverse image of U(2) under the
map M → U(2). It is the so-called conformal compactification of Minkowski space used
in the general relativity (cf. [26]).
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The complex vector space C2, on which the group SL(2,C) acts as the group of
matrices, is called the space of spinors.

1.1.3. Twistor model of Minkowski space. We shall now construct the twistor model
of Minkowski space. Denote by T the 4-dimensional complex vector space C4. It is
convenient to write its vectors as the pairs ζ = (ω, π), where ω, π ∈ C2. Associate with a
matrix Z ∈ C[2× 2] the 2-dimensional complex subspace in T determined by the system
of two complex equations

ω = Zπ.

This defines an embedding of the space C[2 × 2] into the Grassmann manifold G2(T)
consisting of 2-dimensional complex subspaces in T.

Taking the composition with the Pauli map we obtain an embedding

(1.1) CM −→ C[2× 2] −→ G2(T)

of the complex Minkowski space CM into the Grassmann manifold G2(T). Since the
latter manifold is compact it is natural to consider G2(T) as a model of the compactified
complexified Minkowski space CM. The space T itself is called the space of twistors. Its
projectivization PT consists of 4-tuples [ζ1 : ζ2 : ζ3 : ζ4] of complex numbers (ζ1, ζ2, ζ3, ζ4)
defined up to proportionality, i.e.,

[ζ1 : ζ2 : ζ3 : ζ4] = [λζ1 : λζ2 : λζ3 : λζ4]

for any nonzero complex number λ. The space PT is called the space of projective
twistors. The Grassmann manifold G2(T) may also be considered as the Grassmann
manifold G1(PT) of projective lines in PT = CP3. A projective line in PT is determined
by the pair of homogeneous equations in the space of twistors T.

We now consider the “ideal elements” of CM, i.e., the points of G2(T) which do not
belong to the image of the map (1.1). Denote by P∞ the subspace of T at “infinity”
given by the equation

P∞ : π = 0.

The 2-subspaces in T, which do not belong to the image of the map (1.1), should have
nonzero intersection with P∞. Any 2-subspace in T is given by the system of equations

Z1ω = Z2π,

where the 2×2-matrices Z1, Z2 are defined up to multiplication from the left by a nonde-
generate 2× 2-matrix. Such a subspace has nonzero intersection with P∞ iff detZ1 = 0.
As we have pointed out before, the equation detZ2 = 0 determines the complex light
cone in CM at the origin. So the set of solutions of the equation detZ1 = 0 may be
interpreted as the complex light cone “at infinity”. Hence, the “ideal” set CM \ CM is
identified with the complex light cone “at infinity”.

The constructed mapping (1.1). CM → G2(T) = G1(PT), is called the twistor corre-
spondence or the Penrose correspondence.

1.2. Twistor correspondence

1.2.1. Twistor correspondence in the case of complex Minkowski space. By the
definition of twistor correspondence

{point of CM} −→ {projective line in PT} .

Identifying a point in PT with the bundle of projective lines passing through this point,
we obtain that a point in PT corresponds to a 2-dimensional null plane in CM called the
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α-plane:{
2-domensional complex null
plane ≡ α-plane

}
−→

{
point in PT ≡ bundle of projective lines
passing through this point

}
.

A plane in CM is called null or isotropic if it is generated by two linearly independent
light vectors. The dual type of isotropic planes in CM , called the β-planes, corresponds
to the dual object in PT, namely, to a projective plane identified with the system of
projective lines lying in this plane:{

2-dimensional complex null
plane ≡ β-plane

}
−→

{
projective plane in PT ≡ system of
projective lines lying in this plane

}
.

Taking the intersection of the last two diagrams, we find the twistor image of a complex
light line

{complex light line in CM} −→

⎧⎨⎩(0, 2)-flag in PT ≡ (point of PT, projective plane
containing this point) ≡ bundle of projective lines
lying in this plane and passing through this point

⎫⎬⎭ .

The last assertions imply that{
complex light cone in CM ≡ bundle of
complex light lines passing through a
fixed point of CM

}
−→

{
projective line in PT ≡ family
of (0, 1, 2)-flags in PT with fixed
projective line

}
.

1.2.2. Twistor correspondence in the case of real Minkowski space. The twistor
norm of an element ζ = (ω, π) ∈ T is by definition equal to

Φ(ζ) = Im〈ω, π〉,
where 〈ω, π〉 is the Hermitian inner product of vectors ω = (ω1, ω2) and π = (π1, π2) in
C2:

〈ω, π〉 = ω1π̄1 + ω2π̄2.

Denote by N the quadric in T given by the equation

N : Φ(ζ) = 0,

and by PN the corresponding projective quadric.
Under the twistor correspondence the points of M are sent to the projective lines

belonging to PN:

{point of M} −→ {projective line lying in PN} .
The image of a light line in M under the twistor correspondence coincides with a point
in PN which is identified with the bundle of projective lines lying in the intersection of
the complex tangent plane to PN in a fixed point with the quadric PN:

{light line in M} −→

⎧⎨⎩point of PN ≡ (point of PN, complex tangent plane to PN at
this point) ≡ bundle of projective lines lying in the complex
tangent plane and passing through the fixed point

⎫⎬⎭ .

A light cone in M is identified with the projective line in PN:{
light cone in M ≡ bundle of
light lines passing through a
fived point of M

}
−→

{
projective line in PN ≡ intersection of PN with
the complex tangent plane at every point of
the fixed projective line

}
.

Hence, in the case of real Minkowski space the twistor correspondence determines a
duality of the following type:

{points of M} −→ {projective lines in PN} ,
{light lines in M} −→ {points of PN} .
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So the light lines, which can intersect each other in M split into separate points of PN.
This fact is of fundamental importance for the whole twistor theory.

The quadric N divides the twistor space T into two parts—the space of positive twistors
T+ = {ζ ∈ T : Φ(ζ) > 0} and the space of negative twistors T− = {ζ ∈ T : Φ(ζ) < 0}.
The restriction of the twistor correspondence to the future and past tubes yields:

{point of CM+} −→ {projective line lying in PT+} ,

{point of CM−} −→ {projective line lying in PT−} .
The quadric N = {ζ ∈ T : Φ(ζ) = 0} has the signature (2,2), so in the appropriate basis
of the space T it can be written in the form

Φ̃(z) = |z1|2 + |z2|2 − |z3|2 − |z4|2.

The group SU(2, 2) of linear transformations of T, preserving the quadric N, generates
transformations of compactified Minkowski space M, sending light lines to light lines and
light cones to light cones.

Recall that a map of Minkowski space M is called conformal if it has this property.
The group of conformal maps of M is denoted by C(1, 3).

We have just shown that the maps from the group SU(2, 2) generate conformal maps
of the compactified Minkowski space M. Note that the elements ±A, ±iA from SU(2, 2)
generate the same transform of M. In other words, the group SU(2, 2) is a 4-fold covering
of the conformal group C(1, 3) of Minkowski space M.

Consider in more detail the group structure of the twistor model G2(T) of Minkowski
space. The group

G := SL(4,C)/{±I,±iI}
acts in a natural way on G2(T). Fix the basis {ei} of the space T in which the quadric
N is given by the equation

Φ̃(z) = |z1|2 + |z2|2 − |z3|2 − |z4|2 = 0.

Write an arbitrary linear transform of the twistor space T in the form of a block 4 × 4-
matrix

(1.2)

(
A B
C D

)
,

where A,B,C,D are complex 2× 2-matrices. Denote by P0 the 2-dimensional subspace
from G2(T) of the following form:

P0 = {z ∈ T : z3 = z4 = 0}.
The isotropy subgroup G0 of the group G at P0 consists of the block matrices (1.2) in
which C = 0, detA ·detD = 1. So G2(T) may be identified with the homogeneous space
of the group G of the form G/G0.

Denote by GR the real form of the group G defined by

GR = SU(2, 2)/{±I,±iI}.
The isotropy subgroup GR

0 at P0 coincides with G0 ∩GR.
The homogeneous space GR/GR

0 may be identified with the twistor model of the future
tube CM+. Indeed, the twistor image of CM+ coincides with the set of 2-subspaces lying
in T+. We shall call such subspaces positive and denote the set of all positive subspaces
by G+

2 (T). Since the subspace P0 is positive, the group GR preserves the positivity
property and acts transitively on G+

2 (T); it follows that the homogeneous space GR/GR
0

coincides with G+
2 (T) = CM+.
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1.2.3. Twistor correspondence in the case of Euclidean space. The image of a
point of Euclidean space under the twistor correspondence coincides with the projective
line in PT invariant under the map j : [ζ1 : ζ2 : ζ3 : ζ4] �→ [−ζ2 : ζ1 : −ζ4 : ζ3]:

{point of E} −→ {projective j-invariant line in PN} .
These j-invariant lines do not intersect with each other. Moreover, in the considered case
the twistor correspondence coincides with the Hopf bundle

π : CP3 CP
1

−→ E,

where E is the compactified Euclidean space equal to the sphere S4. As in the 2-
dimensional case, where the sphere S2 is identified with the complex projective line,
in the 4-dimensional case the sphere S4 may be identified with the quaternion projective
line.

In order to clarify this assertion we recall basic definitions related to quaternions. The
space of quaternions H consists of the elements of the form

x = x1 + ix2 + jx3 + kx4,

where x1, x2, x3, x4 are arbitrary real numbers and i, j, k are imaginary units, i.e., i2 =
j2 = k2 = −1, subject to the relation ij = −ji = k. As a real vector space, H is
isomorphic to R4 with componentwise operations of addition and multiplication by real
numbers. The relation given above allows us to introduce the operation of multiplication
of quaternions.

The conjugation of quaternions is defined by the formula

x̄ = x1 − ix2 − jx3 − kx4.

Using it we can introduce the norm of a quaternion by

|x|2 = xx̄ = x̄x = x2
1 + x2

2 + x2
3 + x2

4.

From the algebraic point of view the space of quaternions is a noncommutative field since
any nonzero quaternion x has its inverse:

x−1 = x̄/|x|2.
Quaternions are conveniently written in the complex form

x = z1 + jz2, where z1 = x1 + ix2, z2 = x3 + ix4.

As a complex vector space, H is isomorphic to C2.
Another convenient way of writing quaternions is with the help of matrices. Namely,

quaternions may be realized as complex 2 × 2-matrices by assigning to a quaternion
x = z1 + jz2 the matrix (

z1 z2
−z̄2 z̄1

)
.

Under thus identification the quaternion multiplication corresponds to the product of
matrices. The “unit circle” in H, coinciding with

Sp(1) = {x ∈ H : |x|2 = 1},
is identified with the group SU(2) of unitary 2× 2-matrices with determinant 1.

Now we can return to the interpretation of the sphere S4 as the quaternion projective
line. The quaternion projective line HP1 consists of pairs of quaternions [(z1 + jz2) :
(z3 + jz4)] defined up to multiplication from the right by nonzero quaternions.

The map π : CP3 → HP1, mentioned above, is given by the tautological formula

[z1 : z2 : z3 : z4] �−→ [(z1 + jz2) : (z3 + jz4)],
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where the 4-tuple [z1 : z2 : z3 : z4] is defined up to the multiplication by a nonzero
complex number while the pair [(z1 + jz2) : (z3 + jz4)] is defined up to multiplication
from the right by a nonzero quaternion.

The map

j : [z1 : z2 : z3 : z4] �−→ [−z2 : z1 : −z4 : z3]

corresponds to the multiplication of the pair (z1 + jz2, z3 + jz4) by the imaginary unit j
from the right which does not change the projective class [(z1 + jz2) : (z3 + jz4)]. So the
fibers of the bundle π are j-invariant projective lines and the twistor correspondence in
the Euclidean case coincides with the pull-back by π.

1.2.4. Klein model of Minkowski space. Any subspace from G2(T) is given, up to
multiplication by a nonzero complex number, by the bivector p = p1 ∧ p2, where p1, p2
is a pair of linearly independent vectors lying in the considered 2-subspace. Fix an
orthonormal basis {ei} in T. Then bivectors ei ∧ ej , i < j, will form the basis of the

exterior square
∧2

T. So decomposing an arbitrary bivector p in this basis, we can
represent it in the form

p =
∑
i<j

pijei ∧ ej .

In this way we can associate with any 2-subspace from G2(T) the collection [pij ] of its
Plücker coordinates defined up to multiplication by a nonzero complex number.

Plücker coordinates satisfy the relation

(1.3) p12p34 − p13p24 + p14p23 = 0

which follows from the evident condition p ∧ p = 0.
The constructed correspondence allows us to identify the space G2(T) with the pro-

jective quadric PQ in the 5-dimensional complex projective space CP5 determined by the
equation (1.3). This quadric is called the Klein model of the compactified complexified
Minkowski space CM. In appropriate coordinates (u, v) = (u1, u2, u3, v1, v2, v3) in the
space C6 the quadric Q in C6, given by the equation (1.3), may be written in the form

(1.4) u2
1 + u2

2 + u2
3 = v21 + v22 + v23

or, for short, u2 = v2.
The main objects of geometry of the Minkowski space CM admit the following inter-

pretation in terms of the Klein model:

{point of CM} −→ {point of quadric PQ} .

The quadric Q, given by equation (1.4), has two systems of straight generators, repre-
sented by 3-subspaces defined by the equations

u = Av, where A ∈ O(3,C).

The group O(3,C) of linear transformations of C3, preserving the form u2 = u2
1+u2

2+u2
3,

consists of two connected components singled out by the sign of detA. The straight
generators {u = Av} with detA = 1 correspond under the twistor correspondence to
α-planes, while the generators {u = Av} with detA = −1 correspond to β-planes:{

complex light cone in CM
with vertex at a given point

}
−→

{
tangent cone to quadric PQ ≡ intersection of
the tangent space to PN at a given point with
the quadric PQ

}
.
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The real Minkowski space M and Euclidean space E admit the following interpretation
in terms of the quadric PQ:

{point of M} −→
{
point of the real quadric x2

1+x2
2+x2

3

+ x2
4 − x2

5 − x2
6 = 0 in PQ

}
,

{point of E} −→
{
point of the real quadric x2

1+x2
2+x2

3

+ x2
4 + x2

5 − x2
6 = 0 in PQ

}
.

The group G = SL(4,C)/{±I,±iI}, acting on the space G2(T), generates projective
transforms of C6, preserving the quadric Q, i.e., transforms from the group O(6,C)/{±I}.
Hence, we have a homomorphism

G −→ O(6,C)/{±I}.
In an analogous way, Klein interpretation of the real Minkowski space M is related to the
local isomorphism SU(2, 2) ∼= SO(4, 2), and Klein interpretation of the Euclidean space
E is related to the local isomorphism SL(2,H) ∼= SO(5, 1).

The twistor program of Penrose proclaims that the twistor correspondence should
send solutions of conformally invariant equations of field theory, defined on Minkowski
space M, to the objects of complex geometry in twistor space PT.

1.2.5. Twistor bundles. The Hopf bundle π : CP3 → S4, constructed above, admits
a nice interpretation in terms of complex structures on the Euclidean space E = R4

proposed by Atiyah.
The map π over R4 coincides with the bundle

π : CP3 \ CP1
∞ −→ E,

where the omitted projective line CP1
∞ is identified with the fibre π−1(∞) of the Hopf

bundle at ∞ ∈ S4.
The space CP3 \CP1

∞ is sliced by parallel projective planes CP2 intersecting in CP3 on
the omitted projective line CP1

∞. Consider the fibre π−1(p) of π over an arbitrary point
p ∈ E. Through any point z of this fibre there passes the affine complex plane C2

z from
our family. Associate with the point z the complex structure Jz on the tangent plane
TpE ∼= R4 by identifying TpE with C2

z with the help of the tangent map π∗. In this way
the fibre π−1(p) of the twistor bundle π over the point p is identified with the space of
complex structures on the tangent space TpE. All constructed complex structures are
compatible with the metric and orientation of R4 in the sense that operators Jz on TpE
are represented by skew-symmetric matrices with zero trace.

This construction admits an extension to arbitrary even-dimensional oriented Rie-
mannian manifolds X. Namely, consider the bundle π : J (X) → X of complex struc-
tures on X having the fibre at a point p ∈ X equal to the space J (TpX) ∼= J (R2n)
of complex structures on the tangent space TpX compatible with Riemannian metric
and orientation. Such complex structures on TpX ∼= R2n are given by skew-symmetric
linear operators J with zero trace and square J2 = −I. The space of these structures is
identified with the complex homogeneous space

J (R2n) ∼= SO(2n)/U(n)

and so has a canonical complex structure.
The bundle π : J (X) → X is called the twistor bundle over X. We show that it has a

natural almost complex structure. The Riemannian connection on X generates a natural
connection in the principal SO(2n)-bundle SO(X) → X of orthonormal frames on X,
and this connection determines the vertical-horizontal decomposition

TJ (X) = V ⊕H
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of the associated bundle of complex structures. Introduce an almost complex structure
J 1 on J (X) by setting

J 1 = J v ⊕ J h.

The value of the vertical component J v
z ∈ End(Vz) at z ∈ J (X) coincides with the

canonical complex structure on the complex homogeneous space Vz
∼= SO(2n)/U(n).

The value of the horizontal component J h
z ∈ End(Hz) at z coincides with the complex

structure J(z) ↔ z on the space Hz identified with the tangent space Tπ(z)X via the

tangent map π∗. Recall that the fibre π−1(p) of the bundle J (X) → X at the point
p = π(z) ∈ X consists of the complex structures on TpX, and we denote by J(z) the
complex structure on TpX corresponding to the point z ∈ π−1(p).

The constructed almost complex structure J 1 on J (X) makes the space J (X) an
almost complex manifold. This structure was introduced by Atiyah–Hitchin–Singer in
[5].

Part 2. Gauge fields

2.1. Instantons and Yang–Mills fields

2.1.1. Yang–Mills equation. LetX be a compact 4-dimensional Riemannian manifold,
and let G be a compact Lie group called the gauge group.

The gauge potential A is a connection in a principal G-bundle P → X given by a 1-
form on P with values in the Lie algebra g of G. Denote by adP = P ×G g the associated
bundle where G acts on g by the adjoint representation. In terms of this bundle the gauge
potential A is given by a 1-form

A ∈ Ω1(X, adP ).

The main example of the gauge group G for us will be the group SU(2). In this case
gauge potential A in local coordinates (xμ) = (x0, x1, x2, x3) is given by a 1-form

A ∼
3∑

μ=0

Aμ(x)dx
μ,

where Aμ are complex skew-Hermitian 2 × 2-matrices with zero trace, and the sign ∼
means (here and afterwards) an expression in local coordinates. In the particular case
G = U(1) the gauge potential coincides with the usual electromagnetic vector potential
(more precisely, with its Euclidean analogue).

The curvature F of a connection A is called the gauge field and is given by a 2-form
on P with values in the Lie algebra g or by the 2-form F ∈ Ω2(X, adP ) equal to

F = DA = dA+
1

2
[A,A],

where D is the operator of exterior covariant differentiation

D : Ωp(X, adP ) −→ Ωp+1(X, adP )

generated by the connection A. In the case G = SU(2) the gauge field F is given in local
coordinates (xμ) by the 2-form

F ∼
3∑

μ,ν=0

Fμν(x)dx
μ ∧ dxν ,

where
Fμν = ∂μAν − ∂νAμ + [Aμ, Aν ] with ∂μ = ∂/∂xμ.

In the particular case G = U(1) the tensor (Fμν) coincides with (the Euclidean analogue
of) the Maxwell tensor of electromagnetic field.
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The gauge transform is a fiberwise diffeomorphism g : P → P which is G-equivariant
in the sense that

g(hp) = gh(p)

for any h ∈ G, p ∈ P . In other words, g is a section of the bundle P ×G G. Locally, the
gauge transform is given by a smooth function g(x) on X with values in the group G,
and its action on gauge potential A and gauge field F is defined by the formula

Ag = (Ad g−1)dg + (Ad g−1)A, Fg = (Ad g−1)F,

where Ad is the adjoint action of the group G on the Lie algebra g.
In the case of the group G = SU(2) these formulas may be rewritten in the form

Ag = g−1dg + g−1Ag, Fg = g−1Fg.

In the particular case G = U(1) the gauge map coincides with the phase transform
g(x) = eiθ(x) which acts on A as the gradient transform A �→ A + idθ while the gauge
field F is not changed.

The Yang–Mills action functional is defined by the formula

SYM(A) =
1

2

∫
X

‖F‖2vol ,

where the norm ‖ · ‖ is determined by the inner product on the space of forms, generated
by the Riemannian metric on X and invariant inner product tr on the Lie algebra g, and
whose vol is the volume element on X.

In the case of the group G = SU(2) this formula may be rewritten, using the Hodge
∗-operator, in the following form:

SYM(A) =
1

2

∫
X

tr(F ∧ ∗F ).

The critical points of this functional are called the Yang–Mills fields. They satisfy the
Euler–Lagrange equation

D∗F = 0,

where

D∗ = ∗D∗ : Ωp+1(X, adP ) −→ Ωp(X, adP )

is the operator conjugate to the operator D. This equation is called the Yang–Mills
equation and is often written in the form

D(∗F ) = 0.

2.1.2. Instantons. A gauge field F is called selfdual (resp., anti-selfdual) if

∗F = F (resp., ∗ F = −F ).

By the Bianchi identity DF = 0, implied by the relation F = DA, the gauge fields,
subject to the duality equations ∗F = ±F , automatically satisfy the Yang–Mills equation.

Setting F± = 1
2 (∗F ± F ), we can represent the field F in the form

F = F+ + F−, where ∗ F± = ±F±.

(Note that the fields F± are not obliged to satisfy the Bianchi identity, hence also the
Yang–Mills equations.) In these terms the Yang–Mills functional may be rewritten in
the form

SYM(A) =
1

2

∫
X

(
‖F+‖2 + ‖F−‖2

)
vol.
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Denote by E → X the vector bundle of rank n associated with the principal bundle
P → X. Assign to E a topological invariant, coinciding with the 1st Pontryagin class,
which is computed by the formula

(2.1) p1(E) =
1

8π2

∫
X

(
‖F+‖2 − ‖F−‖2

)
vol =

1

8π2

∫
X

tr(F ∧ F )

and called the topological charge of F .
It is evident that

SYM(A) ≥ 4π2|p1(E)|,
and the equality here is attained precisely on the solutions of the duality equations. In
other words, these solutions determine the local minima of the functional SYM(A).

In physical papers the anti-selfdual (ASD)-solutions of Yang–Mills equations are called
the instantons, while in mathematical literature it is usual to deal with the selfdual (SD)-
solutions which are naturally called the anti-instantons.

We are mostly interested in the study of the moduli space of instantons :

{moduli space of instantons} =
{instantons}

{gauge transforms} .

2.1.3. Yang–Mills fields on R4. Any Yang–Mills fields on R4 with finite Yang–Mills
action by the Uhlenbeck theorem [24] may be extended to a Yang–Mills field on S4 with
values in some principal bundle P → S4 in the sense that the restriction of this field to
R4 is gauge equivalent to the original Yang–Mills field. The spherical metric on S4 \{∞}
is conformally equivalent to the Euclidean matric on R4, so the extension of a Yang–Mills
field from R4 to S4 is reduced to finding appropriate asymptotic conditions at infinity
which will define the required principal bundle P → S4. This argument shows that the
problem of the description of Yang–Mills fields on R4 with finite Yang–Mills action may
be considered as a part of the general problem of studying Yang–Mills fields on compact
4-dimensional Riemannian manifolds.

Let A be a gauge potential on R4 with gauge group G. To guarantee the finiteness
of the Yang–Mills action we impose on A an asymptotic condition by requiring that
the potential A should tend to a trivial one (i.e., pure gauge potential) at infinity. In
other words, we shall suppose that A(x) is gauge equivalent to a potential of the form
g(x)−1dg(x) for |x| → ∞. If this condition is satisfied, then, by restricting g−1 to the
sphere S3

R of sufficiently large radius R, we shall obtain a smooth map

g−1 : S3
R −→ G,

determining the homotopy class [S3
R, G]. In the case of the group G = SU(2) it gives

one more definition of the topological charge introduced earlier. Namely, this charge
coincides with the degree of the map g−1 : S3

R → SU(2) ∼= S3.
The finiteness of the Yang–Mills action on R4 for the instanton means “physically”

that it is localized in space R3 ⊂ R4 as well as in “time” (x0) ⊂ R4, which explains its
name.

The dimension of the moduli space Mk of SU(2)-instantons on R4, having topological
charge −k, k a positive integer, may be found with the help of the Atiyah–Singer index
theorem (cf. [3]), and is equal to 8k − 3.

Consider the case k = 1 in more detail. Identify the space R4 with the space of
quaternions H, and the group SU(2) with the group Sp(1) of quaternions with modulus
1. The Lie algebra of this group coincides with the algebra of pure imaginary quaternions,
so the gauge potential on R4 is given in this case by a 1-form on H with coefficients given
by pure imaginary quaternions.
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The first example of 1-instantons was constructed by Belavin–Polyakov–Schwarz–
Tyupkin [7]. In quaternion notation it is given by the gauge potential of the form

A(x) = Im

{
x̄dx

1 + |x|2

}
=

x̄dx− dx̄ · x
2(1 + |x|2) ,

where x = x0 + ix1 + jx2 + kx3. The corresponding gauge field has the form

F (x) =
dx̄ ∧ dx

(1 + |x|2)2 = Im

{
dx̄ ∧ dx

(1 + |x|2)2

}
and is anti-selfdual.

Its topological charge is equal to −1. Indeed, for |x| → ∞ we have

A(x) ∼ Im

{
x̄dx

|x|2

}
= Im {x−1dx}.

But for x �= 0 the latter potential is pure gauge since

Im {x−1dx} = g(x)−1dg(x), where g(x) =
x

|x| .

Hence the topological charge of the field F coincides with the degree of the map g−1 :
S3 → S3 acting by the formula

g−1(x) =
x̄

|x|
which has degree −1. So the gauge potential A does define a 1-instanton on R4.

In order to obtain an SD-solution with charge +1 it is sufficient to replace the formula
for A(x) by

A(x) = Im

{
xdx̄

1 + |x|2

}
.

Let us construct a principal Sp(1)-bundle over S4 corresponding to this instanton. For
that apply to A the gauge field g−1. We get

Ag−1(x) = A(y), where y := x−1.

Now consider the standard covering of HP1 by open subsets

U0 = {[x : y] ∈ HP1 : y �= 0} and U∞ = {[x : y] ∈ HP1 : x �= 0}
and introduce the transition function

g0∞ : U0 ∩ U∞ −→ Sp(1)

by setting g0∞(x) = g(x)−1 = x̄/|x|. Thus, we have constructed a principal Sp(1)-bundle
P → S4 and 1-form A, equal to A(x) on U0 and A(y) on U∞ with y = x−1, determining
an ASD-connection in the bundle P .

An arbitrary 1-instanton on R4 is given by gauge potential of the form

A(x) = Im

{
(x̄− x̄0)dx

λ2 + |x− x0|2

}
, where x0 ∈ H, λ ∈ R,

depending on 5 real parameters.
Generalizing this method of construction of 1-instantons, we look for an arbitrary

gauge potential on R4 given by the following Ansatz:

A(x) = Im{ϕ(x)−1∂ϕ(x)},
where ϕ(x) is an arbitrary smooth real-valued function of x ∈ H, and

∂ϕ(x) :=
∂ϕ

∂x
dx.
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This potential A defines an ASD-connection if it satisfies the following equation:

∂∂̄ϕ = Δϕ = 0.

We obtain a nontrivial t’Hooft solution if we set in this Ansatz

ϕ(x) = 1 +
k∑

j=1

λ2
j

|x− xj |2
,

where (x1, . . . , xk) is a collection of different points in R4 and (λ1, . . . , λk) is a collection
of nonzero real parameters. This function corresponds to the gauge potential A with
singularities of the form Im{(x − xj)

−1dx} at points xj . If we apply to A(x), as in the
case of 1-instanton, the gauge transform

gj(x) :=
x− xj

|x− xj |
in the truncated neighborhood of the point xj , we obtain the gauge equivalent potential
of the form

Aj(x) = Im

{
(x̄− x̄j)dx

λ2
j + |x− xj |2

}
+ · · ·

which already has no singularity at x = xj .
By construction, the gauge potential A determines an ASD-connection outside the

points {xj}. In order to associate with the connection A an instanton on S4, we have
to consider the covering of S4 by open balls Uj with centers at points xj , which do not
contain the points xk with k �= j, and the complement U∞ to the union of these points
in S4. The desired bundle over S4 is given by the transition functions gj on intersections

Uj ∩ U∞ and gjk = gjg
−1
k on intersections Uj ∩ Uk. The forms Aj on Uj and A on U∞

define an ASD-connection in this bundle.
The constructed solution depends on 5k real parameters which for k � 1 is much less

than the number 8k − 3 of real parameters of the moduli space of k-instantons. In the
next section we shall give a construction which allows us to construct the whole family
of k-instantons for any k.

2.2. Atiyah–Ward theorem and ADHM-construction

2.2.1. Atiyah–Ward theorem. This theorem gives the twistor description of G-instan-
tons in principal G-bundles P → S4.

We start from the twistor description of instantons in a principal SU(2)-bundle P →
S4. Denote by E → S4 the complex vector bundle of rank 2 associated with the principal
bundle P → S4. We suppose that E is provided with a Hermitian structure and A is a
connection compatible with the Hermitian structure. It means that in any unitary frame
A∗ = −A.

If E is a holomorphic vector bundle we can also consider connections compatible with
the holomorphic structure. A connection is called holomorphic if its potential A has type
(1,0) in any holomorphic frame.

There is a natural relation between Hermitian and holomorphic connections estab-
lished in the following way. Let E be a holomorphic vector bundle provided with a
Hermitian structure. Then there exists a unique connection on E compatible with both
structures. The curvature of this connection has type (1,1).

The converse of this result is also true.

Theorem 1 (Atiyah–Hitchin–Singer). Let E be a holomorphic vector bundle over a com-
plex manifold X provided with a Hermitian structure. If E has a Hermitian connection
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with curvature of type (1,1), then there exists a unique holomorphic structure on E such
that this connection is compatible with it.

We return now to the vector bundle E → S4 provided with the Hermitian connection
A. Consider its restriction to R4. Then the following assertion is true (cf. [2]). The
connection A is an ASD-connection if and only if its curvature has type (1,1) with
respect to any complex structure on R4 compatible with metric and orientation.

This assertion has in fact the infinitesimal character and is proved by direct compu-
tation in local coordinates.

Now consider the twistor bundle constructed above:

π : CP3 −→ S4.

Denote by Ẽ := π∗E the pull-back of the bundle E to CP3 via the map π and by ∇̃ = ∇Ã

the pull-back of the covariant derivative ∇ = ∇A to the bundle Ẽ. If the connection A
is an ASD-connection, then the assertion above implies that its pull-back Ã to Ẽ defines
a holomorphic structure on Ẽ, i.e., the curvature of Ã is of type (1,1).

The obtained holomorphic bundle Ẽ → CP3 is by contruction holomorphically trivial
on j-invariant projective lines in CP3 being the fibers of the map π.

Next consider how the Hermitian structure on E behaves under the constructed cor-
respondence between the bundles E over S4 and Ẽ over CP3. The introduction of this
structure is equivalent to the introduction of an anti-linear isomorphism τ : E → E∗

such that the form (ξ, τη) is positively definite. By pulling up this isomorphism to Ẽ

we shall obtain a Hermitian structure on Ẽ, i.e., an anti-linear isomorphism τ̃ : Ẽ → Ẽ∗

covering the map j on P → S4. This isomorphism has the following property:

(ξ, τ̃η) = (ξ, τ̃η),

i.e., defines a positive real form on Ẽ.

Theorem 2 (Atiyah–Ward theorem [6]). There exists a bijective correspondence between{
moduli space of
SU(2)-instantons
on S4

}
←→

⎧⎨⎩holomorphic vector bundles of rank 2 over CP3

holomorphically trivial on π-fibers and pro-
vided with a positive real form

⎫⎬⎭ .

For Hermitian vector bundles E → S4 of rank n we shall obtain by the Atiyah–Ward
correspondence holomorphic vector bundles Ẽ → S4 of rank n which are holomorphically
trivial on π-fibers and provided with a positive real form.

The Atiyah–Ward theorem can also be extended to arbitrary Sp(n)-instantons where
Sp(n) is the group of invertible quaternion matrices preserving the standard Hermitian
form 〈x, y〉 = x̄1y1 + · · ·+ x̄nyn on Hn. By the Atiyah–Ward correspondence they corre-
spond to holomorphic vector bundles of rank 2n on CP3 having additional quaternionic
structure. Let E be, as above, a vector bundle of rank 2n with a Hermitian connection.
The quaternion structure on E is given by a skew-symmetric isomorphism α compatible
with connection. By pulling up this isomorphism to Ẽ, we shall obtain a skew-symmetric
holomorphic isomorphism τ̃ : Ẽ → Ẽ∗. This skew-symmetric holomorphic isomorphism
determines a nondegenerate skew-symmetric form on Ẽ. Combining it with the anti-
linear isomorphism τ̃−1, we get an anti-linear isomorphism j̃ : Ẽ → Ẽ covering the map
j on P → S4.

We have the following variant of the Atiyah–Ward theorem for Sp(n)-instantons.

Theorem 3 (cf. [2]). There is a bijective correspondence between{
moduli space of
Sp(n)-instantons
on S4

}
←→

⎧⎨⎩holomorphic vector bundles of rank 2n over CP3 with
nondegenerate holomorphic skew-symmetric form com-
patible with the anti-linear isomorphism j̃ : Ẽ → Ẽ

⎫⎬⎭ .
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The compatibility with skew-symmetric form means that

(j̃ξ, j̃η) = (ξ, η).

Note that holomorphic vector bundles Ẽ on CP3 should be holomorphically trivial on
π-fibers. Moreover, restriction of the Hermitian form (ξ, j̃η) to the π-fibers should be
positive definite.

There is also a purely complex generalization of this theorem. Consider it first for
the future tube CM+. Let E be a holomorphic vector bundle of rank n over CM+, and
let ∇ = ∇A be the holomorphic covariant derivative acting on sections of E which is
generated by a holomorphic connection A. We call this connection anti-selfdual (ASD) if
its curvature vanishes on all α-planes. The complex variant of the Atiyah–Ward theorem
asserts that there exists a bijective correspondence between{

moduli space of holomorphic
ASD-connections on CM+

}
←→

{holomorphic vector bundles of rank n
on PT+ holomorphically trivial on pro-
jective lines lying in PT+

}
.

This theorem is based on the following Ward construction. Let Ẽ be a holomorphic
vector bundle over PT+ which is holomorphically trivial on projective lines in PT+. The
fiber Ez of the corresponding holomorphic vector bundle E → CM+ at a point z ∈ CM+

consists by definition of holomorphic sections of the bundle Ẽ over the projective line
CP1

z corresponding to the point z. If two projective lines CP1
z and CP1

z′ intersect, i.e., the
points z and z′ lie on the same complex light line, then we can identify the fibers Ez and
Ez′ with each other. In this way we define on E the parallel transport along complex
light lines in CM+ generating a holomorphic connection in E. Since the α-plane in CM+

corresponds to the bundle of projective lines passing through a fixed point of CP3, the
constructed connection is automatically anti-selfdual.

For the inverse construction (from E to Ẽ) it is convenient to use the double diagram

F+

μ

����
��
��
�� ν

���
��

��
��

�

PT+ CM+

where F+ is the space of (0, 1)-flags in PT+, i.e., pairs (point of PT+, projective line
in PT+ containing this point). The space CM+ is identified here with the Grassmann
manifold G1(PT+) of projective lines lying in PT+, and μ, ν are natural projections.
Denote by E′ the pull-back of E to a bundle over F+ via the map ν and by ∇′ the

pull-back of the connection ∇ to the bundle E′. Define the fibre of the bundle Ẽ → PT+

at a point ζ ∈ PT+ as the space of holomorphic sections s′ ∈ Γ(μ−1(ζ), E′) satisfying the
equation

∇′
μs

′ = 0,

where∇′
μ is the component of∇′ acting along the fibers of the map μ. In other words, the

fibre Ẽζ consists of horizontal holomorphic sections of E′ over μ−1(Z). This definition
is correct due to the anti-selfduality of ∇.

The given complex version of the Atiyah–Ward theorem remains true if we replace PT+

in this theorem by a domain D̃ in CP3 such that projective lines lying in it correspond to
the points of some domain D in CM . This domain should have an additional property
that the intersection of any complex light line with this domain is connected and simply
connected.
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2.2.2. ADHM-construction. The ADHM-construction yields a description of instan-
tons on S4. We shall present it for the case of Sp(n)-instantons. The Atiyah–Ward
theorem reduces the problem of the description of instantons on S4 to the problem of the
classification of holomorphic vector bundles on CP3 which are holomorphically trivial on
j-invariant projective lines.

In the case of Sp(n)-instantons it is given a quaternion vector bundle E → S4 with fibre
Hn provided with an ASD-connection with associated covariant derivative ∇. Suppose
that the Pontryagin number of this bundle is equal to p1(E) = −k for a natural k.

Denote by [x : y] the quaternionic homogeneous coordinates on S4 = HP1 and consider
a homogeneous matrix function on H2 of the form

Δ(x, y) = xC + yD,

where C,D are quaternion k× (k+n)-matrices. Suppose that Δ(x, y) has maximal rank
for all (x, y) �= (0, 0). Then Δ will define a nondegenerate linear transform

Δ : H2 ⊗R W −→ V,

where V is the (k + n)-dimensional quaternion vector space and W is its k-dimensional
subspace. Then the space

E(x,y) = KerΔ∗(x, y),

having for fixed (x, y) quaternion dimension n, is the fiber of the desired quaternion
vector bundle.

Denote by P(x,y) : V → E(x,y) the operator of orthogonal projection and provide E
with the standard Levi-Civita covariant derivative ∇. If we restrict E to the Euclidean
space R4 ⊂ S4 by replacing [x : y] with x := [x : 1], then the covariant derivative ∇ in E
will be given by the formula ∇ = Pd/dx and its curvature F will be equal to

F = PC∗dx̄ [Δ(x)Δ∗(x)]
−2

dxCP.

If the matrix Δ(x)Δ∗(x) is real for all x ∈ H, then the matrix [Δ(x)Δ∗(x)]
−2

will
commute with quaternion dx̄ and the expression for F will contain the only form dx̄∧dx
which is ASD, i.e., the form F will be anti-selfdual. It can be shown that the topological
charge of the constructed connection is equal to −k.

The given construction of instantons admits a transparent geometric interpretation.
Namely, the bundle E → S4 coincides with the preimage of the classifying bundle for the
appropriate choice of the map f from S4 to the Grassmann manifold. In more detail,
consider on the Grassmann manifold Gn(H

n+k) of n-dimensional subspaces in Hn+k

the standard tautological bundle. It is provided with the canonical Sp(n + k)-invariant
connection determined by the orthogonal projection. The constructed bundle E → S4 is
the preimage of this classifying bundle under the map f : S4 → Gn(H

n+k) given by the
matrix function Δ(x, y). Moreover, the connection ∇ on E coincides with the connection
induced by the canonical connection via the map f .

In particular, the t’Hooft solution, constructed above, can be described in these terms
as the Sp(1)-bundle with its connection on S4 coinciding with the inverse image of the
classifying Sp(1)-bundle over HPk under the following map: its restriction to R4 = H is
given by the formula

x �−→ [1 : (x− x1)
−1 : · · · : (x− xk)

−1].

To define it for x = xj one should multiply its components by the quaternion (x − xj),
which does not change the image of the map in homogeneous coordinates.

According to Donaldson [10], the reality condition, imposed on the matrix function
Δ(x), may be rewritten in the form of commutation relations for the components of its
matrix coefficients. On the other hand, the duality equations on R4 may also be written



TWISTOR GEOMETRY AND GAUGE FIELDS 153

in the form of commutation relations on the components of the connection ∇(x). So the
ADHM-construction may be considered as a transformation between the commutation
relations for matrix functions on R4 and commutation relations for differential operators
of the first order on R4.

2.3. Monopoles and Nahm equations

2.3.1. Bogomolny equations. Let G be a compact Lie group, and let A be a G-
connection on the Euclidean space R4. Suppose that the connection A is static in the
sense that translation in “time” x0 generates a gauge transform of A. Such a connection
may be given by the 1-form of type

A = Φdx0 +
3∑

j=1

Aidx
i

that has the coefficients which take values in the Lie algebra g of G and does not depend
on x0.

The duality equations for such a form look like

D′Φ = ± ∗′ F ′,

where A′ is a G-connection on the Euclidean space R3, F ′ = FA′ is its curvature, D′ =
DA′ is the exterior covariant derivative associated with connection A′, and ∗′ is the Hodge
operator on R3. Further on we omit the primes since we shall deal only with connections
on R3.

So starting from this point A is a G-connection in the (trivial) principal G-bundle
P → R3, Φ is the section of the adjoint bundle adP , and we are interested in the
solutions of the equation

DAΦ = ± ∗ FA

called the Bogomolny equation [8]. Denoting the form ∗FA by B and omitting the
subindex A, we can rewrite this equation as

DΦ = ±B.

In physical language Φ is called the Higgs field and the form B is interpreted as a magnetic
field.

We introduce the Yang–Mills–Higgs action functional

SYMH(A,Φ) =
1

2

∫
R3

(
‖F‖2 + ‖DΦ‖2

)
d3x.

The critical points of this functional are called the Yang–Mills–Higgs fields and satisfy
the following Euler–Lagrange equation:{∗D(∗F ) = [DΦ,Φ],

�Φ = 0,

where �Φ = ∗D(∗DΦ).
In order to guarantee the finiteness of the action SYMH we impose on the considered

fields the following asymptotic conditions otherwise called the Prasad-Sommerfield limit
[19]:

‖Φ‖ −→ 1, ‖DΦ‖ −→ 0, ‖F‖ −→ 0

uniformly for |x| → ∞.
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Consider in more detail the case G = SU(2). Assign to the Yang–Mills–Higgs field a
topological invariant given by the formula

k =
1

4π

∫
R3

tr(F ∧DΦ) = lim
R→∞

1

4π

∫
S2
R

tr(ΦF ).

This invariant coincides with the degree of the map of the sphere S2
R of sufficiently large

radius R to the Lie algebra su(2) given by the Higgs field

Φ : S2
R −→ {Φ ∈ su(2) : ‖Φ‖ ≈ 1} = S2.

This invariant, called the topological charge k, may also be computed by the formula

k = − 1

4π
lim

R→∞

∫
S2
R

tr(ΦdΦ ∧ dΦ).

The Yang–Mills–Higgs action may be rewritten in the form

SYMH(A,Φ) =
1

2

∫
R3

‖F ∓DΦ‖2d3x± 4π.

This is the so-called Bogomolny transform (cf. [8]). The last formula implies that

SYMH(A,Φ) ≥ 4π|k|,
and the equality here is attained only on solutions of the Bogomolny equation

DΦ = ± ∗ F.
In other words, solutions of the Bogomolny equation with finite action realize local min-
ima of the action SYMH. These solutions are called monopoles (or BPS-monopoles in
honour of Bogomolny–Prasad–Sommerfield) because of their close relation to the Dirac
monopole.

For monopoles with charge k the asymptotic conditions for the Higgs field Φ may be
written in a more precise form:

‖Φ‖ = 1− k

r
+O(

1

r2
) for r = |x| → ∞.

Apart from monopoles, the functional SYMH also has other critical points found by
Taubes [23]. All of them are not stable (i.e., they are saddle points) and have sufficiently
large Morse index (namely, the index μ of a nonminimal critical point of the functional
SYMH(A,Φ) for a nonminimal Yang–Mills–Higgs field with topological charge k is greater
than |k|+ 1).

We have introduced monopoles as solutions of static duality equations on R4. They
can also be obtained from the axis-symmetric solutions of the duality equations in R4

with topological charge k by taking the limit of such solutions for k → ∞.

2.3.2. Examples of monopoles. Identify R3 with the space of pure imaginary quater-
nions so that

x = (x1, x2, x3) ∈ R3 ←→ x = ix1 + jx2 + kx3 ∈ ImH.

The monopole with charge ±1, constructed by Prasad and Sommerfield in [19], has the
form

(2.2) A =

(
1

|x| −
1

sh|x|

)
Im

{
dx · x
|x|

}
, Φ = ±

(
1

|x| −
1

th|x|

)
x

|x| .

An arbitrary (±1)-monopole may be obtained from the one above by making in the last
formula a change of variables x �→ x − x0, where x0 is an arbitrary point of R3. The
obtained solution will depend on 3 real parameters.
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It may be shown that the dimension of the moduli space Mk of monopoles with
charge −k is equal to 4k − 1. There is a construction of Taubes [22] which allows us to
construct a family of monopoles depending on 3k real parameters. Namely, according to
Taubes’s theorem there exists a positive constant d such that for any collection of points
{x1, . . . , xk} in R3 with distance between them greater than d there exists a monopole
(A,Φ) with topological charge −k. The Taubes solution looks approximately like the
sum of BPS-monopoles with centers at given points x1, . . . , xk in the sense that the zeros
of the Higgs field Φ are close to the points x1, . . . , xk and the local topological charge of
Φ in these zeros is equal to −1.

2.3.3. Nahm–Hitchin construction. We can associate with any monopole its spectral
curve. In order to construct it we use the twistor considerations by taking for the twistor
space the tangent bundle TP1 of the Riemann sphere. This bundle may be identified
with the space of oriented lines in R3 if we parameterize such a line by its tangent vector
u and shortest distance vector v.

Associate with a point x ∈ R3 the bundle of oriented lines passing through this point.
It may be identified with the holomorphic section of the tangent bundle TP1 → P1 which
is real (invariant) with respect to the real structure given by the change of orientation of
every line in R3 to the opposite one. In this case we have the following analog of twistor
correspondence:{

point of R3
}
−→

{
bundle of oriented lines passing through this point
≡ holomorphic real section of TP1 → P1

}
.

On the other hand, {
oriented line in R3

}
−→

{
point of TP1

}
.

In contrast with the twistor space CP3 the space TP1 is not compact. But it may

be compactified by replacing the line bundle TP1 → P1 with the bundle T̂P1 → P1 of
tangent projective lines.

The constructed twistor correspondence allows us to apply to monopoles the ideas
and methods developed for the instantons. In particular, the Atiyah–Ward theorem in
the case of monopoles acquires the following form:⎧⎨⎩solutions (A,Φ)

of Bogomolny
equations on R3

⎫⎬⎭
{gauge equivalence} ←→

⎧⎪⎨⎪⎩
equivalence classes of holomorphic vector bundles
of rank 2 on TP1 holomorphically trivial on real
holomorphic sections and provided with a positive
real form

⎫⎪⎬⎪⎭ .

The construction of this correspondence is close to the original Ward construction.
Denote by E → R3 the vector bundle of rank 2 associated with the principal bundle
P → R3. Let ∇ = ∇A be the covariant derivative generated by the connection A, acting
on smooth sections of E. Then the fiber Ẽz of the bundle Ẽ of rank 2 over TP1 at a
point z ∈ TP1 is defined in the following way. Denote by γz the oriented line in R3

corresponding to the point z. The fiber Ẽz consists, by definition, of smooth sections
s ∈ Γ(γz, E) of E over the line γz satisfying the equation

(2.3) (∇γ − iΦ)s = 0 ,

where ∇γ is component of ∇ acting along γz.
Thus, the Bogomolny equation reduces to the family of ordinary differential equations

of the form (2.3) on lines in R3. The main characteristic of this family is its spectral
curve consisting of the points z ∈ TP1 for which the equation (2.3) has an L2-solution
along the line γz.
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We have described the transition from the monopoles to spectral curves. Now we
study the relation between monopoles and Nahm equations. This relation is established
with the help of an infinite-dimensional analogue of ADHM-construction.

The Nahm equations [16] are a system of ordinary differential equations on matrix
functions T1, T2, T3 of a variable t ∈ [0, 2] of the form

(2.4)
dT1

dt
= [T2, T3],

dT2

dt
= [T3, T1],

dT3

dt
= [T1, T2].

It is assumed that the functions Ti(t) extend to meromorphic matrix functions defined
in a complex neighborhood of the segment [0, 2] with only simple poles at the points
t = 0, 2. Moreover, we shall impose on them the reality conditions

(2.5) Ti(z) + T̄i(2− z) = 0, T ∗
i (z) + Ti(z) = 0

and the nondegeneracy condition: the representations of the group SU(2), determined
by the residues of the functions Ti(z) in the poles, should be irreducible.

Now consider, as in ADHM-construction, the quaternion matrix function Δ(x, y) of
homogeneous quaternion coordinates x, y. Its restriction to the space H = R4 has the
form Δ(x) = xC + D. The operator Δ(x) : W → V , mapping a real vector space W
into a quaternion vector space V , in the case of monopoles is an ordinary differential
operator, and the spaces W and V are infinite-dimensional.

Now describe the Nahm construction in more detail. Since the Bogomolny equations
coincide with the duality equations for static Yang–Mills fields which do not depend on
the variable x0, our map Δ(x) should satisfy the following condition:

1) Δ(x + y0) = U(y0)−1Δ(x)U(y0), where y0 �→ U(y0) is a representation of the
group R in the group of quaternion unitary transformations of the space V .

Moreover, in the case of monopoles the same conditions, as in the case of instantons,
should be satisfied, namely:

2) the map Δ∗(x)Δ(x) should be real for all x ∈ H;
3) the map Δ∗(x)Δ(x) should be invertible for all x ∈ H;
4) the kernel of the map Δ∗(x) should have quaternion dimension 1 for all x ∈ H.

Now introduce the space V . Denote by H0 the space L2(0, 2) and define a real struc-
ture on H0 by the formula σ(f)(z) := f̄(2− z). The space V , equal to

V = H0 ⊗ Ck ⊗H,

is a quaternion vector space. For the real subspace W we take

W = {f ∈ H1 ⊗ Rk : f(0) = f(2) = 0},
where H1 is the Sobolev space H1(0, 2).

Denote by e1, e2, e3 the operators of left multiplication by imaginary units i, j, k, re-
spectively, and set e0 = 1. Define the map Δ(x) : W → V as a differential operator of
the form

Δ(x)f =

⎛⎝ 3∑
j=0

xjej

⎞⎠ f + i
df

dz
+ i

3∑
j=1

Tj(z)ejf,

where Tj(z) are (k × k)-matrix functions which are meromorphic in z in a complex
neighborhood of the segment [0, 2] with unique simple poles at its ends. This operator

has the desired form xC+D, where C = I and D = id/dz+i
∑3

j=1 Tjej . The constructed

operator Δ(x) satisfies conditions 1)–4), imposed on it earlier, if the matrix functions Tj

satisfy the Nahm equations together with reality and nondegeneracy conditions. Then
the ADHM-construction, being applied to the operator Δ(x), will give a solution of
Bogomolny SU(2)-equations.
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As it was remarked earlier the Bogomolny equations coincide with the duality equa-
tions for static Yang–Mills fields in R4, i.e., the fields not depending on the variable x0.
On the other hand, the Nahm equations (2.4) are equivalent to the duality equations for
the connection

4∑
μ=0

Tμdx
μ,

where T0 = 0, and T1, T2, T3 depend only on the variable x0 = t. Hence we can consider
the Nahm construction as a transform relating solutions of duality equations, depending
on one variable, to the solutions of duality equations, depending on three variables. Re-
call that ADHM-construction is also a transform relating matrices, which are solutions
of a system of commutation relations, with solutions of the duality equations depend-
ing on four variables. So both constructions may be considered as nontrivial duality
transformations between different kinds of commutation relations.

Part 3. 2-dimensional models

3.1. 2-dimensional Yang–Mills–Higgs model

3.1.1. Yang–Mills–Higgs model on R2. Consider the Yang–Mills–Higgs action on R2

with parameter λ > 0 of the following form:

Sλ
YMH(A,Φ) =

1

2

∫
R2

{
‖F‖2 + ‖DΦ‖2 + λ

4
(‖Φ‖2 − 1)2

}
d2x.

Impose again the asymptotic conditions

‖Φ‖ −→ 1, ‖DΦ‖ −→ 0, ‖F‖ −→ 0

uniformly for |x| → ∞.
We restrict first to the Abelian case, i.e., we shall assume that

A = −iA0dx
0 − iA1dx

1

is a 1-form on R2 with smooth real-valued coefficients A0, A1 and that Φ is a complex
scalar field given by a smooth complex-valued function on R2. Introduce topological
charge given by the formula

k =
1

2π

∫
R2

F.

It can also be defined as the degree of the map of the circle S1
R of sufficiently large radius

R into the topological circle coinciding with the image of Φ(S1
R).

The Euler–Lagrange equations for the action Sλ
YMH have the form⎧⎨⎩

∗d(∗F ) = Φ̄DΦ− ΦDΦ,

�Φ =
λ

2
(|Φ|2 − 1)Φ,

where �Φ = ∗D(∗DΦ).
In the selfdual case (λ = 1) the functional S1

YMH may be rewritten, using the Bogo-
molny transform, in the form

S1
YMH(A,Φ) =

1

2

∫
R2

{
‖DΦ∓ i(∗DΦ)‖2 +

∣∣∣∣∗F ± 1

2
(|Φ|2 − 1)2

∣∣∣∣2
}
d2x,

which implies that

S1
YMH(A,Φ) ≥ π|k|,
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and the equality is attained here if and only if the terms in the brackets vanish. Rewrite
them in the complex form by setting z = x0 + ix1, α = 1

2 (A0 − iA1), ᾱ = 1
2 (A0 + iA1).

Then the local minima of the functional S1
YMH for k ≥ 0 will satisfy the equations⎧⎨⎩

∂̄αΦ = 0 ,

F01+
1

2
(|Φ|2 − 1) = 0 ,

where F01 = ∂0A1 − ∂1A0, ∂̄α = ∂̄ − iᾱ, ∂̄ = ∂/∂z̄.
For k < 0 we obtain analogous equations⎧⎨⎩

∂αΦ = 0 ,

F01−
1

2
(|Φ|2 − 1) = 0 .

Solutions of the first system of equations are called the vortices, and solutions of
the second system are called the anti-vortices. In contrast with the Yang–Mills–Higgs
equations in R3, the local minima of S1

YMH in R2 exhaust all its critical points. It is an
effect of the 2-dimensionality of the considered model.

3.1.2. Theorem of Taubes. A description of solutions of vortex equations was given
by Taubes (cf. [15]). Assume first that k ≥ 0 and {z1, . . . , zk} is an arbitrary collection
of k points in the complex plane some of which may coincide. Denote by kj the multi-
plicity of the point zj in the collection {z1, . . . , zk}. Then there exists a unique (up to
gauge equivalence) C∞-smooth solution (A,Φ) of vortex equations having the following
properties:

1) the set of zeros of Φ coincides precisely with the collections of points {z1, . . . , zk}
(with the same multiplicities) and in a neighborhood of the point zj ,

Φ ∼ cj(z − zj)
kj , cj �= 0;

2) the topological charge k of the solution (A,Φ) is equal to the sum
∑

kj over all
distinct points in the collection {z1, . . . , zk}.

For k < 0 the result is formulated in a similar way; one should only replace Φ with Φ̄
in the first condition and set k equal to −

∑
kj .

Any solution of Euler–Lagrange equations with finite action is gauge equivalent either
to some k-vortex, or |k|-anti-vortex solution depending on the sign of k (cf. [15]). In this
case there is only a Taubes conjecture asserting that for the Abelian Yang–Mills–Higgs
model, governed by the functional Sλ

YMH on R2, in the case λ < 1 it should exist for
any charge k a unique (up to gauge equivalence and translations of R2) critical point
of this functional which is a local minimum. Moreover, all topological charges will be
concentrated in the unique zero of the function Φ and the solution (A,Φ) will be central
symmetric with respect to this zero. For λ > 1 the functional Sλ

YMH should have a unique
critical point which is stable if and only if the topological charge is equal to k = 0,±1.

From some physical considerations we can expect that there exists a duality between
the critical points of the functional Sλ

YMH and (probably singular) solutions of the Euler–

Lagrange equations for the functional S
1/λ
YMH.

3.2. Higgs bundles and Hitchin equations

3.2.1. Hitchin equations. Consider the duality equations in R2 which are obtained
from the duality equations in R4 under the condition that the coefficients of the connec-
tion do not depend on two variables.
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Let

A =

3∑
j=0

Ajdx
j

be a G-connection on R4 with coefficients not depending on the variables x2 and x3.
Denote by A the forms

A = A0dx
0 +A1dx

1

and

ϕ1 := A2, ϕ2 := A3, ϕ := ϕ1 − iϕ2.

Then the selfduality equations for the connection A will rewrite in the form⎧⎨⎩
[∇0+i∇1, ϕ] = 0,

FA =
i

2
[ϕ, ϕ∗],

where FA is the curvature of A on R2 and ∇ is the covariant derivative generated by the
connection A.

Introduce the complex coordinate z = x0 + ix1 on R2 and set

Φ =
1

2
ϕdz, Φ∗ =

1

2
ϕ∗dz̄.

Then the selfduality equations will take the form{
∂̄AΦ = 0 ,

FA+[Φ,Φ∗] = 0 .

Here A is a connection in the principal G-bundle P → C, Φ is a smooth (1, 0)-form

on C with values in the complexified adjoint bundle ad CP , and ∂̄A is the ∂̄-operator of
exterior covariant derivation generated by the (0, 1)-component A0,1 of A. The above
equations, called the Hitchin equations, are conformally invariant so one considers them
on an arbitrary Riemann surface M (however, from now on we shall restrict to the case
of compact Riemann surfaces).

Let G = SU(2), and let E → M be a complex vector bundle of rank 2 associated with
the principal SU(2)-bundle P → M . The Hitchin equations for Riemann surfaces M of
genus 0 and 1 have no nontrivial solutions. On the other hand, such solutions do exist
for Riemann surfaces M of genus g > 1 and will be studied later on in detail.

We close this section with the following remarks. Suppose that the genus of M is
strictly greater than 1 and the bundle E is decomposable, i.e., E = L ⊕ L∗ for some
holomorphic line bundle L. Then the Hitchin equations take the form of the vortex
equation

F1 + 2(1− ‖α‖2)ω = 0 ,

where α is a quadratic differential on M , ω is the Kähler form on M normalized by the
condition

∫
M

ω = 2π, and F1 is the curvature of a U(1)-connection on L. A unique for
given α solution of the last equation determines on M the metric of constant negative
curvature −4. Moreover, the space of quadratic differentials on M , parameterizing the
set of all solutions of this equation, is naturally diffeomorphic to the Teichmüller space
of metrics of constant negative curvature on M .

We do not know if there is an analog of ADHM-construction for Hitchin equations. If
such constructions do exist, then, by analogy with the 4-dimensional and 3-dimensional
cases, it should yield a nontrivial duality transformation between solutions of Hitchin
equations.
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3.2.2. Higgs bundles. Let M be a compact Riemann surface of genus g ≥ 2, and let
E → M be a Hermitian vector bundle provided with a smooth Hermitian metric H.
Suppose that E is provided with a holomorphic structure determined by the ∂̄-operator
∂̄E . To emphasize the availability of the holomorphic structure we shall denote this
holomorphic bundle by (E, ∂̄E) and the sheaf of its holomorphic sections by E . We shall
often identify (E, ∂̄E) with the sheaf E .

If S ⊂ E is a holomorphic subbundle with quotient sheaf Q, then the smooth decom-
position E = S ⊕Q allows us to represent ∂̄E in the form

(3.1) ∂̄E =

(
∂̄S β
0 ∂̄Q

)
,

where β ∈ Ω0,1(M,Hom(Q,S)) is called the 2nd fundamental form of subbundle S. In
this case S can be given by the orthogonal projection π : E → S having the following
properties:

(3.2) π2 = π, π∗ = π and (I − π)∂̄E = 0.

These conditions imply that trπ = const and β = −∂̄Eπ. So we have a bijective corre-
spondence between{

holomorphic sub-
bundles in E

}
←→

{
orthogonal projectors in E satisfying
conditions (3.2)

}
.

Suppose that the bundle E is provided with a connection A with associated covariant
derivative ∇ ≡ ∇A compatible with the Hermitian structure. Such a connection is called
Hermitian and satisfies the condition

d〈s1, s2〉H = 〈dAs1, s2〉H + 〈s1, dAs2〉H ,

where dA is the exterior covariant differential generated by the connection A and s1, s2
are smooth sections of E. The curvature FA of the Hermitian connection A is given by a
2-form FA ∈ Ω2(M, adE), where adE denotes the bundle of Hermitian endomorphisms
of E. If the connection A induces a fixed connection in the bundle detE (which is

often assumed in the sequel), then ad0E (resp., adC0E) denotes the bundle of traceless
skew-Hermitian (resp., complex traceless) endomorphisms of E.

Holomorphic line bundles L → M are determined, as it is known, by the divisors of
the form

D =

N∑
i=1

mizi,

where mi, i = 1, . . . , N , are integers, and z1, . . . , zN are points of M . The complex line
bundle, determined by the divisor D, is denoted by L = O(D), and its degree degL,

equal to c1(L), coincides with the degree of the divisor degD =
∑N

i=1 mi. The degree of
a vector bundle E is by definition

degE := deg(detE).

We call by the slope of a holomorphic vector bundle E the quantity

μ(E) = degE/rankE.

In the case when the line bundle L = O(D) has a nonzero holomorphic section, the
corresponding divisor is linearly equivalent to an effective divisor (for which all mi ≥ 0),
so degL ≥ 0.

We introduce the contraction operator Λ : Ω2(M) → Ω0(M) determined by the equal-
ity

Λ(fω) = f
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for any smooth function f on M . This definition is extended to forms from Ω2(M, adE).
If S is a holomorphic vector subbundle of a Hermitian holomorphic vector bundle

E , given by the orthogonal projector π, then there is an explicit formula for its degree,
analogous to Chern–Weil formula

(3.3) degS =
1

2π

∫
M

tr
(
πiΛF(∂̄E ,H)

)
ω − 1

2π

∫
M

|β|2ω.

Definition 1. A holomorphic vector bundle E is called stable (resp., semistable) if for
any holomorphic vector subbundle S ⊂ E of rank 0 < rankS < rank E the following
inequality holds:

μ(S) < μ(E) (resp., μ(S) ≤ μ(E)).
The bundle E is called polystable if it is the direct sum of stable bundles with the same
slope.

It is evident that all holomorphic line bundles are stable. Moreover, if a holomorphic
vector bundle E is (semi)stable and L is a holomorphic line bundle, then the bundle E⊗L
is also (semi)stable.

The extension of a holomorphic vector bundle S via a holomorphic subbundle Q is
a holomorphic vector bundle E which can be included into the exact sequence of sheaf
homomorphisms

(3.4) 0 −→ S −→ E −→ Q −→ 0.

The sequence (3.4) splits if there exists a map Q → E which is the right inverse to the
projection E → Q.

A connection ∇ is called projectively flat if

iΛF∇ = μI,

where μ = const. In this case the relation μ = μ(E) holds.

Theorem 4 (Narasimhan–Seshadri [17]). A holomorphic vector bundle E → M admits
a projectively flat connection if and only if E is polystable.

Definition 2. A Higgs bundle is a pair (E ,Φ) consisting of a holomorphic vector bundle
E and holomorphic section Φ of the bundle K ⊗ adE, where K is the canonical bundle
of the manifold M . A pair (E ,Φ) is called stable (resp., semistable) if for any Φ-invariant
holomorphic subbundle S ⊂ E of rank 0 < rankS < rank E the following inequality
holds:

μ(S) < μ(E) (resp., μ(S) ≤ μ(E)).
A Higgs bundle (E ,Φ) is called polystable if it is the direct sum of stable Higgs bundles
with the same slope.

Problem 1. Let f : (E1,Φ1) → (E2,Φ2) be a holomorphic homomorphism of Higgs
bundles, i.e., the relation Φ2f = fΦ1 holds. Suppose that the bundles (Ei,Φi), i = 1, 2,
are semistable and μ(E1) > μ(E2). Then f ≡ 0. If we have the equality μ(E1) = μ(E2)
and one of the bundles is stable, then either f ≡ 0 or f is an isomorphism.

A Higgs subbundle in a Higgs bundle (E ,Φ) is a Φ-invariant holomorphic subbundle
S ⊂ E . The restriction ΦS := Φ|S converts this subbundle into a Higgs bundle (S,ΦS)
for which the embedding S ↪→ E is a map of Higgs bundles. In an analogous way one
can define the structure of Higgs bundle on the quotient Q = E/S.
Definition 3. Let (E ,Φ) be a Higgs bundle. The Harder–Narasimhan filtration on (E ,Φ)
(for short, HN-filtration) is a filtration by Higgs subbundles of the form

0 = (E0,Φ0) ⊂ (E1,Φ1) ⊂ · · · ⊂ (El,Φl) = (E ,Φ),
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in which the quotients (Qi,ΦQi
) = (Ei,Φi)/(Ei−1,Φi−1) are semistable. It is also required

that the following inequalities hold:

μ(Qi) > μ(Qi−1).

The associated graded object

grHN (E ,Φ) =
l⊕

i=1

(Qi,ΦQi
)

in this case is uniquely determined by the isomorphism class of the bundle (E ,Φ).
The collection �μ(E ,Φ) = (μ1, . . . , μn) of n numbers, where each of the μi’s is repeated

as many times as the rank of Qi, is called the HN-type (Harder–Narasimhan type) of the
Higgs bundle (E ,Φ). It is an important invariant of Higgs bundles.

3.2.3. The moduli spaces of Higgs bundles. Denote by AE the space of Hermitian
connections in a Hermitian vector bundle E → M of rank n. It is an infinite-dimensional
affine space with local model Ω1(M, adE).

The group of gauge transformations is by definition

GE = {g ∈ Ω0(M,EndE) : gg∗ = I}
(in the case when the bundle detE is fixed we impose on GE the additional condition
det g = 1). This group acts on AE by sending the covariant differential dA to the new
covariant differential

dg(A) = g ◦ dA ◦ g−1.

The space AE may also be considered as the space of complex structures on E → M .
Indeed, from every Hermitian connection on E → M we can construct a ∂̄-operator given
by the (0,1)-component of the connection. This operator determines a complex structure
on E since the (0,2)-component of the curvature vanishes in the case of Riemann surfaces.
On the other hand, a ∂̄-operator on E → M determines a unique Hermitian connection
on E with the (0,1)-component equal to the original ∂̄-operator. Such a connection is
called the Chern connection. The corresponding covariant differential dA decomposes
into the sum of two operators d′A and d′′A sending sections of E to forms from Ω1,0(M,E)
and Ω0,1(M,E), respectively.

Considering AE as the space of complex structures on E → M , we can define an action
of the complexified group of gauge transformations GC

E on AE . Namely, if the original
connection corresponds to the ∂̄-operator ∂̄E = d′′A, then the transformed connection
g(A) will correspond to the ∂̄-operator g ◦ ∂̄E ◦ g−1.

The space of Higgs bundles, by definition, is identified with

BE = {(A,Φ) ∈ AE × Ω0(M,K ⊗ ad CE) : d′′AΦ = 0},
and its subspace, consisting of semistable Higgs bundles, is denoted by Bss

E .

Definition 4. The moduli space of semistable Higgs bundles of rank n (with fixed detE)
on M is identified with the categoric quotient

M
(n)
E = Bss

E //GC

E .

Recall the definition of the categorical quotient. LetX be a complex manifold provided
with a holomorphic action of a complex Lie group GC. Introduce on X the following
equivalence relation: x1 ∼ x2 if and only if f(x1) = f(x2) for all holomorphic functions
f invariant under the action of the group GC. Denote by π : X → X/ ∼ the natural
projection. We refer to the categorical quotient X//GC as the Hausdorff topological
space X/ ∼ provided with the structure sheaf O(X//GC) defined in the following way.
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For the arbitrary open subset U ⊂ X/ ∼ the algebra O(X//GC)(U) consists of con-
tinuous complex-valued functions on U which pull-back by the map π to holomorphic
GC-invariant functions on π−1(U).

In the case when X is a Stein space and the group GC is reductive (i.e., it coincides
with the compexification of a real compact Lie group), the space X//GC is also Stein and
the projection π is an open holomorphic map. Moreover, every fibre of π is connected
and contains a unique closed orbit. Note that these assertions are, generally speaking,
not true for the usual quotient coinciding with the space of orbits X/ ∼.

The quotient GC

E/GE may be identified with the space of Hermitian metrics on E.
Hence we can study the behaviour of various functionals on the orbits of the group GC

E in
AE/GE by two methods: either by changing the complex structure ∂̄E , simultaneously
fixing the Hermitian metric H, or by changing the Hermitian metric H, simultaneously
fixing the complex structure ∂̄E .

We introduce the following notation:

D′′ = d′′A +Φ, D′ = d′A +Φ∗.

The Kähler form ω and Hermitian metric H on E determine an L2-inner product on E
and EndE. For this inner product (in the case Φ = 0) we have the following Kähler
identities :

(D′′)∗ = −i[Λ, D′], (D′)∗ = i[Λ, D′′].

The infinitesimal structure of the moduli space is determined by the deformation
complex C(A,Φ) which is obtained by the differentiation of the condition d′′AΦ = 0 and
the action of the group of gauge transformations

0 −→ Ω0(M, ad CE)
D′′
−→ Ω1,0(M, ad CE)⊕ Ω0,1(M, ad CE)

D′′
−→ Ω1,1(M, ad CE) −→ 0.

The vanishing (D′′)2 = 0 is provided by the condition d′′AΦ = 0.
A Higgs bundle is called simple if H0(C(A,Φ)) ∼= C (or zero in the case of a fixed

bundle detE). Note that by Serre duality H0(C(A,Φ)) ∼= H2(C(A,Φ)). A stable Higgs
bundle is necessarily simple.

Proposition 1. For any simple Higgs bundle (E ,Φ), provided with a Hermitian con-

nection A, the moduli space M
(n)
E at a point (A,Φ) is a smooth complex manifold of

dimension (n2 − 1)(2g − 2), and its tangent space at this point is identified with

H1(C(A,Φ)) ∼= {(ϕ, β) : d′′Aϕ = −[Φ, β], (d′′A)
∗β = iΛ[Φ∗, ϕ]}.

For a given Higgs bundle (E ,Φ) the coefficient of λn−i in the decomposition det(λ+Φ)
is a holomorphic section of the bundle Ki, i = 1, . . . , n. (In the case of a fixed detE
we have trΦ = 0, so the decomposition starts from i = 2). These sections are invariant
under the action of the group GC

E by conjugations, so the Hitchin map

h : M
(n)
E −→

n⊕
i=1

H0(M,Ki)

is correctly defined and is a proper map.

3.2.4. Hitchin–Kobayashi correspondence. The Hitchin equation for a Higgs bundle
(E ,Φ) with trivial bundle E has the form

(3.5) FA + [Φ,Φ∗] = 0 ,
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where Φ is a (1,0)-form with values in EndE. In the case of the bundles E of nonzero
degree this equation takes on the form

(3.6) f(A,Φ) := iΛ(FA + [Φ,Φ∗]) = μ,

where μ = μ(E).
As we have pointed out before, equation (3.5) may be considered from two points of

view: either as an equation on the Hermitian metric H with foxed complex structure ∂̄E ,
or as an equation on the complex structure ∂̄E with fixed metric H.

Equation (3.5) is an equation on the minima of the Yang–Mills–Higgs functional given
on holomorphic pairs (A,Φ) by the formula

YMH(A,Φ) =

∫
M

‖FA + [Φ,Φ∗]‖2ω.

The Euler–Lagrange equations for this functional have the form

(3.7) dAf(A,Φ) = 0, [Φ, f(A,Φ)] = 0.

The metric, for which these equations hold, is called critical. For such a metric the
bundle (E ,Φ) splits into the direct sum of Higgs bundles being the solutions of equation
(3.5) with different slopes.

Proposition 2. If a Higgs bundle (E ,Φ) admits a metric satisfying equation (3.5), it is
polystable.

Proof. Suppose that S ⊂ E is a proper Φ-invariant subbundle. Denote by π the operator
of an orthogonal projection to S and by β = −∂̄Eπ its 2nd fundamental form. Since S
is Φ-invariant we have (I − π)Φπ = 0, i.e., Φπ = πΦπ and πΦ∗ = πΦ∗π. It implies, in
particular, that

tr(π[Φ,Φ∗]) = tr(πΦΦ∗)− tr(πΦ∗Φ) = tr(πΦΦ∗)− tr(ΦπΦ∗)

= tr(πΦΦ∗π)− tr(ΦπΦ∗π) = tr(πΦΦ∗π)− tr(πΦπΦ∗π)

= tr(πΦ(I − π)Φ∗π) = tr(πΦ(I − π)(I − π)Φ∗π) = tr(πΦ(I − π)(πΦ(I − π)∗),

whence tr(πiΛ[Φ,Φ∗]) = |πΦ(I − π)|2. Now from equation (3.5) and formula (3.3) for
the degree we get

degS = rank(S)μ(E)− 1

2π

(
‖πΦ(I − π)‖2 + ‖β‖2

)
,

which implies that μ(S) ≤ μ(E). Moreover, the equality here is possible if and only
if the two last terms from the right in the last formula vanish; in other words, if the
holomorphic structure and Higgs field split. We prove the assertion of the proposition
by continuing this process. �

Theorem 5 (Hitchin–Simpson). If a Higgs bundle (E ,Φ) is polystable, then it admits a
metric satisfying equation (3.5).

Note that in the case of line bundles L the result is proved sufficiently easy. Indeed,
in this case the term [Φ,Φ∗] vanishes so the equation (3.6) is equivalent to the condition
of existence of a metric of constant curvature on L. Let H be a Hermitian metric on E.
Consider the conformally equivalent metric Hϕ = eϕH. For it

F(∂̄L,Hϕ) = F(∂̄L,H) + ∂∂̄ϕ,

and the problem of determination of the desired metric is reduced to the problem of
finding a function ϕ satisfying the equation

Δϕ = 2iΛF(∂̄L,H) − 2degL.
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It has a solution if and only if the integral of the right-hand side vanishes, which is
evidently true in the considered case.

The proof of the theorem in the general case uses the following argument due to
Donaldson [9]. Introduce for a Hermitian endomorphism ϕ the quantities

ν(ϕ) =

n∑
j=1

|λj |, N2(ϕ) +

∫
M

ν2(ϕ)
ω

2π
,

where {λj} are the eigenvalues of ϕ. Consider the functional

J(A,Φ) = N
(
f(A,Φ) − μ(E)

)
.

The main role in the proof of Hitchin–Simpson theorem is played by the following
lemma.

Lemma 1. In every orbit of the complex group J C

E of gauge transformations there exists
a sequence of points {Aj ,Φj} having the following properties:

1) the sequence {Aj ,Φj} is minimizing for the functional J ;
2) sup |f(Aj ,Φj)| are bounded uniformly with respect to j;

3) L2-norms ‖dAj
f(Aj ,Φj)‖L2 and ‖[f(Aj ,Φj),Φj ]‖L2 tend to zero for j → ∞.

Using this lemma and the Uhlenbeck compactness theorem [25] we can construct a
Higgs bundle with the metric satisfying Hitchin equation (3.5).

The proof of this lemma theorem employs the flow generated by the Yang–Mills–Higgs
functional.

Definition 5. The Yang–Mills–Higgs flow for a pair (A,Φ) is the flow deteremined by
the system of equations ⎧⎪⎨⎪⎩

∂A

∂t
= −d∗A(FA + [Φ,Φ∗]),

∂Φ

∂t
= [Φ, iΛ(FA + [Φ,Φ∗])].

These equations should be supplemented by the condition d′′AΦ = 0 which plays the
role of constraint for the given system since it is preserved under the action of the
complex group of gauge transforms. The above equations define the L2-gradient flow for
the Yang–Mills–Higgs functional. Moreover, we have the following lemma.

Lemma 2. For all t ≥ 0,

d

dt
Y MH(A,Φ) = −2‖dAf(A,Φ)‖2L2 − 4‖[Φ, f(A,Φ)]‖2L2 .

This lemma implies that the Yang–Mills–Higgs functional decreases along the flow;
moreover, the following inequality holds:∫ ∞

0

dt
{
2‖dAf(A,Φ)‖2L2 + 4‖[Φ, f(A,Φ)]‖2L2

}
≤ YMH(A0,Φ0).

Denote by Bmin
E the set of Higgs bundles satisfying Hitchin equation (3.5). The intro-

duced Yang–Mills–Higgs flow determines an infinite-dimensional Morse theory in which
the points Bmin

E correspond to the minima of the Yang–Mills–Higgs functional and critical
metrics to the critical points of higher Morse indices. In fact we have the following,

Theorem 6 (Wilkin [29]). The Yang–Mills–Higgs functional determines a GE-invariant
deformation retraction of the space Bss

E to the space Bmin
E .
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3.3. Harmonic maps and σ-models

3.3.1. Harmonic maps. Let Mm and Nn be Riemannian manifolds provided with Rie-
mannian metrics g and h, respectively. Consider a smooth map ϕ : M → N . Its energy
is the functional of the form

E(ϕ) =
1

2

∫
M

|dϕ(p)|2vol,

where dϕ is the differential of the map ϕ and vol is the volume element of the Riemannian
metric g.

Choose the local coordinates (xi) at a point p ∈ M and the local coordinates (uα) at
its image q = ϕ(p) ∈ N . In these coordinates the local expression for |dϕ(p)|2 will have
the form

|dϕ(p)|2 =
∑
i,j

∑
α,β

gij
∂ϕα

∂xi

∂ϕβ

∂xj
hαβ ,

where ϕα = ϕα(x) are the components of the map ϕ and where gij is the matrix inverse
to the matrix (gij) of the metric tensor g. The volume element vol is given in the chosen
local coordinates by the formula

vol ∼
√
|det(gij)|dx1 ∧ · · · ∧ dxn.

The differential of the map ϕ : M → N may also be defined in a more invariant way
as a section dϕ of the bundle

T ∗M ⊗ ϕ−1(TN) −→ M,

where ϕ−1(TN) is the inverse image of the tangent bundle TN under the map ϕ. By
definition, the fiber ϕ−1(TN)p at a point p ∈ M is the tangent space Tϕ(p)N to N at
q = ϕ(p).

The bundle T ∗M ⊗ ϕ−1(TN) is provided with a natural Riemannian metric induced
by the metrics g and h.

Problem 2. Find an explicit expression for this metric in local coordinates.

In the case when M and N are open subsets of Euclidean spaces Rm and Rn, respec-
tively, the norm of the differential of the map ϕ = (ϕ1, . . . , ϕn) : M → N is given by the
expression

|dϕ(x)|2 =

m∑
i=1

n∑
α=1

∣∣∣∣∂ϕα

∂xi

∣∣∣∣2 =

m∑
i=1

∣∣∣∣ ∂ϕ∂xi

∣∣∣∣2 ,

while the energy E(ϕ) is given by the Dirichlet integral

E(ϕ) =
1

2

∫
M

m∑
i=1

∣∣∣∣ ∂ϕ∂xi

∣∣∣∣2 dx1 ∧ · · · ∧ dxm.

The extremals of this functional coincide with the maps ϕ = (ϕα) with components ϕα

being harmonic functions.
A smooth map ϕ : M → N of Riemannian manifolds is called harmonic if it is

extremal for the energy functional E(ϕ) with respect to smooth variations of ϕ with
compact support.

We shall now find the Euler–Lagrange equations for the functional E(ϕ). Write them
first in the local coordinates (xi) at a point p ∈ M and (uα) at the point q = ϕ(p) ∈ N .
Suppose that the Riemannian connections M∇ of the manifoldM and N∇ of the manifold
N are given in these coordinates by the Kristoffel symbols

M∇ ∼ MΓk
ij and N∇ ∼ NΓγ

αβ ,
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respectively. In these coordinates the Euler–Lagrange equations for the functional E(ϕ)
take on the form

∑
i,j

gij

⎧⎨⎩ ∂2ϕγ

∂xi∂xj
−
∑
k

MΓk
ij

∂ϕγ

∂xk
+
∑
α,β

NΓγ
αβ

∂ϕα

∂xi

∂ϕβ

∂xj

⎫⎬⎭
= ΔMϕγ +

∑
i,j

gij
∑
α,β

NΓγ
αβ

∂ϕα

∂xi

∂ϕβ

∂xj
= 0, γ = 1, . . . , n.

The operator

ΔM =
∑
i,j

gij

(
∂2ϕγ

∂xi∂xj
−
∑
k

MΓk
ij

∂ϕγ

∂xk

)
is called the Laplace–Beltrami operator of the manifold M determined by the metric g.
It is a linear differential operator of the 2nd order in ϕγ . The term∑

i,j

gij
∑
α,β

NΓγ
αβ

∂ϕα

∂xi

∂ϕβ

∂xj
,

entering Euler–Lagrange equations, depends on the geometry of the manifold N , i.e., on
the geometry of the image of the map ϕ, and is given by the expression quadratic in
derivatives of the map ϕ.

For N = Rn the Euler–Lagrange equations, written above, convert into the system
of Laplace–Beltrami equations on the components ϕγ of the map ϕ with solutions being
harmonic functions ϕγ on M .

We now write the Euler–Lagrange equations for the energy of a map ϕ : M → N in
a more invariant way. Recall that the differential dϕ may be considered as a section of
the bundle

T ∗M ⊗ ϕ−1(TN) −→ M.

The Riemannian connections M∇ and N∇ generate a natural connection∇ in this bundle.
In its terms the Euler–Lagrange equations may be written in a concise form

tr(∇dϕ) = 0.

The vector field τϕ := tr(∇dϕ) is called the stress field of ϕ.
We now turn to the case of almost complex manifolds which is more important to us.

We shall assume that the Riemannian metric g on the almost complex manifold (M,J)
is Hermitian, i.e., it is compatible with the almost complex structure J in the sense that
g(JX, JY ) = g(X,Y ) for any vector fields X,Y ∈ TM . An almost complex manifold
(M,J), provided with the Hermitian metric g, is called almost Hermitian. In the case
when the almost complex structure J is integrable, such a manifold is called Hermitian.

We introduce in the almost Hermitian manifold (M, g, J) the form ω by setting
ω(X,Y ) = g(JX, Y ) for X,Y ∈ TM . A manifold M is called almost Kähler if the
form ω is closed. In this case ω is called the Kähler form. If the form ω is also nondegen-
erate (in this case ω determines a symplectic structure on M) and the almost complex
structure is integrable, then such a manifold (M, g, J, ω) is called Kähler.

Let ϕ : M → N be a smooth map of almost complex manifolds. It is called almost
holomorphic or pseudoholomorphic if its tangent map ϕ∗ : TM → TN commutes with
almost complex structures, i.e.,

ϕ∗ ◦ MJ = NJ ◦ ϕ∗,
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where MJ (resp., NJ) is an almost complex structure on M (resp., N). The map ϕ is
called almost anti-holomorphic if ϕ∗ anti-commutes with almost complex structures, i.e.,

ϕ∗ ◦ MJ = −NJ ◦ ϕ∗.

Let ϕ : M → N be a smooth map of almost complex manifolds. We extend its tangent
map ϕ∗ : TM → TN complex-linearly to a map ϕ∗ : TCM → TCN of complexified
tangent bundles. The obtained map, in accordance with decompositions

TCM = T 1,0M ⊕ T 0,1M, TCN = T 1,0N ⊕ T 0,1N,

may be represented in the block form with blocks given by four operators:

∂′ϕ :T 1,0M −→ T 1,0N, ∂
′′
ϕ : T 0,1M −→ T 1,0N,

∂′ϕ̄ = ∂′′ϕ :T 1,0M −→ T 0,1N, ∂
′′
ϕ̄ = ∂′ϕ : T 0,1M −→ T 0,1N.

If we identify ϕ∗ with differential dϕ, considered as a section of the bundle

T ∗,CM ⊗ ϕ−1(TCN) −→ M,

then the introduced operators will admit an analogous interpretation as sections of the
corresponding subbundles of the above bundle. For example, the operator ∂′ϕ may be
identified with a section of the bundle

Λ1,0M ⊗ ϕ−1(T 1,0N).

In terms of the introduced operators the map ϕ is almost holomorphic (resp., almost
anti-holomorphic) if

∂
′′
ϕ = 0 (resp., ∂′ϕ = 0).

In the case when the manifolds M and N are almost Hermitian the energy of a smooth
map ϕ : M → N is represented as the sum

E(ϕ) = E′(ϕ) + E′′(ϕ),

where

E′(ϕ) =

∫
M

|∂′ϕ|2vol, E′′(ϕ) =

∫
M

|∂′′ϕ|2vol.

Using this decomposition, the criterion of holomorphicity of the map ϕ may be reformu-
lated in the following way: ϕ is holomorphic (resp., anti-holomorphic) ⇐⇒ E′′(ϕ) = 0
(resp., E′(ϕ) = 0).

We can ask if the (anti)holomorphic maps of almost Hermitian manifolds are auto-
matically harmonic. The answer to this question is positive for compact almost Kähler
manifolds.

Let ϕ : M → N be a smooth map of compact almost Kähler manifolds. Then the
quantity

k(ϕ) = E′(ϕ)− E′′(ϕ)

depends only on the homotopy class of the map ϕ. Since

E(ϕ) = 2E′(ϕ)− k(ϕ) = 2E
′′
(ϕ) + k(ϕ) ,

it implies that the critical points of the functionals E(ϕ), E′(ϕ), and E′′(ϕ) in this case
coincide and

E(ϕ) ≥ |k(ϕ)|.
Hence, (anti)holomorphic maps ϕ realize absolute minima of the energy E(ϕ) in a given
topological class: for k(ϕ) ≥ 0 the minima are realized on almost holomorphic maps

with E
′′
(ϕ) = 0; for k(ϕ) ≤ 0 they are realized on almost anti-holomorphic maps with

E′(ϕ) = 0.
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In conclusion we consider in more detail the case of harmonic maps from Riemann
surfaces to Riemannian manifolds. Let ϕ : M → N be a smooth map from a Riemann
surface M into a Riemannian manifold N . The tangent map ϕ∗ : TM → TN may be
extended complex-linearly to a map ϕ∗ : TCM → TCN of complexified tangent bundles
and identified with the section dϕ of the bundle

T ∗,CM ⊗ ϕ−1(TCN) −→ M.

So the differential dϕ may be represented as the sum

dϕ = δϕ+ δ̄ϕ,

where δϕ is a section of the bundle Λ1,0M ⊗ϕ−1(TCN) and where δ̄ϕ is a section of the
bundle Λ0,1M ⊗ ϕ−1(TCN).

Denote, as before, by ∇ the natural connection on the bundle T ∗M ⊗ ϕ−1(TN),
generated by the Riemannian connections M∇ and N∇, and extend it complex-linearly
to the complexified bundle T ∗,CM ⊗ ϕ−1(TCN). Introduce the operators, acting on
sections of this bundle, which in terms of the local complex coordinate z on M are
defined in the following way:

δ := ∇∂/∂z , δ̄ := ∇∂/∂z̄ .

Then the condition of harmonicity of the map ϕ : M → N will be written in the form

δ̄δϕ = ∇∂/∂z̄(δϕ) = ∇∂/∂z̄(∇∂/∂zϕ) = 0

or in the equivalent form

δδ̄ϕ = ∇∂/∂z(δ̄ϕ) = ∇∂/∂z(∇∂/∂z̄ϕ) = 0.

In the case when the manifold N is Kähler, the obtained harmonicity conditions may
be further simplified by using the relations

δϕ = ∂′ϕ+ ∂′′ϕ, δ̄ϕ = ∂′′ϕ+ ∂′ϕ.

Since for a Kähler manifold N the connection N∇ preserves the decomposition TCN =
T 1,0N ⊕T 0,1N into the direct sum of (1, 0)- and (0, 1)-subspace (why?), the harmonicity
condition can be rewritten in the form

δ̄∂′ϕ = 0 ⇔ δ∂′′ϕ = 0.

3.3.2. Example: Harmonic maps of the Riemann sphere into itself. We start
with the following problem arising in the theory of ferromagnetism. Suppose that at any
point x = (x1, x2) of the Euclidean plane R2 it is given a vector ϕ(x) ∈ R3 of the unit
length smoothly depending on x. In other words, it is given a smooth map ϕ : R2 → S2,
x �→ ϕ(x), of the plane R2 into the unit sphere S2 ⊂ R3. The energy of the map ϕ is
given by the Dirichlet integral

E(ϕ) =
1

2

∫
R2

|dϕ|2dx1dx2,

where |dϕ|2 =
∣∣∣ ∂ϕ
∂x1

∣∣∣2 + ∣∣∣ ∂ϕ
∂x2

∣∣∣2.
In order to guarantee the finiteness of the energy E(ϕ) < ∞ it is natural to impose

on ϕ the asymptotic condition

ϕ(x) −→ ϕ0 uniformly for |x| → ∞,

where ϕ0 is a fixed point of S2. Under this condition the map ϕ : R2 → S2 will extend
to a continuous map

ϕ : S2 = R2 ∪ {∞} −→ S2.
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Such maps ϕ : S2 → S2 have a topological invariant, namely the degree of the map given
by the formula

degϕ =

∫
R2

ϕ∗ω,

where ω is the normalized volume form on the sphere:
∫
S2 ω = 1 and ϕ∗ω is the preimage

of ω under the map ϕ.
Consider the following problem: find all extremals of the functional E(ϕ) in the class

of smooth maps ϕ : R2 → S2 with finite energy and given degree k = degϕ.
To solve this problem it is convenient to introduce the complex coordinate z = x1+ix2

in the definition domain R2 ≈ C and stereographic complex coordinate w in the image
S2 \ {∞}. In these coordinates the expression for the energy of the map ϕ = w(z) will
take the form

E(ϕ) = 2

∫
C

|∂w/∂z|2 + |∂w/∂z̄|2
(1 + |w|2)2 |dz ∧ dz̄|,

while the formula for the degree ϕ converts into

degϕ =
1

2π

∫
C

|∂w/∂z|2 − |∂w/∂z̄|2
(1 + |w|2)2 |dz ∧ dz̄|.

Comparing the last two formulas we see that

E(ϕ) ≥ 4π|degϕ|.

Moreover, the equality here can be attained only in the following cases:

• if k = degϕ ≥ 0, then for ∂w/∂z̄ ≡ 0, i.e., on holomorphic functions ϕ = w(z);
• if k = degϕ < 0, then for ∂w/∂z ≡ 0, i.e., on anti-holomorphic functions ϕ =
w(z).

Hence, holomorphic functions ϕ = w(z) realize minima of the energy E(ϕ) in topo-
logical classes with k ≥ 0, while anti-holomorphic maps ϕ = w(z) realize minima of the
energy E(ϕ) in topological classes with k < 0. For minimizing maps ϕ the value of the
energy E(ϕ) is equal to 4π|k|.

Let us find concrete formulas for minimizing maps. Suppose for definiteness that
k = degϕ > 0. Using the invariance of E(ϕ) with respect to rotations of the sphere S2

in the image, fix the asymptotic value ϕ0 setting it equal to ϕ0 = w0 = 1.
We have to describe the holomorphic maps of the Riemann sphere S2 = R2 ∪ {∞}

into itself having degree k and equal to 1 at infinity. Such maps are given by rational
functions of the form

ϕ = w(z) =

k∏
j=1

z − aj
z − bj

,

where aj �= bj are arbitrary complex numbers. Analogous descriptions admit the anti-
holomorphic maps minimizing E(ϕ) for k < 0.

Note that the space of solutions of our problem depends on 4k real parameters (or
4k + 2 real parameters if we add rotations of the sphere S2 in the image).

We have described all local minima of the energy functional E(ϕ).

Problem 3. Prove that the energy functional E(ϕ) has no other extremals apart from
local minima. It is the effect of the 2-dimensionality of the considered problem.

3.3.3. Twistor interpretation of harmonic maps. In Section 1.2.5 we have con-
structed for arbitrary even-dimensional Riemannian manifold N the twistor bundle

π : Z = J (N) −→ N
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and provided the twistor space Z with almost complex structure J 1. In this section we
demonstrate how one can use this twistor bundle to solve the problem of construction of
harmonic maps from compact Riemann surfaces into Riemannian manifolds.

Recall that according to the Penrose twistor program [18] any problem of Riemannian
geometry on manifold N should reduce to some problem of complex geometry on its
twistor space Z = J (N). If we believe in this Penrose thesis, then we can suppose that
harmonic maps ϕ : M → N from a compact Riemann surface M to N should arise from
the pseudoholomorphic maps ψ : M → (Z,J 1) as projections of the latter maps to N ,
i.e., ϕ = π ◦ ψ:

Z = J (N)

π

��
M

ψ
���

�
�

�
�

ϕ
�� N

This is almost true. It turns out that the projections of pseudoholomorphic maps ψ :
M → (Z,J 1) to N indeed satisfy differential equations of 2nd order on N . However,
these equations are not harmonic but are ultrahyperbolic, i.e., equations of harmonic type
but with the “wrong” signature (n, n) instead of the required signature (2n, 0).

So in order to construct harmonic maps ϕ : M → N as projections of pseudoholomor-
phic maps ψ : M → Z, we should change the definition of the almost complex structure
on the twistor space Z = J (N).

Namely, in terms of the vertical-horizontal decomposition

TJ (N) = V ⊕H

the required almost complex structure J 2 on J (N) should be defined as

J 2 = (−J v)⊕ J h.

This almost complex structure on J (N) was introduced by Eells and Salamon [11], and
precisely this structure, as we shall see, is responsible for the twistor interpretation of
harmonic maps.

Before we switch to the construction of harmonic maps as projections of pseudohol-
morphic ones, consider the problem of integrability of the introduced almost complex
structures J 1 and J 2.

We have the following Rawnsley theorem [20]: the almost complex structure J 1 on
the bundle J (N) is integrable if and only if N is conformally flat, i.e., N is conformally
equivalent to a flat space. Recall that a map ϕ : (M, g) → (N, h) of Riemannian manifolds
is called conformal if the induced metric ϕ∗h on M is conformally equivalent to the
Riemannian metric g of the manifold M , i.e., ϕ∗h = λg for some smooth positive function
λ on M .

Concerning the almost complex structure J 2 on J (N), it is never integrable. We
can explain this fact in the following way. Using the definition of the almost complex
structure J 2, it is not difficult to show that if it would be integrable, then all local J 2-
holomorphic curves f : U → J (N) should be horizontal, i.e., their tangent spaces should
belong to the horizontal distribution H. On the other hand, if (J (N),J 2) would be a
complex manifold, then it should be possible to issue a local holomorphic curve on it in
any complex tangent direction.

Taking into account the nonintegrability of the almost complex structure J 2 there
might be doubts if it could be useful for the description of harmonic maps. Indeed,
the nonintegrable almost complex structures may be quite “bizarre”—for example, they
may have even locally no nonconstant holomorphic functions. However, in the considered
problem we have to deal, fortunately, not with holomorphic functions f : Z → C on the
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twistor space Z, but with a dual object, namely holomorphic maps ψ : M → Z from
Riemann surfaces M to Z. Such a map ψ is holomorphic with respect to the almost
complex structure J 2 on Z if and only if it satisfies the Cauchy–Riemann equation
∂̄Jψ = 0 with respect to the induced almost complex structure J := ψ∗(J 2) on M . But
on a Riemann surface any almost complex structure is integrable (why?). In particular,
the Cauchy–Riemann equation above has many local solutions.

The next theorem lies in the basis of the twistor approach to the construction of
harmonic maps.

Theorem 7 (Eells–Salamon theorem [11]). The twistor bundle

π : (J (N),J 2) −→ N

has the following property : the projection ϕ = π ◦ψ of an arbitrary J 2-holomorphic map
ψ : M → J (M) to N is a harmonic map.

Since the projection of any J 2-holomorphic curve ψ : M → J (M) is a harmonic map,
one can use these pseudoholomorphic curves to construct harmonic maps ϕ : M → N .
Is it possible to construct in this way all harmonic maps of this type? In other words,
when a given harmonic map ϕ : M → N is the projection of some J 2-holomorphic curve
ψ : M → J (M)? It turns out that if a map ϕ : M → N is obtained as the projection
of some J 2-holomorphic curve in J (M), then it should not only be harmonic but also
conformal.

Conversely, any harmonic conformal map ϕ : M → N from a compact Riemann
surface M to an oriented Riemannian manifold N is locally the projection of some J 2-
holomorphic curve ψ : M → J (M).

The considered bundle J (M) → N of Hermitian structures on N is not a unique
twistor bundle which can be used for the construction of harmonic bundles. Starting
from the bundle J (M) → N , one can also define other twistor bundles Z → N with the
help of the following method proposed by Rawnsley [20].

Let p : Z → N be a smooth bundle having the fibers which are complex manifolds
with complex structures smoothly depending on the point q ∈ N :

Z
j ��

p
���

��
��

��
� J (N)

π
����
��
��
��

N

Suppose that we have a fiberwise map j : Z → J (N) which is holomorphic on the fibers.
We also assume that we have on the bundle p : Z → N a smooth horizontal distribution
ZH which is sent by the map j∗ to the horizontal distribution H on J (N). Then on
ZH we shall have an almost complex structure ZJ h given by the preimage of the almost
complex structure J h on H under the map j. Using this horizontal almost complex
structure ZJ h on ZH and given vertical complex structure on the fibers of the bundle
p : Z → N , we can introduce on Z almost complex structures ZJ 1 and ZJ 2 in the same
way as in the case of the bundle π : J (N) → N . It is clear that the map j is almost
holomorphic with respect to both introduced structures so that p : Z → N is the twistor
bundle over N in the same sense as π : J (N) → N .

Let us give a concrete example of an application of the described method. Let N be
a Kähler manifold of dimension m. Denote by

Z := Gr(T
1,0N) −→ N

the complex Grassmannian bundle with the fiber at q ∈ N given by the Grassmann
manifold Gr(T

1,0
q N) of complex subspaces of dimension r in the complex vector space
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T 1,0
q N . If we denote by U(N) → N the principal U(m)-bundle of unitary frames on N ,

then

Z = U(N)⊗U(m) Gr(C
m).

In the case of a Kähler manifold N the Riemannian connection N∇ determines a con-
nection in the bundle U(N) and so defines a horizontal distribution on the space Z. A
complex structure on the fibers of Z → N is induced by the natural complex structure
on the Grassmann manifold Gr(C

m). We now construct the map

j : Z −→ J (N)

by setting for a subspace W ∈ Gr(T
1,0
q N):

j(W ) =

{
NJ on (W ⊕W ) ∩ TqN ,

−NJ on
[
(W ⊕W ) ∩ TqN

]⊥
.

The constructed map j : Z → J (N) satisfies the conditions of the Rawnsley method
which implies that the Grassmannian bundle Gr(T

1,0N) → N is a twistor bundle, mean-
ing that the projection of any J 2-holomorphic map ψ : M → Gr(T

1,0N) from a compact
Riemann surface M to the manifold N is a harmonic map ϕ : M → N . As we have
pointed out before such a map is necessarily conformal.

In the case r = 1 it is possible to invert the given twistor construction, in other
words, to construct for an arbitrary conformal harmonic map ϕ : M → N its twistor
pull-back to a J 2-holomorphic map ψ : M → G1(T

1,0N). Note that the Grassmannian
bundle G1(T

1,0N) → N coincides with the projectivization P(T 1,0N) → N of the bundle
T 1,0N → N .

Suppose that it is given a conformal harmonic map ϕ : M → N which is not anti-
holomorphic (for anti-holomorphic, as well as holomorphic, maps the problem of con-
struction of their twistor pull-backs is of no interest). Its differential δϕ is written in the
form

δϕ = ∂′ϕ+ ∂′′ϕ.

If the map ϕ is not anti-holomorphic, then ∂′ϕ(∂/∂z) defines a section of the bundle
ϕ−1(T 1,0N) which is not identically zero and holomorphic with respect to the complex
structure on this bundle induced by the Riemannian connection N∇. This section can
have only isolated zeros, and outside these zeros the twistor pull-back ψ : M → P(T 1,0N)
is given by the formula

ψ = [∂′ϕ(∂/∂z)] .

In other words, the value ψ(p) of the map ψ at a point p ∈ M coincides with the

complex line in T 1,0
ϕ(p)N generated by the (1, 0)-component of the vector ϕ∗(∂/∂z). Using

the holomorphicity of the constructed line subbundle in the bundle ϕ−1(T 1,0N), we can
extend it to the isolated zeros of the section ∂′ϕ(∂/∂z) (a variant of the Riemann theorem
on the cancellation of isolated singularities of holomorphic functions), thus obtaining the
desired map

ψ : M → P(T 1,0N).

The constructed map ψ is J 2-holomorphic if ϕ is conformal.
Restricting the class of admissible Riemannian manifolds (as in the example where

we have considered the class of Kähler manifolds N), we can construct new examples
of twistor spaces using the Rawnsley method. The general idea is to choose for every
class of Riemannian manifolds N as an appropriate twistor bundle the bundle of complex
structures which are related to the geometry of the manifolds from the considered class.
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3.3.4. Harmonic spheres conjecture. In Section 2.2.2 we have given the ADHM-
construction which allows us to completely describe the moduli space of instantons on
R4. This construction has a 2-dimensional reduction proposed by Donaldson [10].

The Donaldson theorem asserts that there exists a natural bijective correspondence
between the moduli space of G-instantons on R4 and the set of based equivalence classes
of holomorphic GC-bundles on CP2 which are holomorphically trivial on the projective
line CP1

∞ at “infinity”. The based equivalence means that we consider only isomorphisms
of holomorphic bundles which are equal to the identity at the based point on CP1

∞.
For us it is more convenient to use another formulation of the Donaldson theorem

given in Atiyah’s paper [1]. In this formulation the moduli space of G-instantons on R4

is identified with the set of classes of based equivalence of holomorphic GC-bundles on
the product CP1 × CP1 which are holomorphically trivial on the union CP1

∞ ∪ CP1
∞ of

projective lines at “infinity”:

{
moduli space of G-
instantons on R4

}
←→

⎧⎨⎩equivalence classes of holomorphicGC-bundles
on CP1 × CP1 holomorphically trivial on
CP1

∞ ∪ CP1
∞

⎫⎬⎭ .

The role of the based point in the definition of based equivalence in this case is played
by the intersection point of projective lines at “infinity”.

The set of equivalence classes on the right-hand side of this correspondence may be
identified by the Atiyah theorem with the set of based holomorphic maps f : CP1 → ΩG
sending ∞ ∈ CP1 to the origin o ∈ ΩG.

Indeed, fix some point z ∈ CP1. The restriction of a given holomorphic GC-bundle
over CP1 ×CP1 to the projective line CP1

z := CP1 × {z} is determined by the transition
function

Fz : S1 ⊂ CP1
z −→ GC,

which extends to some neighborhood U of the equator S1 in CP1
z to a holomorphic map

Fz : U ⊂ CP1
z → GC. The function Fz : S1 → GC may be considered as an element of

the loop group LGC, so we obtain a map

F : CP1 � z �−→ Fz ∈ LGC.

In composition with the projection LGC −→ ΩGC = LGC/L+G
C it gives a map

f : CP1 −→ ΩG.

The constructed map f is based and holomorphic if the originalGC-bundle over CP1×CP1

was holomorphic and trivial on CP1
∞ ∪ CP1

∞. The Atiyah theorem asserts that there is
a bijective correspondence{

moduli space of G-
instantons on R4

}
←→

{
space of based holomorphic maps
f : CP1 → ΩG

}
.

Having the above result of Atiyah–Donaldson it is natural to propose a conjecture [21]
obtained by the “realification” of the given correspondence. According to this conjecture,
there should exist the following bijective correspondence:{

moduli space of Yang–
Mills G-fields on R4

}
←→

{
space of based harmonic maps
h : CP1 → ΩG

}
.

The formulated conjecture remains yet unproved. The main difficulty is that there
is no “real” analogue of the Donaldson theorem. The Donaldson proof is based on the
monad method and is purely holomorphic.
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