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SIMPLE SOLUTIONS OF THREE EQUATIONS

OF MATHEMATICAL PHYSICS

V. K. BELOSHAPKA

Abstract. In this paper, we consider three equations of mathematical physics for
functions of two variables: the heat equation, the Liouville equation, and the
Korteweg–de Vries (KdV) equation. We obtain complete lists of simple solutions
for all three equations, that is, solutions of analytic complexity not exceeding one.
All solutions of this type for the heat equation can be expressed in terms of the error
function (Theorem 1) and form a 4-parameter family; for the Liouville equation, the
answer is the union of a 6-parameter family and a 3-parameter family of elementary
functions (Theorem 2); for the Korteweg–de Vries equation, the list consists of four
3-parameter families containing elementary and elliptic functions (Theorem 3).

§1. Introduction

The set of problems related to the possibility of representing analytic functions of
several variables by superpositions of functions of fewer variables has been discussed in
several works (see [1] and [2]). Consider a strictly increasing hierarchy of the complexity
classes of analytic functions of two variables z(x, y); this hierarchy is defined inductively
using the function (x+ y):

Cl0 ⊂ Cl1 ⊂ Cl2 ⊂ · · · ⊂ Cln ⊂ · · · .
Here Cl0 is the class formed by functions of one variable (x or y) which is assigned
complexity N(z) = 0; Cl1 is the class of functions of the form c(a(x) + b(y)); they have
complexity N(z) ≤ 1; Cln+1 consists of functions of the form C(An(x, y) + Bn(x, y)),
where C is a function of one variable and An and Bn are functions in Cln. Functions
which are in Cln but do not belong to Cln−1 have complexity N(z) = n. The condition
N(z) ≤ 1 is equivalent to the fact that the germ locally representing z satisfies the
differential relation

(1) z′xz
′
y(z

′′′
xxyz

′′
y − z′′′xyyz

′
x) + z′′xy((z

′
x)

2z′′yy − (z′y)
2z′′xx) = 0.

This homogeneous form of degree four is the numerator of the differential-rational ex-
pression (ln(z′y/z

′
x))

′′
xy (see [3]).

The pseudogroup G = {z(x, y) → c (z(a(x), b(y)))}, where (a, b, c) are germs of non-
constant analytic functions, acts on the family of germs of analytic functions of two
variables. This pseudogroup preserves the analytic complexity of z, and therefore we call
G the gauge pseudogroup. In accordance with the general definition, the stabilizer Stabz
of a function z(x, y) consists of the families (a, b, c) for which c(z(a(x), b(y))) = z(x, y).
Let dz be the dimension of the stabilizer Stabz. As was proved in [4], if z is a function of
two variables (that is, if neither partial derivative is identically zero), then dz can take
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precisely three values: 0, 1, and 3. In addition, the equation dz = 3 can only hold for
functions of complexity 1, that is, for functions equivalent to (x + y). This is a charac-
terizing feature of functions of the first class. We may say that the first class consists of
the functions z for which dz > 1.

Thus, the search for the simple solutions of some equation, in other words, those be-
longing to the first class, can be regarded as the search for solutions with symmetry group
in G whose dimension exceeds one. In [3], a description of simple solutions of Dirichlet’s
equation and the wave equation was obtained. Here we study the heat equation, the
Liouville equation, and the Korteweg–de Vries equation.

§2. The heat equation

Let z(x, y) be an analytic function satisfying the heat equation in the form

(2) z′y = z′′xx.

If z is a solution of (2) of complexity zero, then this function is either constant or linear
in x. Our objective is to describe all solutions of the heat equation with complexity one.

Let G be the group of transformations acting on the functions as follows:

z(x, y) → δz(γ (x− α), γ2(y − β)) + ε,

where (α, β, γ, δ, ε) are complex constants, and γ and δ are nonzero. It is clear that
this group takes solutions of the heat equation to solutions and does not change the
complexity. Therefore, it is natural to give our description up to transformations in G.

We write out equation (2) for z(x, y) = c(a(x) + b(y)) (the subscripts are the orders
of the derivatives):

a21c2 + a2c1 − b1c1 = 0 or
c2
c1

= −a2 − b1
a21

.

But c2/c1 is a function of (a(x) + b(y)), and so we obtain

(3) −b2a
2
1 − a3a1b1 + 2a22b1 − 2a2b

2
1 = 0.

Using the fact that a and b are nonconstant, we take a1 = A and b1 = B to be new
independent variables; then a2 = P (A) and b2 = Q(B) are new unknown functions; here
a3 = P ′(A)P (A), and (3) becomes

−Q(B)A2 −
(

d

dA
P (A)

)
P (A)AB + 2P (A)2B − 2P (A)B2 = 0.

This means that

−Q(B) = 2
P (A)B2

A2
+

P (A)
(
A d

dAP (A)− 2P (A)
)
B

A2
= mB + nB2.

Since Q is independent of A, it follows that the coefficients on the right-hand side (m of
B and n of B2) are both constant. Thus, we obtain two equations for P (A):

P (A)

A2
= n and

(
A

d

dA
P (A)− 2P (A)

)
= m.

It follows from the first equation that P (A) = nA2; we substitute this into the other
equation and obtain m = 0, and thus Q(B) = −2nB2. These relations are differential
equations for a(x) and b(y). Solving them, we obtain

a(x) = − 1

n
ln(C1x+ C2), b(y) =

1

2n
ln(C3y + C4).

Then

t = a(x) + b(y) =
1

2n
ln

C3y + C4

(C1x+ C2)2
.
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Thus, up to transformations in G, we see that the solutions z(x, y) we are interested in
for the heat equation are of the form z(x, y) = f(y/x2). After making the substitution
y = tx2, the condition that z(x, y) = f(y/x2) satisfies (2) becomes

(4) 4

(
d2

dt2
f(t)

)
t2 −

(
d

dt
f(t)

)
+ 6

(
d

dt
f(t)

)
t = 0.

The nonconstant solutions of this equation are given by

f(t) = C1 + erf

(
1

2
√
t

)
C2.

We finally obtain the following theorem.

Theorem 1. Up to transformations in G, every solution of the equation z′y = z′′xx with
analytic complexity one is of the form

z(x, y) = erf

(
x

2
√
y

)
,

where

erf(T ) =
2√
π

∫ T

0

e−t2 dt

is the integral known in probability theory as the error function.

If we act on the function thus obtained by transformations in G, then we obtain the
following 4-parameter family:

δ erf

(
x− α

2
√
y − β

)
+ ε.

There is an assertion which dates back to Kovalevskaya (1875, see [5]), claiming that
all solutions to the heat equation that are analytic in both variables can be continued to
entire functions with respect to the space variable x such that their order of growth does
not exceed two. Note that, for every value of y, the function erf

(
x

2
√
y

)
obtained above is

an entire function of order two. Thus, the maximum complexity of the solutions, from
the point of view of the growth rate (order two), is realized on functions having the
minimal complexity for functions of two variables, namely one.

§3. The Liouville equation

Consider the Liouville equation, that is, the equation z′′xy = ez. As Liouville showed [6],
all solutions of this equation are of the form

(5) z = ln

(
2

a′(x)b′(y)

(a(x) + b(y))2

)
.

When speaking of analytic solutions, a and b are analytic here. It follows immediately
from the formula that the analytic complexity N(z) of a generic solution does not exceed
two. The problem of describing solutions of complexity one (simple solutions) arises.

Theorem 2.
(a) A function of the form (5), where a and b are analytic functions, has complexity

one in two cases:

(I) a(x) =
kx+ l

mx+ n
, b(y) =

Ky + L

My +N
;

(II) a(x) = ke±x + l, b(y) = Ke±y − l.
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All the constants are arbitrary, provided that the functions a and b are defined and non-
constant. The arrangement of the signs in the exponents for a and b in the second case
are independent.

(b) In all other cases, the complexity of (5) is equal to two.

Proof. It is clear that the Liouville equation has no solutions depending on just one
variable, that is, no solutions of complexity zero. Our immediate aim is to find all
solutions of complexity one, that is, find all pairs (a(x), b(y)) satisfying condition (1).
We can assume here that a and b are nonconstant.

Substituting (5) into (1), we obtain a differential fraction whose numerator is equal
to zero (the subscripts are the orders of the derivatives),

− a20a1a3b
2
2 + a20a

2
2b1b3 − 2a0a1a3b

2
2b0 − 6a0a2

2b2b
2
1 + 2a0a

2
2b1b3b0

+ 6a0a2b
2
2a

2
1 − 4a0a

2
1b1b3a2 + 4a0a1a3b2b

2
1 − 6a41b

2
2 + 4a1a3b

2
1b2b0

+ 4a41b1b3 + 6a2b
2
2a

2
1b0 − 6a22b2b

2
1b0 − 4a21b1b3a2b0 + 6a22b

4
1

− 4a1a3b
4
1 − a1a3b

2
2b

2
0 + a22b1b3b

2
0 = 0,(6)

and the denominator is of the form (a2a0+a2b0−2a21)
2(b2a0+b2b0−2b21)

2. It can readily
be seen that the last relation cannot vanish identically.

Solving (6) for b3b1, we obtain a differential fraction whose denominator is equal to
(a2a0 + a2b0 − 2a21)

2 and does not vanish identically. Writing out the condition that this
differential fraction does not depend on x, that is, equating the derivative with respect
to x to zero, we obtain

− a22b2a
2
0 + a20b2a1a3 + 6a0b2a

3
2 − 3a0b2a1a2a3 − 2a0a2a

2
1b2(7)

− 2a0a
2
2b2b0 + 2a0a1a3b2b0 − 2a0a1a3b

2
1 + 2a0a

2
2b

2
1 − 2b0a2a

2
1b2

− 3b2a1a2b0a3 + b2a1a3b
2
0 − a22b2b

2
0 + 2a41b2 + 6b0b2a

3
2

− 3a21b2a
2
2 − 2a1a3b

2
1b0 + 2a22b

2
1b0 + 6a1b

2
1a2a3 + 2a2a

2
1b

2
1 − 9b21a

3
2 = 0.

In particular, this implies that, for a solution in general position, that is, for (a, b) not
satisfying this relation, we have N(z) = 2.

Solving (7) for b21/b2, we obtain a fraction whose denominator

−2a22b0 − 6a1a2a3 − 2a2a
2
1 + 2a1a3b0 − 2a0a

2
2 + 2a0a1a3 + 9a32

can only vanish identically if a2 = 0. Equating the derivative of this fraction with respect
to x to zero, we obtain an expression which is a polynomial of degree 2 in b0 with the
following coefficients:

C2 = 27a21a
4
2a3 − 8a0a

5
1a2 − 2a20a

4
1a3 − 3a20a

4
2a3

− 27a31a
4
2 − 4a71 + 18a51a2

2 + 7a20a
2
2a3a

2
1

+ 2a20a
5
1 − 6a0a

3
2a3a

2
1 − 4a0a

4
1a3a2 + 16a61a3

− 4a20a
2
2a

3
1 + 18a0a

3
2a

3
1 − 30a41a

2
2a3,

C1 = 18a32a
3
1 + 14a0a

2
2a3a

2
1 − 8a0a

2
2a

3
1 − 6a0a

4
2a3

− 4a0a
4
1a3 − 4a41a3a2 − 6 a32a3a

2
1 + 4a0a

5
1 − 8a51a2,

C0 = −2a41a3 − 3a42a3 + 7a22a3a
2
1 + 2a51 − 4a22a

3
1.

For a nonconstant b0 = b(y) to exist, it is necessary that all three coefficients be identically
equal to zero. A necessary condition for the system C0 = C1 = C2 = 0 to be solvable in
terms of a3 is that

a2(a1 − a2)(a1 + a2)(−3a22 + 2a21) = 0.
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Solving the differential equations, we see that the only possibilities for the function a(x)
are the following:

(1) a(x) =
kx+ l

mx+ n
, (2) a(x) = ke±x + l.

Similarly, for b(y) we have

(1) b(y) =
Ky + L

My +N
, (2) b(y) = Ke±y + L.

Further, choosing the pairs satisfying (6) from among these pairs (a, b), we see that
these pairs are of two types:

(I) a(x) =
kx+ l

mx+ n
, b(y) =

Ky + L

My +N
;

(II) a(x) = ke±x + l, b(y) = Ke±y − l.

In both cases the constants are arbitrary, provided that the functions a and b are de-
fined and nonconstant. In the second case, the signs in the exponents for a and b are
independent.

This completes the proof of the theorem. �

§4. The Korteweg–de Vries equation

Let z(x, y) be an analytic function satisfying the Korteweg–de Vries equation of the
form z′y = Az′′′xxx +Bzz′x, where A and B are nonzero complex constants. The transfor-
mation z(x, y) → kz(l x, y) does not change the complexity of z and takes this equation
to the equation z′y = l3 Az′′′xxx + lk Bzz′x. Choosing appropriate values of k and l, we can
assume that the equation is of the form

(8) z′y = zz′x + z′′′xxx.

We start by stating our theorem.

Theorem 3. All solutions of equation (8) with analytic complexity one are contained in
the following four 3-parameter families:

z1 =
l

k
− 12k2 ℘(kx+ ly +m),

z2 =
l

k
+ 12

k2

cosh2(kx+ ly +m)
− 4 k2,

z3 =
l

k
− 12

k2

(kx+ ly +m)2
,

z4 =
kx+ l

m− ky
,

where k ( �= 0), l, and m are complex constants, ℘ is the Weierstrass elliptic function,
and cosh is the hyperbolic cosine.

From here, we can readily obtain all solutions that depend on one variable, that is, of
complexity zero.

Corollary. All solutions of equation (8) of analytic complexity zero are contained in the
following four families:

z1 = −12k2 ℘(kx+m), z2 =
12k2

cosh2(kx+m)
− 4k2, z3 = − 12

(x+m)2
, z4 = m.
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Domrin has told the author that he has a conjecture concerning the rate of growth of
solutions of the KdV equation (see also [5]). To formulate this conjecture, we have to
represent the solutions in the form

z(x, y) = 12(ln(τ (x, y))′′xx.

Then the conjecture claims that every locally defined solution that is analytic (in both
the variables) can be represented in the above form, where, for a fixed y, the function
τ can be continued as an entire function of x whose order of growth does not exceed 3.
For our four solutions, we obtain:

z1 =
l

k
− 12k2 ℘(kx+ ly +m), τ1 = exp

{ lx2

24k

}
σ(kx+ ly +m),

z2 =
l

k
+ 12

k2

cosh2(kx+ ly +m)
− 4 k2, τ2 = exp

{x2(l − 4k3)

24k

}
cosh(kx+ ly +m),

z3 =
l

k
− 12

k2

(kx+ ly +m)2
, τ3 = (kx+ ly +m) exp

{ lx2

24k

}
,

z4 =
kx+ l

m− ky
, τ4 = exp

{x2(kx+ 3l)

72(m− ky)

}
,

where σ is the Weierstrass sigma function and cosh is the hyperbolic cosine, as above.
Since σ(t) is an entire function of order 2, it follows that τ1 always has order 2; further,

τ2 has order 2 for l �= 4k3 and order 1 for l = 4k3; τ3 has order 2 for l �= 0 and order 0
for l = 0; τ4 always has order 3.

The remainder of the paper is devoted to proving Theorem 3. We note that the proof
is by exhausting the tree of possibilities. Each fork is determined by whether or not
some differential polynomial condition (the discriminant set) holds. The whole analysis
required significant computational efforts using the Maple system.

We first state the following readily verifiable assertion.

Lemma 4. The group of transformations

H = {z(x, y) → k2z(k (x+ C1), k
3 (y + C2))}, k �= 0,

takes the solutions of (8) to solutions and does not change their analytic complexity.

Lemma 5. For every pair (k �= 0, l), all solutions of (8) of the form z = c(kx+ ly) are
contained in the following list:

z1 =
l

k
− 12k2 ℘(kx+ ly + C),

z2 =
l

k
+ 12

k2

cosh2(kx+ ly + C)
− 4k2,

z3 =
l

k
− 12

k2

(kx+ ly + C)2
.

Note that Lemma 5 can be treated as a description of all solutions of (8) of the form
z = c(a(x) + b(y)) under the additional condition that a′′ = b′′ = 0.

Proof of Lemma 5. By Lemma 4, it suffices to consider the case of solutions of the form
z = c(x+ l y). Writing out equation (8) for a function of this form and using the notation
t = x+ ly, we obtain

c′′′(t) + c(t)c′(t) + lc′(t) = 0.
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If c is nonconstant, then let A = c(t) be the new independent variable and c′ = P (A) be
the new unknown function. We obtain the equation P ′′P + (P ′)2 +A+ l = 0 for P . All
solutions of this differential equation (which are not identically zero) are of the form

(P (A))2 = Q(A) = − 1

3l2
A3 +A2 + C1A+ C2.

If the cubic polynomial Q(A) has no multiple roots, then, making the change c(t) =
−12Z(t) + l, we see that Z(t) satisfies the differential equation

(Z ′)2 = 4Z3 − g2Z − g3,

that is, Z(t) = ℘(t) is the Weierstrass elliptic function. The corresponding solution for
z1 = c(x+ ly) is of the form

z1 = −12℘(x+ ly + C) + l.

Let the polynomial Q(A) have a single double root:

Q(A) = −1

3
(A−m)2(A− n);

then, by Vieta’s theorem, the third root is n = (2m − 3l). In this case, the differential
equation for c(t) has a solution in terms of elementary functions. After substituting
t = x+ ly, we obtain

z2 = −3(m− l) tan2

(√
(m− l)

2
(x+ ly + C)

)
− 2m− 3l.

Up to renaming the constants and transformations in H, this function coincides with z2
in the statement of the lemma.

Finally, let the polynomial Q(A) have a root of multiplicity three, that is,

Q(A) = −1

3
(A−m)3.

It follows from Vieta’s theorem that m = l. Solving the equation, we obtain

z3 = 1− 12
1

(x+ ly + C)
2 .

This completes the proof of Lemma 5. �

The following auxiliary assertion can be proved immediately.

Lemma 6.
(1) All solutions of the equation d1(a) = a3a1 − 2a22 = 0 can be split into generic

solutions, a(x) = m ln(kx+ l), and special solutions, kx+ l.
(2) All solutions of the equation d2(a) = a1a2a4 − a1a

2
3 − a22a3 = 0 can be split into

generic solutions, a(x) = m ln(cos(kx+ l)) + n, and special solutions, kx2 + lx+m.

Now we weaken the condition a′′ = b′′ = 0 in Lemma 8. Namely, we seek a solution
of (8) of the form z = c(a(x) + b(y)), where only one of the functions is linear: either
a′′ = 0 or b′′ = 0.

Lemma 7.
(1) If z = c(a(x) + b(y)) is a solution of (8), then it follows from a2 = 0 that b2 = 0,

and it follows from b2 = 0 that a2 = 0.
(2) The list in Lemma 5 contains all solutions of (8) of the form z = c(a(x) + b(y))

under the assumption that at least one of the inner functions, a or b, is linear.
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Proof.
First case: let a′′ �= 0, and let b′′ = 0. Since b′ �= 0, it follows that, in this case, the

function z can be represented in the form z = c(a(x) + y). Writing out equation (8) for
this function, we obtain

(9) c3a
3
1 + 3c2a1a2 + 6c0c1a1 + c1a3 + c1 = 0.

If we set y = t − a(x) here, then c becomes a function of the variable t, independent of
x. Expressing c3 from (9) and expressing the condition that it is independent of x, we
see that

−3a21c2a3 + 6a1c2a
2
2 + 2a1a2c1c0 − a4a1c1 + 3a2c1a3 + 3a2c1 = 0.(10)

Under the condition that d1(a) = a1a3 − 2a22 �= 0, we can use this relation to express
c2/c1 and write out the condition for it being independent of x. We obtain(

2a4a
3
1a2 − 2a31a

2
3 − 2a21a

2
2a3

)
c0 − a24a

3
1 + 3a4a

2
1a2a3 + 6a4a1a

3
2

+ a31a3a5 − 2a21a
2
2a5 − 3a21a

3
3 − 6a42a3 + 3a4a

2
1a2 − 3a21a

2
3 − 6a42 = 0.

Since c is nonconstant, this implies that

d2(a) = a1a2a4 − a1a
2
3 − a22a3 = 0

d3(a) = a31a3a5 − a24a
3
1 − 2a21a

2
2a5 + 3a4a

2
1a2a3 − 3a21a

3
3

+ 6a4a1a
3
2 − 6a42a3 + 3a4a

2
1a2 − 3a21a

2
3 − 6a42 = 0.(11)

If d1 = 0, then, substituting a(x) = m ln(kx+ l) into (9), we see that c1 = 0. This is
a contradiction. Let d2 = d3 = 0. Here d2 has the differential order 4, and d3 has the
differential order 5. We differentiate d2 with respect to x and obtain a relation of order
5, dd2 = 0. Next we eliminate a5 from d3 and dd2 and obtain a relation of order four,
res = 0, where res stands for the resultant of d3 and dd2 with respect to a5. Eliminating
a4 from res = 0 and d2 = 0 we obtain

−3a21a
5
2(a1a3 − 2a22) = 0,

which returns us to the case when d1 = 0.
Second case: let b′′ �= 0, a′′ = 0. Since a′ �= 0, it follows that in this case the

function z can be represented in the form z = c(x+ b(y)). Writing out equation (8) for
this function and substituting x = t− b(y), we obtain

c′′′(t) + c(t)c′(t) + c′(t)b′(y) = 0.

Differentiating this relation with respect to y, we obtain c′(t)b′′(y) = 0. A contradiction.
This completes the proof of Lemma 7. �

Lemma 8. The solutions of (8) of the form z(x, y) = c(a(x) + b(y)) with the additional
condition d1(a) = 0 are of the form

z =
kx+ l

m− ky
.

Proof. Using transformations in the group H, we can transform every solution of the
form z(x, y) = c(m ln(kx + l) + b(y)) to a solution of the form z(x, y) = c(ln(x) + b(y)).
Substituting this expression into (8) we obtain

c1b1x
3 + c0c1x

2 + 2c1 − 3c2 + c3 = 0.

Now we solve for c3 and write out the condition for this expression to give a function of
ln(x) + b(y); we have

3b21x− b2x+ 2c0b1 = 0.
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Differentiating this relation with respect to x, we see that

3b21x− b2x+ 2c1b1 = 0,

which implies that c1 = c0, that is, c(t) = exp(t+λ). Substituting z = exp(ln(x)+b(y)+λ)
into the original equation, we obtain b′(y) = exp(λ) exp(b(y)). Hence, b(y) = λ+ln(C−y).
Thus, taking the transformations in H into account, we see that z = (kx+ l)/(m− ky).
This completes the proof of Lemma 8. �

Lemma 9. There is no solution of (8) of the form z(x, y) = c(a(x) + b(y)) for which
a2 �= 0, b2 �= 0, and d2(a) = 0.

Proof. According to Lemma 6, the solutions with d2(a) = 0 split into two cases: the
generic case, a(x) = m ln(cos(kx + l)) + n, and the special case, a(x) = kx2 + lx + m.
We first consider the special case.

Using transformations in H, every solution of the form z = c(kx2+ lx+m+ b(y)) can
be transformed to a solution of the form z = c(x2+ b(y)). Substituting this solution into
(8) we obtain

8c3x
3 + 2c0c1x+ 12c2x− c1b1 = 0.

Expressing c3, we write out the condition for this to be a function of x2 + b(y), giving

−2b2c1x
2 + 4c0c1b1x+ 24c2xb1 − 3c1b

2
1 = 0.

Expressing c2/c1, we write out the condition for this to be a function of x2 + b(y), so
that

−4b3b1x
4 + 4b22x

4 − 4b2b
2
1x

2 − 3b41 = 0.

This implies that b1 = 0, giving a contradiction.
Now let a(x) = m ln(cos(kx+ l)) + n. Using transformations in H, we can transform

the corresponding solution to a solution of the form z = c(ln(cos(x))+b(y)). Substituting
this solution into (8), we obtain

−2 sin3(x)c1c0b1 − 3 sin2(x) cos(x)c1b
2
1 − 2 sin(x) cos2(x)c1c0b1

− 3 cos3(x)c1b
2
1 + b2 sin

2(x) cos(x)c1 + 6c2b1 sin
3(x)

− 4 sin3(x)c1b1 + 6c2 sin(x) cos
2(x)b1 − 4c1b1 cos

2(x) sin(x) = 0.

Using the expression for c3, as it is a function of ln(cos(x)) + b(y), we obtain

−2 sin3(x)c1c0b1 − 3 sin2(x) cos(x)c1b
2
1 − 2 sin(x) cos2(x)c1c0b1

− 3 cos3(x)c1b
2
1 + b2 sin

2(x) cos(x)c1 + 6c2b1 sin
3(x)

− 4 sin3(x)c1b1 + 6c2 sin(x) cos
2(x)b1 − 4c1b1 cos

2(x) sin(x) = 0.

Expressing c2/c1, using the condition for it to be a function of ln(cos(x))+b(y), we obtain

− 3 sin4(x)b41 − 6 sin2(x) cos2(x)b41 − 3 cos4(x)b41

+ 4b2 sin
4(x)b21 + 2b2 sin

2(x) cos2(x)b21 + b22 sin
4(x)− b3 sin

4(x)b1 = 0.

This implies that b1 = 0, giving a contradiction. This completes the proof of
Lemma 9. �

Now we turn to the general case. We assume that a2, d1(a), d2(a), b2, and c1 are not
identically zero. Write out the equation (8) for z(x, y) = c(a(x) + b(y)):

(12) a31c3 + 3a1a2c2 + a1c0c1 + a3c1 + b1c1 = 0
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and express c3 using (12). The condition that some function of two variables ϕ(x, y) can
be represented in the form ρ(a(x) + b(y)), where ρ is a function of a single variable, is
the relation V ϕ = 0, where V is a vector field of the form

V = b′(y)
∂

∂x
− a′(x)

∂

∂y
.

Writing out this condition for the expression for c3 obtained above, we see that

− 3a21a3b1c2 + 6a1a
2
2b1c2 + 2a1a2b1c0c1 + a21b2c1 − a1a4b1c1

+ 3a2a3b1c1 + 3a2b
2
1c1 = 0.(13)

Since d1 = a3a1 − 2a22 �= 0, we can use (13) to give an expression for c2/c1. We write out
the condition V (c2/c1) = 0 and obtain(

−2a31a2a4b
3
1 + 2a31a3

2b31 + 2a21a
2
2a3b

3
1

)
c0 − b3a3a

5
1b1

+ a3b2
2a51 + 2b3a

2
2a

4
1b1 − 2 a2

2b22a
4
1 − a4b2a

4
1b1

2

+ a2a3b2a
3
1b

2
1 − a5a3a

3
1b

3
1 + a24a

3
1b

3
1 + 4a32b2a

2
1b

2
1

+ 2a5a
2
2a

2
1b

3
1 − 3a2a3a4a

2
1b1

3 − 3a2a4a
2
1b

4
1 + 3a33a

2
1b

3
1

+ 3a23a
2
1b

4
1 − 6a32a4a1b

3
1 + 6a42a3b

3
1 + 6a42b

4
1 = 0.

Since d2 = a1a2a4 − a1a
2
3 − a22a3 �= 0, we can use this to express c0 and to write out the

condition V (c0) = 0; we have

Eq 4 = a71a2a4b
2
1b4 − 4a71a2a4b1b2b3 + 3a71a2a4b

3
2 − a71a

2
3b

2
1b4

+ 4a71a
2
3b1b2b3 − 3a71a

2
3b

3
2 − a61a

2
2a3b

2
1b4 + 4a61a

2
2a3b1b2b3

− 3a61a
2
2a3b

3
2 + a61a2a5b

3
1b3 − a61a2a5b

2
1b

2
2 − a61a3a4b

3
1b3

+ a61a3a4b1
2b22 − 3a51a2a

2
3b

3
1b3 + 3a51a2a

2
3b

2
1b

2
2 + a51a3a5b

4
1b2

− a51a
2
4b

4
1b2 + 2a41a

2
2a5b

4
1b2 − 6a41a2a3a4b

4
1b2 − a41a2a4a6b

5
1

+ a41a2a5
2b51 + 2a41a

3
3b

4
1b2 + a41a

2
3a6b

5
1 − 2a41a3a4a5b

5
1 + a41a

3
4b

5
1

+ 3a31a
3
2a4b

4
1b2 − 4a31a

2
2a

2
3b

4
1b2 + a31a

2
2a3a6b

5
1 − 6a31a2a

2
3a5b

5
1

+ 8a31a2a3a
2
4b

5
1 − 3a31a

3
3a4b

5
1 − 3a21a

4
2a3b

4
1b2 − 6a21a2

3a24b
5
1

+ 3a21a
3
2a5b

6
1 − 3a21a

2
2a

2
3a4b1

5 − 12a21a
2
2a3a4b

6
1 + 9a21a2a

4
3b

5
1

+ 9a21a2a3
3b61 + 12a1a

4
2a3a4b1

5 + 6a1a
4
2a4b

6
1 − 6a1a

3
2a

3
3b

5
1

− 6a1a
3
2a

2
3b

6
1 − 6a52a

2
3b

5
1 − 6a52a3b

6
1 = 0.

Requiring that the expressions obtained for c3 = ϕ, c2/c1 = χ, and c0 = ψ be functions
of a(x) + b(y) is not sufficient to ensure the existence of some c = c0 satisfying (12). For
this we need two more consistency conditions:

Eq5 = χ−
(
ϕ′
y

b′

)′

y

/ϕ′
y = 0, Eq6 = ψ − 1

b′

(
1

b′

(
1

b′
ϕ′
y

)′

y

)′

y

= 0,

which ensure that c1, c2, and c3 are successive derivatives of c0. The equation Eq4 = 0
has the differential order (6, 4), that is, six with respect to a and four with respect to b,
Eq5 = 0 has the order (5, 5), and Eq6 = 0 has the order (5, 6).

Thus, we have proved the following lemma.

Lemma 10. For every pair of functions (a(x), b(y)) such that a2 �= 0, d1(a) �= 0, and
b2 �= 0, there is a nonconstant function c(t) such that z = c(a(x) + b(y)) is a solution of
(8) if and only if Eq4(a, b) = Eq5(a, b) = Eq6(a, b) = 0.
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Now we make the change of variables a1 = A, a2 = P (A), b1 = B, b2 = Q(B)
in Eq4, where A and B are new independent variables and P (A) and Q(B) are new
unknown functions. The expressions for d1 and d2 in the new variables take the form
d1 = P (A)(AP ′(A)−2A) and d2 = P 3(A)(AP ′′(A)−P ′(A)). Denote the expressions for
Eq4, Eq5, Eq6 in the new variables by EQ4, EQ5, EQ6, respectively. Note that EQ4 has
differential order 2, EQ5 order 3, and EQ6 order 4 with respect toQ. Denote the resultant
of EQ4 and (EQ4)′A with respect to the variable Q′′ by Res1 and the resultant of EQ4

and (EQ4)′′AA with respect to the variable Q′′ by Res2. Further, let Res = R(P,Q) be
the resultant of Res1 and Res2 with respect to the variable Q′. This expression has the
form

Res(P,Q) = L(P )Q+M(P )B +N(P )B2,

where L(P ), M(P ), and N(P ) are differential polynomials of order 5, 5, and 6, re-
spectively. It follows immediately from the equality Res(P,Q) = 0 that the following
alternative holds.

Lemma 11. If (P (A), Q(B)) is a solution of the equation

EQ4(P (A), Q(B)) = EQ5(P (A), Q(B)) = EQ6(P (A), Q(B)) = 0,

then either Q(B) = B(mB+n), where m and n are constant, or L(P (A)) = M(P (A)) =
N(P (A)) = 0.

We start by considering the first possibility, that is, let Q(B) = B(mB + n). The
condition b2 �= 0 means that Q is not identically zero, and hence at least one of the
constants is nonzero. Here the condition Q′(B) = 2mB + n �= 0 holds.

Substitute Q(B) = B(mB + n) into EQ4, EQ5, and EQ6. We obtain differential
polynomials depending on P ; denote these polynomials by E4, E5, E6, respectively. We
have

E4 = A7Bm3p2 +A7m2np2 −A6Bm3p1 +A6Bm2p0p3 + 3A6Bm2p1p2

−A6m2np1 +A6mnp0p3 + 3A6mnp1p2 − 3A5Bm2p21 +A5Bmp0p1p3 −A5Bmp0p
2
2

+ 2A5Bmp21p2 −A4p40p2p4 +A4p40p
2
3 −A4p30p1p2p3 − 3A4p30p

3
2

− 3A5mnp21 +A5np0p1p3 −A5np0p
2
2 + 2A5np21p2 + 2A4Bmp20p3 + 2A4Bmp0p1p2

− 2A4Bmp31 +A3p40p1p4 +A3p30p
2
1p3 + 12A3p30p1p

2
2 + 2A4np20p3

+ 2A4np0p1p2 − 2A4np31 + 3A3Bmp20p2 −A3Bmp0p
2
1 − 6A2p0

4p22

− 15A2p30p
2
1p2 + 3A3np20p2 −A3np0p

2
1 − 3A2Bmp0

2p1 + 3A2Bp30p3

+ 12Ap40p1p2 + 6Ap30p
3
1 − 3A2np20p1 + 6ABp30p2 − 6p40p

2
1 − 6Bp0

3p1 = 0;

E5 = (A5m2p1 − 2A4m2p0 +A4mp0p2 +A4mp21 −A3mp0p1 − 4A2mp20

+ 3A2p20p2 − 6p30) (A
4Bm2 + 3A3mp20p2

+A4mn+A3Bmp1 − 3A2mp20p1 +A2p30p3 + 3A2p20p1p2

+A3np1 + 2A2Bmp0 − 3Ap30p2 − 3Ap20p
2
1 + 2A2np0

+ 3p30p1 + 3Bp20) = 0;

E6 = (A5m2p1 − 2A4m2p0 +A4mp0p2 +A4mp21 −A3mp0p1

− 4A2mp0
2 + 3A2p20p2 − 6p30)(−2A5m2p20p2 +A5Bm2p1

+ 2A4m2p20p1 +A5mnp1 − 2A4Bm2p0 +A4Bmp0p2 +A4Bmp21
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− 6A3mp0
3p2 +A3p30p1p3 −A3p30p

2
2 + 2A3p20p

2
1p2 − 2A4mnp0

+A4np0p2 +A4np21 −A3Bmp0p1 + 6A2mp30p1 − 2A2p40p3

− 7A2p30p1p2 − 2A2p20p1
3 − A3np0p1 − 4A2Bmp20 +A2Bp20p2

+ 6Ap40p2 + 8Ap30p
2
1 − 4A2np20 + 2ABp20p1

− 6p40p1 − 6Bp30) = 0.

The polynomial E4 is irreducible, E5 = e ·e5, and E6 = e ·e6, where e is a common factor

e = A5m2p1 − 2A4m2p0 +A4mp0p2 +A4mp21 −A3mp0p1 − 4A2mp20 + 3A2p20p2 − 6p30,

which has differential order 2, and e5 and e6 have order 3.
Let e �= 0; then E4 = e5 = e6 = 0. Eliminating p3 from e5 and e6, we obtain

R56 = 2A3m2p0 + 3A2mp0p1 − A2Bm+Ap20p2 +Ap0p
2
1 −A2n− p20p1 −Bp0 = 0.

Differentiating with respect to A gives

(R56)
′
A = 2A3m2p1 + 6A2m2p0 + 3A2mp0p2 + 3A2mp21 + 6Amp0p1

+Ap20p3 + 4Ap0p2p1 +Ap31 − 2ABm− p0p
2
1 − 2An−Bp1 = 0.

Eliminating p3 from the equations (R56)
′
A = 0 and e5 = 0, we obtain r1 = 0; eliminating

p3 from the equations (R56)
′
A = 0 and e6 = 0, we obtain r2 = 0. Eliminating p2 from

the equations R56 = 0 and r1 = 0, we obtain r3 = 0. Finally, eliminating p1 from r1 and
R56, we obtain

A3p20(Ap1 − 2p0)(mA2 + p0)(Bm+ n) = 0,

that is, P (A) = −mA2. However, in this case, substituting this function into e(P ), we
obtain zero. Therefore, the solutions of the system E4 = E5 = E6 = 0 are reduced to
the solution of E4 = e = 0. Thus, we have the following result.

Lemma 12.
(a) All solutions of the system E4 = E5 = E6 = 0 are of the form

P (A) = −lA2, Q(B) = B(mB + n).

(b) The corresponding solutions of Eq4 = Eq5 = Eq6 = 0 are of the form

a(x) = l ln(x+ C1) + c2, b(y) = − 1

m
ln(m exp(y + C3)− 1) + C4.

(c) There are no nonconstant functions c(t) such that z = c(a(x) + b(y)) is a solution
of (8).

Now we look at the remaining possibility. We seek a solution of the system L(P ) =
M(P ) = N(P ). Eliminating p5 from L = 0 and M = 0, we obtain a reducible polynomial
of differential order 4. Denote the factors of this polynomial that can vanish by R1, R2,
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and R3. These factors have the following form:

R1 = 2A3p1p3 − 3A3p22 − 4A2p0p3 + 12A2p1p2

− 12Ap0p2 − 9Ap21 + 12p0p1 = 0;

R2 = A5p0p2p4 −A5p0p
2
3 +A5p1p2p3 + 3A5p32

−A4p0p1p4 − 3A4p21p3 − 6A4p1p
2
2 + 8A3p0p1p3

− 6A3p0p
2
2 − 3A3p21p2 − 8A2p20p3 + 36A2p0p1p2

+ 6A2p31 − 24Ap20p2 − 30Ap0p
2
1 + 24p20p1 = 0;

R3 = A3p0p2p4 −A3p0p
2
3 +A3p1p2p3 + 3A3p32 −A2p0p1p4

−A2p21p3 − 9A2p1p
2
2 + 9Ap21p2 − 3p31 = 0.

The polynomial R1 has differential order 3, and R2 and R3 are of order 4.

Lemma 13.
(a) There are no nontrivial solutions of the system L = M = N = R1 = 0.
(b) There are no nontrivial solutions of the system L = M = N = R2 = 0.
(c) There are no nontrivial solutions of the system L = M = N = R3 = 0.

Proof. The proof of the lemma is to eliminate variables in succession by calculating
resultants and also deleting trivial factors in the resultants thus obtained.

1. We eliminate p5 from the equations L = 0 and (R1)
′′
AA = 0 and denote the result

by H = 0.
2. We eliminate p4 from the equations H = 0 and (R1)

′
A = 0 and denote the result

by H1 = 0.
3. We eliminate p3 from the equations H1 = 0 and R1 = 0 and denote the result by

H2 = 0. Here

H2 = A4p0p
2
2 + 6A4p21p2 − 30A3p0p1p2 − 10A3p31

+ 32A2p20p2 + 53A2p0p
2
1 − 80Ap20p1 + 32p30 = 0.

4. We eliminate p3 from the equations H1 = 0 and (H2)
′
A = 0 and denote the result

by H3 = 0.
5. We eliminate p2 from the equations H3 = 0 and H2 = 0 and denote the result by

H4 = 0. Here

H4 = −70253568A9p91 + 1395283968A8p0p
8
1 − 12200444928A7p20p

7
1

+ 61620793344A6p30p
6
1 − 197967904768A5p40p

5
1 + 419085593600A4p50p

4
1

− 583726145536A3p60p
3
1 + 514831679488A2p70p1

2 − 260220846080Ap80p1

+ 57230950400p90 = 0.
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6. We eliminate p2 from the equations (H4)
′
A = 0 and H2 = 0 and denote the result

by H5 = 0. Here

H5 = 1103212141722206208A19p191 − 47127416742629867520A18p0p
18
1

+ 949249959445420572672A17p20p
17
1 − 11983786221719720558592A16p30p

16
1

+ 106306707637771054350336A15p40p
15
1 − 704030499159252418953216A14p50p

14
1

+ 3609492713687931533918208A13p60p
13
1 − 14658410173981465507790848A12p70p

12
1

+ 47843598571848865754906624A11p80p
11
1 − 126586196852641571546333184A10p90p

10
1

+ 272561521628794150809763840A9p100 p91 − 477462984612843785103081472A8p110 p81

+ 677459192105080195792240640A7p120 p71 − 771477939339944949012496384A6p130 p61

+ 694548641621792306115903488A5p140 p51 − 482838964862957556336689152A4p150 p41

+ 249801920472144918488285184A3p160 p31 − 90467314786526477326221312A2p170 p21

+ 20443125582599456471121920Ap180 p1 − 2166876439506913643724800p190 = 0.

7. The resultant of H4 and H5 with respect to p1, after dividing by (Ap0)
171, gives

an integer with 277 digits. This proves part (a) of the lemma. Parts (b) and (c) can be
proved in a similar way. �

This completes the proof of Theorem 3.
Note that the solutions of the Korteweg–de Vries equation occurring in the list given

in Theorem 3 were previously known in some form [5]. However, Theorem 3 claims that
it is impossible to extend the list in the framework of functions of complexity one.
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