Gauge TheorylIs
Dead!—Long Live
Gauge Theory!

n late October and early November 1994
many mathematicians received e-mail from
colleagues trumpeting the death of gauge
theory. More than a decade earlier, S. K.
Donaldson (Oxford) had found a deep but
mysterious link between Yang-Mills theory from
mathematical physics on the one hand and 4-di-
mensional differential topology on the other.
Since then, many topologists had become fasci-
nated by gauge theory. Last autumn they found
themselves on the receiving end of wry com-
ments, when rumour had it that a new set of
equations proposed by E. Witten (IAS, Prince-
ton) had made gauge theory obsolete in topol-
ogy. This was, of course, an exaggeration.
Witten’s equations, originating in his joint
work [SW] with N. Seiberg (Rutgers) in quantum
field theory and appearing in [W], do provide
shortcuts to many of the consequences of gauge
theory and quickly lead to proofs of very im-
portant new results. The equations are them-
selves part of a gauge theory and shed new light
on the Yang-Mills equations that Donaldson used.
Rather than making gauge theory obsolete, Wit-
ten’s equations make gauge theory even more in-
teresting and more powerful.

The Old Gauge Theory

Coming on the heels of the work of M. H. Freed-
man (University of California, San Diego) on topo-
logical 4-manifolds, Donaldson’s use of gauge
theory showed that the differentiable classifi-
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cation of smooth 4-manifolds is very different
from their classification up to homeomorphism.
Combined with Freedman’s work, it produced ex-
otic differentiable struc-
tures on Euclidean 4-
space, an anomaly that
does not arise in other di-
mensions.

In gauge theory one
considers connections or
covariant derivatives A
on a principal G-bundle
over a smooth 4-manifold
X endowed with an ori-
entation and a Riemann-
ian metric; here G is a
compact Lie group. The
connections of interest
are the so-called instan-
tons, the solutions of the
anti-self-dual Yang-Mills
equation, defined as fol-
lows: Let x be the Hodge
star operator defined by
the orientation and the
Riemannian metric on X.
For A a G-connection, let
FADbeits curvature . The self-dual part of the cur-
vature is

Given the
enormous impact
of the U(1)
monopole
equation on
4-dimensional
topology, there are
high expectations
for the other
equations.

FA= %(FA + % FA4)
and the anti-self-dual Yang-Mills equation is

*FA = —FA e FA=0.
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Instantons are the minima of the Yang-Mills
functional YM(A) = [y [FA|?. When G is U(1),
the anti-self-duality equation is linear and the in-
stantons are completely described by Hodge the-
ory. When G is SU(2), say, the equation is a non-
linear PDE which is elliptic on the space of
connections modulo bundle automorphisms or
gauge transformations. Its space of solutions, the
moduli space of instantons up to gauge trans-
formations, is generically a finite-dimensional
smooth manifold M. This manifold is usually
noncompact, partly due to the conformal in-
variance of the equation, and this noncompact-
ness leads to many technical difficulties in the
topological applications of gauge theory.

In 1981-82, Donaldson had the insight that
the algebraic topology of the moduli space M
contains subtle information about the differen-
tiable structure of X. He first proved that certain
topological 4-manifolds do not support any dif-
ferentiable structure at all. Later he defined dif-
ferentiable invariants of large classes of mani-
folds which, although difficult to calculate
completely, were very successful in distin-
guishing nondiffeomorphic differentiable struc-
tures on X.

This initially came as a complete surprise to
topologists. Even after gauge theory had been
firmly established as a tool in topology, there was

no conceptual understand-
ing of how and why in-

Rather than
making gauge
theory obsolete,

Witten’s

equations make

gauge theory

even more

interesting and
more powerful.

stantons were related to the
structure of 4-manifolds.
Early on Donaldson
proved that in the case of
complex algebraic surfaces
connections with anti-self-
dual curvature are the same
as stable holomorphic
bundles in the sense of geo-
metric invariant theory.
Furthermore, the instanton
invariants are nontrivial for
algebraic surfaces. This es-
tablished a strong link be-
tween gauge theory and
algebraic geometry. Four-
dimensional differential
topology was seen as being
very close to complex

geometry.

Over the last four years,
P. B. Kronheimer (Oxford) and T. S. Mrowka (Cal-
ifornia Institute of Technology) and others de-
veloped a structure theory for the instanton in-
variants. They found that under suitable
hypotheses on X all the invariants derived from
different SU(2)-bundles over X could be pack-
aged into a single analytic function
q : H>(X,R) — R of the form
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1 a=e2? % ajel,

i=1
where Q is the intersection form of X and the
a; € Q and K; € H%(X,Z) are certain character-
istic elements for the intersection form. The
“basic classes” K; are constrained by the in-
equality 2g(S) — 2 > Q(S, S) + K;(S) for the genus
g of any smoothly embedded surface S ¢ X with
normal bundle of positive degree.

The New Gauge Theory

To write down Witten’s equations on a smooth
oriented Riemannian 4-manifold X, one has to
choose a Spin‘-structure, that is, a lift of the
frame bundle from SO@4) to Spin¢4)=
Spin(4) x+1 U(1). Associated with this structure
are bundles V. of positive and negative spinors
and a complex determinant line bundle
L =det(V.). Further, there is a canonical map
0 : Vi x Vi — A2 defined by taking the trace-
free part of an elementin V, ® V. considered as
an endomorphism of V.

A U(1)-connection A on L, together with the
Levi-Civita connection of the Riemannian metric
induce a covariant derivative TI'(Vy) —
(V. ® T*X). Composing this with Clifford mul-
tiplication I'(Vy ® T*X) — I'(V_) defines a Dirac
operator D4 : T'(Vy) — I'(V_). Witten’s equations
for a connection A and a positive spinor
¢ €T'(Vy) are

Dagp=0
FA =io(p, d).

These equations are invariant under bundle au-
tomorphisms of L, but they are not conformally
invariant. The solutions, called monopoles, are
the minima for the functional

jXUF:‘ —io(d, P2 + Dadl?).

The space of monopoles modulo bundle auto-
morphisms is generically a smooth manifold,
and it is always compact. Compactness follows
easily from the Weitzenbock formula for the
Dirac operator combined with standard elliptic
theory. Further, if the scalar curvature of the
Riemannian metric is nonnegative, all the solu-
tions of the monopole equation have ¢ =0 and
so are U(1) instantons. Even if the scalar curva-
ture is negative somewhere, there are only finitely
many cohomology classes which are the first
Chern classes of complex line bundles L admit-
ting nontrivial solutions to the monopole equa-
tions.

The compactness of the monopole moduli
spaces makes them much easier to handle than
the instanton moduli spaces. This is the main rea-
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son why Witten’s approach is much simpler than
Donaldson’s. Although instanton and monopole
moduli spaces seem to contain very similar in-
formation, the monopoles are tied much more
closely to the Riemannian geometry of X. This
inspires hope for the development of a combi-
natorial approach to gauge theory.

One can use the monopole moduli spaces to
reprove and generalize most of Donaldson’s the-
orems about the nonexistence of differentiable
structures on certain topological 4-manifolds.
One can also define invariants of differentiable
structures, for example by counting the number
of points in zero-dimensional moduli spaces.
These invariants are trivial for manifolds ad-
mitting either a Riemannian metric of positive
scalar curvature or a smooth connected sum de-
composition in which both summands have in-
tersection forms which are not negative defi-
nite.

On the other hand, the invariants are nontrivial
for complex algebraic surfaces and, more gen-
erally, for symplectic manifolds [T]. This puts
strong restrictions on the differential topology
and geometry of symplectic 4-manifolds. It im-
plies, for example, that the connected sum of
three copies of the complex projective plane
does not admit a symplectic structure, although
all other known constraints for symplectic man-
ifolds are satisfied in this case.

Witten [W] predicted that the “basic classes”
K; appearing in (1) should be precisely the first
Chern classes of complex line bundles L for
which the new monopole invariants are nonzero
and that the coefficients a; in (1) should be de-
termined by the values of the monopole invari-
ants. For large classes of manifolds, this pre-
diction was quickly proved to be true, because
one can calculate both sets of invariants, for in-
stantons and for monopoles, and compare the
answers. There are promising attempts to prove
Witten’s conjecture in a more direct way.

One of the spectacular new theorems proved
using Witten’s equations concerns the problem
of finding the minimal genus of a smoothly em-
bedded surface in a 4-manifold representing a
given homology class. While formula (1) solved
this problem in many cases, it seemed very dif-
ficult to generalize the argument using instan-
tons to cover, for example, the case when the
manifold is the complex projective plane. Now
the nontriviality of the monopole invariants as-
sociated with the first Chern classes of algebraic
surfaces allows one to show that algebraic curves
have minimal genus among all smoothly em-
bedded surfaces representing the same homol-
ogy class (if it has nonnegative self-intersection).
This statement for the case of algebraic curves
in the complex projective plane [KM] was previ-
ously known as the Thom conjecture.
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The Physical Origins

Yang-Mills theory is a conformally invariant clas-
sical field theory whose groundstates are the in-
stantons. Experience with quantum field theory
suggests a recipe for turning this into a so-called
topological field theory whose correlation func-
tions are Donaldson’s instanton invariants. As
they are invariants of the differentiable structure,
one can vary the Riemannian metric used with-
out affecting the invariants. Witten [W] outlines
how studying a family of metrics g; = tg;, where
t > 0 is a real parameter, leads naturally to the
appearance of the monopole equations.

For small t, the classical approximation to
quantum field theory coincides with Donald-
son’s definition of instanton invariants. For large
t, however, the quantum vacuum states of the
theory, parametrized by a complex variable u,
become relevant. It turns out [SW] that the quan-
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tum theory naturally leads one to consider the
family of elliptic curves

y? =% - 1)(x —u).

For generic u, the elliptic curve is smooth, but

it degenerates to a rational curve at u = +1.
For large classes of manifolds, all the topo-

logical information of the instanton theory can

S.K. Donaldson be extracted by looking at appropriate elliptic
functions in infinitesimal neighbourhoods of the
points +1 in the u-plane. The reason is that for
these special values of the parameter, certain par-
ticles in the quantum theory—the monopoles—
become massless, although they are not mass-
less in the classical theory. (The monopole
equations, like the whole quantum theory, are not
conformally invariant, although the classical the-
ory is.) The information about instantons can
then be derived from the monopole equations
alone, leading to formulae for the Donaldson in-
variants. In fact, (1) is the simplest such for-
mula, and understanding this was one of the
motivations for Witten’s approach.

The monopole equations seem to detect the
simplest part of Donaldson theory, which for
simple manifolds is all there is. However, there
are manifolds like the complex projective plane,
on which there are no monopoles at all, for which
Donaldson theory has another, more compli-
cated part to it. In the quantum field theory de-
scription, this is said to be detected by integra-
tion over the u-plane, because for these
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manifolds there is more to the u-plane than one
sees near the special values u = *1.

The physical theory developed by Seiberg and
Witten [SW] suggests a whole family of coupled
equations, of which the monopole equations are
just the simplest example. If one considers
SU(N) instantons (instead of SU(2)), then there
is a related set of equations for G-connections
A, where G is the dual of the maximal torus of
SU(N), and certain spinor fields ¢. The equa-
tions are the Dirac equation for ¢ and an equa-
tion expressing FA4 by a certain hyper-Kéhler
moment map, generalizing o (¢, ¢) in the case
when G =U(1). These generalized monopole
equations are related to higher-dimensional
Abelian varieties rather than elliptic curves. Given
the enormous impact of the U(1) monopole equa-
tion on 4-dimensional topology, there are high
expectations for the other equations. Far from
being dead, gauge theory is more active and ex-
citing than ever.
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