Representations of
Finite Groups:
A Hundred Years, PartI

Introduction

Mathematical ideas in any subject area are often
discovered and developed over a period of time,
so itis usually not possible to assign a specific date
to a discovery. But in a few cases a discovery may
have been accompanied by an event of such a
unique or peculiar nature that the discovery itself
has come to be identified with that event. A well-
known instance of this is Hamilton’s discovery of
the quaternions, which is invariably associated
with his famous walk on October 16, 1843, along
the Royal Canal in Dublin. His carving of the quater-
nion equations on a stone of the Brougham Bridge
added such an element of romance to the story that
the date of 10/16/1843 is indelibly etched in his-
tory books of mathematics as the date of birth of
the quaternions. Another instance took center
stage some fifty years later—this time it was the
creation of the theory of representations of finite
groups. On April 12, 1896, F. G. Frobenius penned
his first letter to R. Dedekind to describe his new
ideas on factoring a certain homogeneous poly-
nomial associated with a finite group, called the
“group determinant”. Two more letters quickly en-
sued (on April 17 and April 26, 1896), and by the
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end of April that year, Frobenius was in possession
of the rudiments of the character theory of finite
groups. It was to take some more time for the idea
of group representations to be fully developed, but
the famous Frobenius-Dedekind Briefwechsel in
April 1896 is now hailed by historians as the sin-
gle most significant event marking the birth of
the representation theory of finite groups.

As a student of algebra, I have always been fas-
cinated by the theory of group representations. I
dabbled in the subject thirty years ago when I
wrote my doctoral dissertation, and have remained
auser and admirer of the subject ever since. When
I realized that April of 1996 was the one-hun-
dredth anniversary of the discovery of the repre-
sentation theory of finite groups, the temptation
to have some kind of “celebration” of this occasion
was great. Purely by chance I got a call in March
1996 from Alan Weinstein, our department’s col-
loquium chairman, who asked me to recommend
someone for an unfilled colloquium slot. Before I
hung up, I found that I had “volunteered” myself
to be colloquium speaker for a talk to commemo-
rate the centennial of group representation theory!
I'will forever be in shame for suggesting myself as
colloquium speaker, but then I got my chance to
tell the fascinating stories associated with the birth
of representation theory, on April 18, 1996, al-
most exactly one hundred years after Frobenius
penned his first famous group-determinant letter
to Dedekind. The same talk was repeated with
some variations in May at Ohio State University, and
then in June of the same year in the “Aspects of
Mathematics” Conference at my alma mater, the
University of Hong Kong. Due to my administra-
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tive duties at MSRI, the writing of the article was
put off for more than a year. A fall sabbatical in
1997 finally enabled me to finish the project, so I
am now pleased to offer this leisurely written ac-
count of my lecture. A somewhat longer version
with more technical details will appear concur-
rently in the proceedings of the “Aspects” confer-
ence, published by the University of Hong Kong.
In particular, some of the proofs omitted from
this article can be found in the Hong Kong pro-
ceedings.

Disclaimer and References

Before we try to tell the reader what this article is,
we should perhaps first tell him/her what the ar-
ticle is not. A proper coverage of the history of the
representation theory of finite groups would take
no less than a full-length volume, starting with
the pioneering work of Molien, Cartan, Dedekind,
Frobenius, Burnside, on to the rewriting of the
foundations of the subject by Schur, Noether, then
to the pivotal work of Brauer on both the ordinary
and the modular representation theory of groups,
climaxing perhaps with the monumental classifi-
cation program of finite simple groups (which cer-
tainly would not have been possible without the
aid of character theory). Such a major undertak-
ing is best left to the experts, and I was glad to learn
that Professor Charles Curtis is preparing such a
volume [Cu 2] in the History of Mathematics series
of the Society. In my one-hour talk, all I had time
for was to give the audience a few snapshots of the
big story, focusing on the origin of representation
theory to suit the centennial occasion. Thus, we
started with some background in nineteenth-cen-
tury mathematics, surveyed the work of Dedekind,
Frobenius, and Burnside, and went on to talk a lit-
tle about Schur and Noether, after which we sim-
ply declared ourselves “saved by the bell”. This
write-up is an expanded version of my talkl, but
still it is sketchy and anecdotal at best, and is no
substitute for the more scholarly writings on the
subject in the literature. For the latter, we rec-
ommend the articles of Hawkins [H1-Hg4], writ-
ten from the perspective of a historian, and the
work of Curtis [Cui, Cuz] and Ledermann [Lq],
written from the viewpoint of mathematicians. For
surveys of representation theory in the broader
framework of harmonic analysis, we recommend
Mackey [Ma] and Knapp [Kn]. The recent article
of K. Conrad [Con], complete with detailed proofs
and interesting computational examples, also
makes good reading for those with pencil and
paper in hand.

LTo save space, the part about Schur and Noether is not
included in the present article. Readers interested in the
work of Schur and Noether in representation theory may
consult [L>, La, Cu2].
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Since most material is drawn from existing
sources (loc. cit.), we make no pretense of origi-
nality in this article. In writing it up, we did try to
strike a balance between the mathematics and the
human dimensions of mathematics; some of the
remarks of a more interpretative nature about
mathematicians and mathematical events were my
own. It is hoped that, by mixing history with math-
ematics, and by telling the story in the chatty style
of a colloquium lecture, we are able to present a
readable and informative account of the origin of
the representation theory of finite groups.

I am much indebted to Charles Curtis, who
kindly provided me with various chapters of his
forthcoming book [Cu2], and it is my great plea-
sure to thank him, Keith Conrad, Hendrik Lenstra,
Monica Vazirani, and the editorial staff of the No-
tices for comments, suggestions, and corrections
on this article.

Backdrop of Late Nineteenth-Century
Group Theory

Before we begin our story, a quick look at the
group theory scene in Europe in the last decades
of the nineteenth century is perhaps in order. If
we regard group theory as originating from the time
of Gauss, Cauchy, and Galois, the subject was then
already more than half a century old. Budding Ger-
man mathematician Felix Klein inaugurated his
Erlangen Program in 1872, proclaiming group the-
ory as the focal point for studying various geome-
tries; in the same year, Norwegian high school
teacher Ludwig Sylow published the first proofs of
his now famous theorems in the fifth volume of
the Mathematische Annalen. Arthur Cayley and
Camille Jordan were the reigning group theorists
of the day. Among the first treatises in group the-
ory were Jordan’s Traité des Substitutions et des
Equations Algébrigues (1870) and Netto’s Substi-
tutionentheorie und Ihre Anwendungen auf die Al-
gebra (1882). Both books were on the theory of per-
mutation groups, then synonymous with group
theory itself. (The only notable exception was the
work of von Dyck on groups defined by generators
and relations in 1882-83.) One of the most popu-
lar algebra texts of the day was Serret’s Cours d’Al-
gébre Supérieure, the second volume of which (3rd
ed., 1866) contained a good dose of groups of sub-
stitutions. Abstract groups were treated only later,
perhaps first in text form, in Weber’s Lehrbuch der
Algebra. Authors of group theory papers were not
always careful, and in fact were sometimes prone
to making mistakes. Otto Holder apparently started
the tradition of writing long papers in group the-
ory, analyzing groups case by case, but was not
above forgetting a few. Even the great Arthur Cay-
ley, known to be “thoroughly conversant with
everything that had been done in every branch of
mathematics” [C: pp. 265-266], bewildered his
readers by blithely listing, as late as 1878, three
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groups of order 6 in his paper [Ca] in the first
issue of the American Journal of Mathematics.

As far as representation of groups is concerned,
there was not much in evidence. In his work in the
1870s and 1880s, Klein certainly used matrices to
realize groups, but he did this only for a few spe-
cific groups, and there was no hint at a possible
theory. In number theory, the Legendre symbol
(%) (p an odd prime) perhaps provided the first in-
stance of a “character”. This symbol takes values
in {+1}, and is multiplicative in the variable a.
Gauss used similar symbols in dealing with Gauss
sums and with binary quadratic forms, but al-
lowed these symbols to take roots-of-unity val-
ues. In Dirichlet’s work on primes in an arithmetic
progression, the Dirichlet L-series

L(s,x)= > x(n)
n=1

ns

figured prominently a “mod k character” x, which
is multiplicative in n, and zero when n is not rel-
atively prime to k. The abstract definition of an
(abelian) character we owe to Richard Dedekind.
In one of his supplements to Dirichlet’s lectures
in number theory [D], c¢. 1879, Dedekind formally
defined a character on a finite abelian group G to
be a homomorphism from G to the multiplicative
group of nonzero complex numbers. Under the
pointwise multiplication of functions, the charac-
ters of G form a group G (called the character
group), with cardinality equal to |G|, the cardinality
of the group G itself. Orthogonality relations
among characters were proved, and were included
in book form in Band II of Weber’s Lehrbuch. The
stage was now set for the discovery of the general
character theory of arbitrary finite groups.

Dedekind and the Group Determinant

To a modern student of mathematics, it would
have been perfectly natural to extend the defini-
tion of a character by taking homomorphisms D
of a group G into GL,(C) (the group of invertible
nxn complex matrices) and defining
Xxp(g) = trace(D(g)) (g € G) to get a character.
This, however, was not an obvious step for the
mathematicians in the nineteenth century. Thus the
discovery of the notion of characters for general
groups was to take a rather circuitous route,
through something which Dedekind called the
group determinant.

A last descendant of Gauss’s famous school in
Gottingen, Richard Dedekind (1831-1916) was
undisputedly the dean of abstract algebra in Ger-
many toward the end of the nineteenth century.
Though he preferred a teaching position at a local
institute in his hometown of Braunschweig? to a

2Now the Technical University of Braunschweig.
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chair in a more
prestigious uni-
versity, the math-
ematical influ-
ence he exerted
was perhaps a
close second to
that of Karl
Weierstrass.
Dedekind’s
greatest contri-
butions were in
the area of num-
ber theory. In
contemplating
the form of the
discriminant of a
normal number
field with a nor-
mal basis,
Dedekind arrived
at a similar de-
terminant in
group theory.
Given a finite
group G, let {x4:g € G} be a set of commuting
indeterminates, and form a |G| X |G| matrix whose
rows and columns are indexed by elements of G,
with the (g, h) entry given by X p-1. (One could have
taken the (g, h) entry to be xg4y, (as Dedekind first
did), but the two matrices would have differed
only by a permutation of columns.) The determi-
nant of (Xgh—l) was christened the “group deter-
minant” of G; following Dedekind, we denote it by
0(G).

In the case of an abelian group G, ©(G) factors
completely into linear forms over C through the
characters of G, as follows:

4.1) 0G) =[] ( > x(g)Xg>,

xeG \geG

where G is the character group of G. The proof'is
pretty easy. Indeed, for a fixed x € G, multiply the
gth row of the determinant by x(g) and add up all
the rows. On the hth column, we get

> x@xgn1 = ( > x(g’)xg'>x(h).

geiG geG

Thus, O(G) is divisible by > ;¢ x(g9)xg4 for each
character x. Since there are |G| different charac-
ters and these give rise to different linear forms,
we obtain (4.1). The factorization of ®(G) was cer-
tainly not without precedent. In the case of a cyclic
group, the “group matrix” (xgp-1) is just a circu-
lant matrix, and the factorization of its determi-
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Richard Dedekind.

Image (reproduced from oil painting) courtesy of Heiko Harboth.
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Ferdinand Georg Frobenius.

nant in terms
of |G|-th roots
of unity was
well known to
nineteenth-cen-
tury math-
ematicians.

In the case
of a general
group G, we
can form an
“abelianiza-
tion” G/[G, G],
where [G, G] is
the (normal)
subgroup gen-
erated by the
commutators
in G. The
above proof
would still give
(at least)
|G/[G, G]| lin-
ear factors of
0(G), corre-
sponding to the
characters of
G /|G, G]. However, these will no longer exhaust the
group determinant. For instance, if G =[G, G], this
would give only the trivial factor > ;¢ X4 Like
most nineteenth-century mathematicians,
Dedekind was well grounded in computations. He
computed explicitly ©(G) for the first nonabelian
group S3 and found that, besides the linear fac-
tors X e6 Xg and 3 ¢ 8gn(g)xg corresponding to
the trivial character and the sign character of
G/|G, G], ©(G) has a remaining squared factor of
an irreducible quadratic. He also made similar
computations with the quaternion group of order
8, and made the curious observation that, if the
scalar field is extended from C to suitable “hy-
percomplex systems” (or “algebras” in current ter-
minology), both of his examples of ©(G) would fac-
tor into linear forms as in the abelian case.
Dedekind worked sporadically on this problem in
1880 and 1886, but did not arrive at any defini-
tive conclusions. In a letter to Frobenius dated
March 25, 1896, largely concerning Hamiltonian
groups, Dedekind mentioned on the side his ear-
lier excursions into the group determinant, in-
cluding his factorization (4.1) in the abelian case
and his thoughts on the possible role of hyper-
complex systems in the general case. A follow-up
letter dated April 6, 1896, contained the two non-
abelian examples he had worked out, along with
some conjectural remarks to the effect that the
number of linear factors of ®(G) should be equal
to |G/[G,G]|. Feeling, however, that he himself
could not achieve anything with the problem,
Dedekind invited Frobenius to look into this mat-
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ter. As it turned out, it was these two letters writ-
ten by Dedekind that would become the catalyst
for the creation of the character theory for ab-
stract nonabelian groups.

Ferdinand Georg Frobenius (1849-1917)

Eighteen years Dedekind’s junior, Frobenius him-
self had achieved great fame by 1896. He got his
mathematical education at the famous Berlin Uni-
versity, under the tutelage of illustrious teachers
such as E. Kummer, L. Kronecker, and K. Weier-
strass. He wrote a thesis under Weierstrass in 1870
on the series solution of differential equations,
and thereafter taught briefly in the Gymnasium and
at the University. The University of Berlin was tra-
ditionally a feeder school for faculty positions at
the Polytechnicum in Zirich (now the Eidgenos-
sische Technische Hochschule), so it was not sur-
prising that Frobenius moved to Ziirich in 1875 to
accept a professorial appointment there.

During his seventeen-year tenure at E.T.H.,
Frobenius made a name for himself by contribut-
ing to a wide variety of mathematical topics, es-
pecially in linear differential equations, elliptic
and theta functions in one and several variables,
determinant and matrix theory, and bilinear forms.
His preference for dealing with algebraic objects
was increasingly apparent by the late 1880s, when
he began to make his influence felt also in finite
group theory. In 1887 he published3 the first proof
of the Sylow theorems for abstract groups (rather
than for permutation groups): his inductive proof
for the existence of a Sylow group using the class
equation is the one still in use today. The same year
saw another great group theory paper of his [F:
(36)]; this one offered his penetrating analysis of
double-cosets in a finite group, and contained the
famous Cauchy-Frobenius Counting Formula, now
ubiquitous in combinatorics. Unbeknownst to
Frobenius, all of this group-theoretic work was
preparing him for the greatest gift he would be-
stow on mathematics: the theory of group char-
acters, which he was soon to invent.

Careerwise the early 1890s was a time of change
for Frobenius. With the death of Leopold Kro-
necker in December 1891, a chair became vacant
at the University of Berlin. It was hardly a surprise
to anyone that the call went to the university’s for-
mer favorite son, F. G. Frobenius. Then forty-three
and at the height of his creative powers, Frobenius
was clearly a worthy successor to Kronecker. It was
just not as clear if Kronecker himself would have

3There seemed to have been an inordinate delay in the
publication of [F: (35)]. (This citation means Frobenius’s
paper (35) in his Collected Works [F].) Frobenius com-
municated this paper to the Crelle Journal in March of
1884, but the paper came out only in 1887. By this time
some of Frobenius’s subsequent papers providing various
generalizations of Sylow’s Theorems had already come out
in S’Ber. Akad. Wiss. Berlin.
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approved of the choice. An ardent believer
in his motto “God created the integers, all the
rest is the work of men”, Kronecker had se-
verely criticized almost everyone engaged in
mathematical pursuits involving real or tran-
scendental numbers. His attacks on func-
tion theorists were so unsparing and vocif-
erous that at one point even the old Professor
Karl Weierstrass was reduced to tears. Kro-
necker would probably have balked at the
idea that his successor be a student of Weier-
strass, but then obviously the choice wasn’t
his.

Frobenius was born in Charlottenburg, a
suburb of Berlin. Seventeen years was a long
time to be away from home, and in those days
people had distinct leanings toward spend-
ing their lifetime in their birthtown. Thus,
with the call from Berlin, Frobenius was
happy to take his family back to Germany in
1893, and settled down in his new home at
70 Leibnizstrasse, Charlottenburg. In the
same year, he was elected to membership in
the prestigious Prussian Academy of Sci-
ences. With Kronecker and Kummer both
dead and his former teacher Weierstrass
reaching eighty, Frobenius was to become
one of the main torchbearers for the Berlin
school of mathematics from that time on.

Though already well versed in group the-
ory, before 1896 Frobenius had never heard
of the definition of the group determinant.4
However, he was a great expert in determi-
nant theory, and he had actually dealt with
somewhat similar determinants in his earlier
work in theta functions and in linear algebra.
As aresult, Dedekind’s problem of factoring
the group determinant caught his immediate
attention. He was struck by Dedekind’s fac-
torization of ©(G) in the abelian case, but was
not convinced that hypercomplex numbers
would provide the right tool for its general-
ization. Thus, he set out to investigate the fac-
torization of ®(G) just over the complex field.
He was amazingly quick in coming to grips
with this problem. Working with almost fever-
ish intensity, he invented in less than a month
the general character theory of finite groups,
and applied this new-found theory to solve
the factorization problem for the group de-
terminant. He reported his findings in three
long letters to Dedekind on April 12, 17, and
26 of 1896. These letters, together with oth-
ers in the Frobenius-Dedekind correspon-
dence currently held in the archives of the
Technical University of Braunschweig, are
now the first written record of the invention
of the character theory of finite groups.

4 Dedekind had not published any of his findings on
this topic.
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The top portion is part of the first page of Frobenius’s April 12, 1896,
letter to Dedekind. The letter began with “Hochgeehrter Herr College!”,
a common salutation between colleagues in Frobenius’s time. The
lower portion is part of the last page, on which Frobenius signed off as
“lhr ergebenster College, Frobenius”, and wrote in the left margin his
home address, “Charlottenburg, Leibnizstr. 70”, dating the letter

“d. 12. April 1896”. The letter was written on six large sheets of paper,
with four pages per sheet.

I want to thank Clark Kimberling for kindly supplying me with a copy
of this letter. The mathematical community owes much to Kimberling,
who rediscovered the letters written by Frobenius to Dedekind (and
various other Dedekind correspondences) among the papers left in the
estate of Emmy Noether. The interesting circumstances surrounding
the recovery of these letters are reported in Kimberling’s Web page at
the URLIhttp ://www.evansville.edu/~ck6/bstud/dedek. htm1].
—T.Y.L
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Since the Frobenius letters have already been an-
alyzed in detail in the writings of Hawkins and Cur-
tis (loc. cit.), we will try to approach them from a
different angle. Assuming we are talking to a mod-
ern audience, we will first discuss how the group
determinant can be factored by using the current
tools of representation theory. With this hindsight
we will then return to Frobenius’s work, and ex-
plain how he solved the factorization problem for
O(G) in 1896 and invented the theory of group
characters in the meantime.

There is actually also a strategic reason for our
approach. Although it was the group determinant
which first led Frobenius to the invention of group
characters, the modern theory of group represen-
tations is no longer developed through group de-
terminants. In fact, few current texts on repre-
sentation theory even touch upon this subject, so
it is rather likely that modern students of repre-
sentation theory have never heard of the group de-
terminant. The following section explaining a part
of Frobenius’s work in terms of the modern meth-
ods of representation theory will therefore serve
as a useful link between the old approach and the
new.

Factorization of ©(G) for Modern Readers
Actually, what we are going to do in this section
is not all that “modern”. Everything we shall say
here was known to Emmy Noether, as the reader
can easily verify by reading her account of the
group determinant in her fundamental paper on
representation theory [N: §23, pp. 685-686]. In
fact, true to form, Noether considered more gen-
erally “system-matrices” and “system-determi-
nants” over possibly nonsemisimple algebras. It
suffices for our purposes to work with the group
algebra CG: this is the algebra consisting of finite
formal linear combinations dec agg (ag € C),
which are added and multiplied in the natural way.

As we have noted in an earlier section, a repre-
sentation of a group G means a group homomor-
phism D : G — GL,(C); the number n is called
the dimension (or the degree) of the representation.
The representation D is said to be irreducible if no
(nontrivial) subspace of C" is invariant under the
action of D(G). Each representation D (irreducible
or not) gives rise to a character xp : G — C, de-
fined by

Xxp(g) = trace(D(g)) (for any g € G).

Two n-dimensional representations D, D’ are said
to be equivalent if there exists amatrix U € GL,(C)
such that D'(g) = U"1D(g)U for all g € G. In this
case, clearly xp = xp’. Conversely, if xp = xp- and
G is a finite group, a basic result in representation
theory guarantees that D and D’ are equivalent.

Let us now broaden our view of the group de-
terminant by introducing a determinant for any
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representation of a finite group G, as follows.
Given a representation D : G — GLy(C), we take
a set of indeterminates {x4 : g € G} as before, and
let

(6.1)

Op(G) = det< > ng(g)).

geiG

We note the following three facts:

1. If we think of > ;c; Xgg as a “generic” ele-
ment x of the group algebra CG, the matrix
2.geG XgD(g) above is just D(x) upon extending D
to a C-algebra homomorphism CG — Mj(C). In-
deed, it is often convenient to think of the repre-
sentation D as being “given” by this algebra ho-
momorphism.

2. Op(G) depends only on the equivalence class
of the representation D, since a conjugation of the
representing matrices will not change the deter-
minants.

3. In the case where D is the regular represen-
tation (so that D(g) is the permutation matrix as-
sociated with the left multiplication of g on G),
Op(G) is precisely the group determinant ©(G). In
fact, on the hth column, the matrix x4 D(g’) has
an entry x4 on the g’ hth row and zeros elsewhere.
Therefore, on the hth column, Zg'eG Xg'D(g’) has
exactly the entry x,4p,-1 on the gth row.

Clearly ®p,sp,(G) =0p,(G)®p,(G). Therefore,
to compute O(G), we can first “break up” the reg-
ular representation into its irreducible compo-
nents. This is a standard procedure in the repre-
sentation theory of finite groups, which utilizes the
fundamental structure theorem on CG due to
Maschke and Wedderburn. According to this result,
(6.2) CG = Mp,(C) X - - - X Mp,(C)
for suitable n;’s (such that >; ”1‘2 =|G]|). The pro-
jection from CG onto My, (C) provides the ith ir-
reducible complex representation D;, and, using
a little bit of ring theory, one sees from (6.2) that
the regular representation is equivalent to €; n;D;.
Next we make the following observation.

Lemma 6.3. Each Op,(G) is an irreducible poly-
nomial over C, and it is not proportional to Op;(G)
for each j #1i.

Proof. The crucial point here is that, if we write
D;i(x) = (A jx(x)), then the linear forms Ajx(x)’s are
linearly independent over C. In fact, suppose
2jkCikAjkx)=0 where cj€C. Since
D; :CG — My,(C) is onto, we can find suitable
values of the x4’s in C such that D;(x) becomes a
matrix unit Ej k. Plugging in these values of x4’s
into Zj,k CjkAjk(x) = 0, we see that each cj i, = 0.
Having proved the linear independence of the
Ajk(x)’s, we can then extend them to a basis of the
space of all linear forms in {x4 : g € G}. This basis
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will now serve as new variables for the polynomial
ring C[xg : g € G], and in terms of these new vari-
ables, it is well known that det(Aj(x)) is irre-
ducible.

To prove the last statement in (6.3), it suffices
to see that ®p,(G) actually determines the repre-
sentation D;. To this end, think of ®p,(G) as a
polynomial in x;1. Since D;(1) = Ip,, x1 appears only
in the diagonal of D;(x). Writing D;j(g) = (ajk(g)),
we have Aj;(x) = > c¢ ajj(g)xg, and so

n;
Op, (G =[]Ajjx)+---
(6.4) J=1
e S @
geG\{1}

Thus, this irreducible factor determines the char-
acter xp,, and, as we have observed before, xp, de-
termines Dj, as desired. O

In view of the above, it follows that

S
0G) =] [Op,(G)™

i=1
is the complete factorization of the group deter-
minant into irreducibles over C. Here, since the rep-
resentation D; has dimension n;, the degree of the
irreducible factor ®p,(G) is n;—the same as the
multiplicity with which ©p,(G) appears in O(G).
Also, from (6.2) s is seen to be the C-dimension
of Z(CG) (the center of CG), which is given by the
number of conjugacy classes of G.We shall return
to this point a little later in the next section.

From (6.4) and (6.5), we see clearly that the fac-

torization of ®(G) is intimately linked to the irre-
ducible characters of G.

(6.5)

Frobenius’s First Definition of (Irreducible)
Characters

Of course, the efficient treatment of the factor-
ization of @(G) given in the last section was based
on a lot of hindsight. The pioneers of mathemat-
ics did not have hindsight, and must bank on only
serendipity and sheer determination. As we all
know, the first step in any new direction of math-
ematics is very often the most difficult one to
take. Frobenius knew that he needed to invent a
new character theory to factor the group deter-
minant, but unlike us he started essentially with-
out a clue. It will thus be very instructive for us to
see how he actually managed to find the first light
in a pitch-dark tunnel.

As we have pointed out before, “group repre-
sentation” was not in the vocabulary of the nine-
teenth-century mathematician, so the modern de-
finition of “character” was inaccessible to Frobenius
in 1896. Instead, Frobenius first arrived at the de-
finition of characters by working with a certain
commutative C-algebra which he later recognized
to be Z(CG), the center of the group algebra. In
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order to explain his ideas quickly, it is again eas-
ier to take advantage of what modern readers al-
ready know, although we will try to make relevant
comments on the points where Frobenius had dif-
ficulty due to the lack of modern machinery at his
disposal. The theoretical underpinning of the ex-
position below is the notion of a commutative
semisimple algebra over C.

Let gj (1 < j < s) be a complete set of repre-
sentatives for the conjugacy classes of a finite
group G (with g1 =1), and let C; € CG be the
“class sums” (sums of group elements conjugate
to gj). Itis well known (and easy to prove) that these
Cj’s give a C-basis for Z(CG), with structure con-
stants {a;;x} defined by the equation:

(7.1) CjCxk = ajjxCi.

1

Here, up to a multiple (given by the size of the ith
conjugacy class), a;ix is the number of ordered
triples (x,y,z) € G° such that x ~ gj,y ~ gk,
z ~ gi,and z = xy. (Here, “~” means conjugacy in
G.) Frobenius set up these numbers a bit differ-
ently by working with an equation xyw =1 in-
stead of xy = z; the difference is only notational.
The point is that he was extremely familiar with
these constants, which count the number of solu-
tions of such equations in groups. Now we bring
in something a bit more modern, namely, the Wed-
derburn decomposition (6.2). Taking the centers
in this decomposition, we get

(7.2) Z(CG)=Cep X - - - X Ceg

for suitable central idempotents €; € CG with
€i€j =0 for i # j. From (7.2), we know that Z(CG)
is (commutative and) semisimple. Frobenius was
not equipped with all this modern jargon, so in-
stead he had to do alot of ad hoc calculations with
the counting numbers {a;jkx} to check what we now
know as the trace condition for semisimplicity.
Anyway, Frobenius did this, so he could use this
semisimplicity information, if only implicitly.
Starting with (6.2), let D; : CG — My, (C) be the
projection map giving the ith irreducible repre-
sentation, and let x; be the corresponding character
(xi(g) = trace(Di(g))). Since D; maps center to cen-
ter, we have
(7.3) Di(Cj) = cjjln; for suitable ¢;; € C.
Computing traces, we get hjxi(g;) = nicij, where
h; is the cardinality of the jth conjugacy class.
Therefore,
hjxi(gj)  hjxi(g))

Cij = =

7.4
(74) n; xi(1)

From (7.3) we have C; = > ¢jj€;; in particular,

(7.5) Cj€i = Cij€i.
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Thus {€1,...,€s} is a basis of Z(CG) consisting of
common eigenvectors for the (commuting) left
multiplication operators by {Ci,...,Cs}. The
eigenvalues of the left multiplication operator by
Cj are the ¢;;’s as given in (7.4).

We have gotten the above conclusions much
more quickly than Frobenius did, since he had to
summon up the main results from his earlier paper
[F: (51)] on commuting operators to show the ex-
istence and independence of the eigenvectors, and
the independence proof depended critically on the
aforementioned semisimplicity property of Z(CG).
His paper [F: (51)], the first in the famous trilogy
of 1896 papers [F: (51), (53), (54)] in S’Ber. Akad.
Wiss. Berlin, was in turn inspired by the earlier
work of Weierstrass, Dedekind, and Study on com-
mutative hypercomplex systems. With modern
techniques, however, all of Frobenius’s work can
be done as above in a few lines.

This work having been done, the eigenvalues c¢;;
can now be used to define the character values
Xi(gj) via the equation (7.4). (Of course, one has
to know n; = x;(1) first, but this is a relatively
minor problem.5) Circuitous as it looks, this was
exactly how Frobenius in [F: (53)] first defined the
characters y; as class functions on G! After defin-
ing the x;’s, Frobenius promptly obtained the First
and Second Orthogonality Relations between the
(irreducible) characters in [F: (53)] (see box).

> xi@x;(@) = 6ij 1G]
geiG

2. Xi@Xi(h) = 84,1l Cc(@)|

1

These First and Second Orthogonality Rela-
tions among the irreducible characters y;’s,
proved by Frobenius in his inaugural paper [F:
(53)], have remained a benchmark of the char-
acter theory of finite groups. Here the 6;;'s are
the usual Kronecker deltas, and 64 ,is 1if g, h
are conjugate in G, and 0 otherwise; Cg(g) de-
notes the centralizer of g in G.

Although today we have a much easier approach
to characters (via representations), the original ap-
proach taken by Frobenius is by no means for-

5 Frobenius was somewhat vague about this problem, which
caused Hawkins [H3: p. 239] to remark that in [F: (53)] “the
characters are never completely defined.” But so much in-
formation is available in [F: (53)] that this problem can be
resolved one way or another. For instance, once we know
the ratios Xi(gj)/ xi(1) forall j, Xi(1) can be determined
from the First Orthogonality Relation.
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gotten. Nowadays Frobenius’s results above sim-
ply survive in the following form:

Theorem 7.6. The structure constants {a;;x} and
the character table (xi(g;)) determine each other.

Indeed, suppose the a;ji’s are given. Then the
a1 jk’s determine the h;’s, and the above work de-
termined the x;’s. Conversely, if the x;’s are given,
a calculation using the Second Orthogonality Re-
lation leads to an explicit formula expressing a; jk
in terms of the various character values.

Frobenius’s Theorem (7.6) above has remained
a deeply significant result in character theory. In-
herent in its proof is the result that the Q-span of
the values of an irreducible character x is always
an algebraic number field, nowadays called the
character field of x. And the explicit expression of
the ajjx’s in terms of character values has various
interesting applications to the construction and
study of finite simple groups; a pertinent reference
for this is Higman’s article [Hi].

Frobenius realized from the start that the char-
acters of a group are objects of a highly arithmetic
nature. He observed in [F: (53), §2, Eq. (15)] that the
constants ¢;; are all algebraic integers6, and showed
later in [F: (54), §12] that the character values are
also algebraic integers. Using all this in conjunc-
tion with the First Orthogonality Relation, he de-
duced the important arithmetical result that each
character degree n; divides |G]|.

Frobenius’s Group Determinant Paper

Having published the group character paper [F:
(53)], Frobenius was finally ready to demonstrate
to the world the applications he had in mind for
Dedekind’s factorization problem for the group de-
terminant ©(G). This he did in the final paper [F:
(54)] of the 1896 series. Since he did not have any
of our modern techniques at his disposal, the fac-
torization of ®(G) took another giant step.

First Frobenius wrote down the factorization of
O(G) as follows:

t
(8.1) 0G) =[ [ @7,
i=1

where the ®;’s are distinct (homogeneous) irre-
ducibles, say, of degree f;. After a scaling, we may

assume that each ®; has a term xq"; this deter-
mines the ®;'s uniquely (up to their order of ap-
pearance). The job is to describe the &;’s and to
determine the exponents e; in (8.1). If we take the
modern approach to ®(G) and assume the work

6An efficient modern proof is as follows. Since the ring
>i Z.Cj is a finitely generated abelian group, each Cj is
integral over 7.. Applying this to (7.5), we see that the same
is true for each cjj.
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we did in the earlier section on its factorization,
the following information is at hand:

(1) The number t of distinct irreducible factors
in (8.1) equals the number s of conjugacy classes
in G.

(2) For all i, fi (the degree of ®;) equals the mul-
tiplicity e; in (8.1).

For Frobenius, however, each of these state-
ments was to require a proof. (1) was not too hard;
he took care of it using the orthogonality relations
he developed in [F: (53)] (see box). But (2) turned
out to be a real challenge! Of course (2) was con-
firmed by all the examples known to Frobenius and
Dedekind. But Frobenius was a cautious man, and
any cautious man (or woman) knows that a few
overly simplified examples in mathematics could
be totally misleading! So at first Frobenius was
not ready to believe that e; = f;. This proved to be
a fortuitous circumstance for students of the his-
tory of mathematics, for they have here a unique
opportunity to observe directly, through letters
written by Frobenius to Dedekind, how Frobenius
went about attacking (and sometimes not attack-
ing) this difficult problem.” He first proved (2) in
the case of linear factors (f; = 1), which was not
hard; then he managed to settle the case of qua-
dratic factors (fj = 2), which was very hard. He
wrote to Dedekind to ask for help or for possible
counterexamples; in the meantime, he computed
some examples of cubic factors to confirm (2). He
confided to Dedekind how he would sometimes try
to “attain the goal of proving e; = f;” by occupy-
ing himself with totally unrelated activities, such
as going with his wife to the trade exhibition, and
then to the art exhibition, by reading a novel at
home, or else by ridding his fruit trees of cater-
pillars. Showing a nice sense of humor, he went on
to write in his June 4, 1896, letter to Dedekind:

I hope you will not give away the trade
secret to anyone. My great work On the
Methods of Mathematical Research (with
an appendix on caterpillar catching),
which makes use of it, will appear after
my death.

Frobenius’s promised book never appeared, but
apparently his “methods of mathematical research”
are still widely practiced among math professors
and their graduate students today. Frobenius’s
skirmishes with the e; =f; problem lasted five
months, but ended on a happy note: he finally
managed to prove it in full generality toward the
end of 1896. This enabled him to write up his
paper [F: (54)] on the group determinant. In Sec-
tion 9 of this paper, he wrote:

70ur account of Frobenius’s exploits here follows the ex-
cellent documentary of Hawkins in [H3, Hy].
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The power exponent, wherein a prime
factor is contained in the group deter-
minant, is equal to the degree of that
factor,

declaring it the “Fundamental Theorem of the the-
ory of group determinants.” This was certainly the
crown jewel of his monumental work in character
theory in 1896. Frobenius’s proof was an amazing
display of technical wizardry, occupying four and
a half pages of the Sitzungsberichte. Today, of
course, it is much easier to prove this Fundamen-
tal Theorem as we did in the earlier section on the
factorization of ®(G). The approach used in that
section also showed clearly how the irreducible fac-
tors of ®(G) correspond to the irreducible char-
acters x;: up to a permutation, the ®; in (8.1) is sim-
ply the ©p,(G) in (6.4), therefore corresponding to
the character x; := xp, (and of course e; = f; = nj).
The equation (6.4) showed that the coefficient of
x'fi_lxg in ®;is x;(g) for g # 1. More generally, the
other coefficients can be determined explicitly too.
Frobenius proceeded by first extending each x; by
induction, from a unary function to an n-ary func-
tion (for any n > 1); each x;(g1,...,gn) is a poly-
nomial function of the values of x;. (For instance,
to start the induction, x;(g,h)=xi(g)xi(h)—
Xi(gh).) With these “n-characters” defined, Frobe-
nius then determined &; by the following re-
markable formula [F: (54), §3, Eq. (15)]:

(82) ni! : q)i = in(g1,g21 . --agni)xglxgz .. -xg,,i,

where the summation is over all n;-tuples of ele-
ments of G. This computes all coefficients of ®;
as polynomial functions of the ordinary character
values {xi(g) : g € G}.So far, group theorists have
not made use of these “higher” characters in any
substantial way; possibly, a lot more can be done
here.

Before we leave group determinants, we should
mention a couple of rather surprising recent de-
velopments in the subject. It is well known that the
characters of a group are not sufficient to deter-
mine the group; for instance, the dihedral group
and the quaternion group of order 8 happen to have
the same character tables. Nevertheless, Formanek
and Sibley [FS] have shown that the group deter-
minant O(G) does determine G, and Hoehnke and
Johnson [H]] have shown that the 1-, 2-, and 3-char-
acters of G (mentioned above) also suffice to de-
termine G. These newly discovered facts might
have surprised the forefathers of the theory of
group determinants.

So far we have only discussed group determi-
nants in characteristic zero (namely, over the com-
plex numbers). In several papers in 1902 and 1907,
L. E. Dickson had studied the group determinant
over fields of characteristic p > 0. We refer the
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reader to Conrad’s paper [Con] for a good survey
on Dickson’s work.

The Harvest: 1897-1917

As early as in the introduction to his first group
character paper [F: (53)], Frobenius had expressed
his belief that this new character theory would
lead to essential enrichment and significant ad-
vancement of finite group theory. In the twenty re-
maining years of his life, he was to write, with
seemingly unstoppable energy, some fifteen more
papers in group theory (not to mention numerous
papers in other areas), further developing the the-
ory of group characters and group representa-
tions, and applying these to the theory of finite
groups. We shall give only a summary of this part
of the story here.

1. The first significant development after the tril-
ogy of the 1896 papers was that Frobenius was able
to introduce formally the notion of group repre-
sentations and relate it to the group determinant;
he did this again following the suggestion of
Dedekind. It is of historical interest to see how
Frobenius formulated this definition, so we quote
directly from the source [F: (56), §2]:

Let $ be an abstract group, A,B,C...
be its elements. One associates to the
element A the matrix (A), to the ele-
ment B the matrix (B), etc., in such a
way that the group $’ is isomorphic8
to the group $, that is, (A)(B) = (AB).
Then I say that the substitutions or the
matrices (A), (B), (C),... represent the
group .

Though a bit clumsy to the modern reader, this
is essentially the definition of group representa-
tion as we know it today. Frobenius also pointed
out for the first time, in [F: (56), §4, Eq. (5)], that
the characters he defined in [F: (53)] are given by
traces of the representing matrices of irreducible
(or, in his own term, “primitive”) representations.
For Frobenius, the irreducibility of a representa-
tion D was defined by the irreducibility of its de-
terminant ®p(G). The notion of irreducibility was
to undergo several reworkings and reformulations
in the years to come.

Highly significant is the fact that, in [F: (56)],
Frobenius explicitly acknowledged the contribu-
tions of Molien’s papers [M 1, M>], which had come
to his attention through Eduard Study. Molien’s
powerful method of analyzing the group algebra
as a hypercomplex system was inspired by the Lie
algebra methods of W. Killing and E. Cartan. To a
considerable extent, it anticipated the later work
of Maschke, Wedderburn, and Noether; it is also
much closer to one of the ways of studying rep-

81n Frobenius’s time, this term did not preclude the map-
ping A — (A) from being many-to-one.
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resentation theory today. Molien’s understanding
of the notion of semisimplicity (and his ability to
use it efficiently) was the benchmark of his work,
though this work was not widely recognized by his
contemporaries. Frobenius, however, did not hes-
itate to praise it, and referred to [M1] as an “ex-
cellent work” ([F: (56), p. 92]). Upon learning that
Molien was only a Privatdozent in Dorpat, Frobe-
nius even wrote to the influential Dedekind to see
if he could help advance Molien’s career. Never-
theless, Molien’s work remained in relative ob-
scurity; today he is remembered mainly through
his generating function formula in the theory of
polynomial invariants. Fortunately for modern
readers, an excellent analysis of Molien’s contri-
butions to representation theory is available from
Hawkins’s paper [Hz].

2.In two subsequent papers [F: (57), (58)], Frobe-
nius introduced the “composition” (now called
tensor product) of characters, and developed the
relationship between the characters of a group
and those of its subgroups. From the latter work
came the all-important notion of induced repre-
sentations. It is truly a stroke of genius that, within
only a couple of years of his invention of charac-
ter theory, he came up with the brilliant reciproc-
ity law for induced representations, which now
bears his name. The two papers [F: (57), (58)] were
to provide some of the most powerful tools for the
many applications of representation theory to the
structure theory of groups to be found in the twen-
tieth century.

Nowadays we have the techniques of group al-
gebras, tensor products, Hom-functors, etc., which
make everything easy and “natural”. But in math-
ematics, “naturalness” is only a function of time.
What is natural to us today was simply nonexis-
tent at the end of the nineteenth century. To prove
the main facts about induced representations and
compositions of characters, Frobenius could resort
to only one tool, the group determinant. For mod-
ern readers, it is actually quite amazing to see
how Frobenius turned the group determinant into
a veritable workhorse of representation theory,
and used it in paper after paper to get new miles
in the subject! While most (if not all) of Frobe-
nius’s group determinant proofs have now been su-
perseded by easier modern ones, in my opinion
they remain a most fitting testament to the for-
midable power and consummate skill of a nine-
teenth-century mathematician.

3. Frobenius’s computations of the characters
of some specific groups have had a profound im-
pact in representation theory, starting with the
characters of the projective unimodular groups
PSL2(p), which he already computed in his inau-
gural paper [F: (53)] in character theory. Years
later, this work blossomed into the amazingly rich
subject of representation theory of finite groups
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of Lie type.9 Frobenius already observed as early
as in [F: (53), end of §8] that the character values
of the symmetric groups are all rational integers.
Shortly thereafter, in [F: (60), (61)], he single-hand-
edly opened up the investigation into the repre-
sentation theory of the symmetric groups S, and
the alternating groups Ajy. His classification and
analysis of the characters (and therefore the rep-
resentations) of S, anticipated the work of Rev. Al-
fred Young, and laid firm foundations for much
of the future work on symmetric functions in the
new century. In [F: (60)], Frobenius built certain gen-
erating functions from the character values of Sy,
and determined these generating functions. Thus,
at least in principle, he managed to compute the
characters of S, on any given conjugacy class. The
most memorable case of this computation is Frobe-
nius’s determinantal formula for the character de-
grees of Sy: for an irreducible character x, corre-
sponding to a partition A = (A1,...,A;) of n (where
Ay = - -+ = Ay = 0), Frobenius showed (cf. [F: (60),
§3, Eq. (6)]) that

1
X/\(l) =n! dEt((Al—HL])') L

9.1) <i,j<r
_ nAQu, 2, .. pr)
plp! -t
where p;=A;+r —i and A(uy, u2,...,Hy) is the

Vandermonde determinant with the parameters y;.
The same formula was obtained independently by
Young, but Frobenius seemed to have the priority
here. Much later, the Frobenius-Young determi-
nantal formula for character degrees (for S;) was
to be given another equivalent combinatorial form
in terms of the “hook-lengths” h;;(A) in the Fer-
rers diagram of the partition A: the Frame-Robin-
son-Thrall hook-length formula recasts the char-
acter degrees in the form

n!

2 _.
©-2) [1i,j hij(A)

xa(1)=

Today the representation theory of Sy lies at the
heart of algebra and combinatorics, and impacts
many branches of pure and applied mathematics.

4. Even before his work in character theory,
Frobenius had taken a keen interest in finite solv-
able groups, and had published two papers on
them in 1893 and 1895, focusing on the existence
and structure of their subgroups. At the turn of
the century, his interest in the subject was height-
ened by his newly invented theory of group char-
acters. He was to write three more papers in the
solvable group series, and a handful of other pa-
pers on multiply transitive groups, some of them
using character theory. One of his most spectac-

9There is a bit of irony here, since Frobenius was known
to have a great disdain for the work of Sophus Lie.
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ular results (in [F: (63), p. 199]) is now a staple in
any graduate course in the representation theory
of finite groups:

Theorem 9.3. 1If G is a finite group acting transi-
tively on a set such that no element in G\ {1}
fixes more than one point, then the set of fixed-
point-free elements of G together with the iden-
tity forms a (normal) subgroup K of G. (If K C G,
G is called a Frobenius group, and K is called its
Frobenius kernel. Any one-point stabilizer of the
action is called a Frobenius complement.)

A century later, Frobenius’s proof of this theo-
rem using induced characters and the idea of the
kernel of an irreducible representation has not
lost its magic and charm. Even more remarkably,
no purely group-theoretic proof of this beguilingly
simple statement has been found to date, so Frobe-
nius’s original argument in [F: (63)] has remained
the only known proof of (9.3)! Years later, Frobe-
nius’s Theorem inspired the Brauer-Suzuki theory
of exceptional characters, and Zassenhaus classi-
fied the doubly transitive Frobenius groups, link-
ing them to the classification of finite near-fields.
The theory of Frobenius groups also helped launch
the distinguished career of Fields Medalist J. G.
Thompson, who proved in his Chicago thesis (1959)
the long-standing conjecture that Frobenius ker-
nels are nilpotent groups.

5. With his student Issai Schur, Frobenius in-
troduced the notion of the index (or indicator):

S0 = > Xxg®)

(9.4)
Gl y6

of an irreducible character x, and showed that
s(x) takes values in {1,—1,0}. In this Frobenius-
Schur theory, the x’s fall into three distinct types:
s(x)=1 if x comes from a real representation,
s(x)=—1 if x does not come from a real repre-
sentation but is real-valued, and s(x) = 0 if x is not
real-valued. The Frobenius-Schur indices contain
important information about a group G which
goes beyond the character table of G: for instance,
the number of square roots of an element g € G
can be computed via the indices in (9.4) by the ex-
pression >, s(x)x(g), a fact quite important in
group theory. In connection with their work on
characters of the first type, Frobenius and Schur
also proved the interesting result that any complex
orthogonal representation of a finite group is
equivalent to a real orthogonal representation.

Frobenius and Number Theory

A close kinship between number theory and group
theory is provided by the fact that any normal ex-
tension of number fields K/F gives rise to a finite
Galois group G = Gal(K/F). Thus, the applicability
of Frobenius’s character theory to number theory
should come as no surprise. The true interaction
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between the two theories, however, did not take
place during Frobenius’s lifetime, and had to wait
until the 1920s, when algebraic and analytic num-
ber theory became more fully developed.

The idea of using representations of Galois
groups in number theory first emerged in Artin’s
work in 1923. For any character x on a Galois
group G = Gal(K/F) as in the last paragraph, Artin
introduced what is now called the Artin L -function
L(s, x,K/F) associated with x. This is a function
in a complex variable s (|s| > 1), which encodes
both information about x and about the primes
in F and K. For instance, when Y is the trivial
character (respectively the regular character) of
G, L(s, X, K/F) is the Dedekind zeta function of F
(respectively of K). (The Dedekind zeta function
of a number field is, in turn, a direct generaliza-
tion of the Riemann zeta function for the rationals.)
Artin’s theory of L-functions made use of Frobe-
nius’s work in two ways. First, Artin showed that,
in the case when G is abelian and x(1) =1, his L-
functions coincide with the L-functions studied ear-
lier by Hecke. This required the full force of Artin’s
Reciprocity Law, which Artin established by using
ideas of Tchebotarév’s proof of a conjecture of
Frobenius (now called Tchebotarév’s Density The-
orem). Second, Artin showed that, in the non-
abelian case, Frobenius’s induced characters pro-
vided the perfect means to relate the Artin
L-functions to the (abelian) Hecke L-functions.
Later, Brauer completed Artin’s work by proving
that any character of G is an integral combination
of characters induced from 1-dimensional char-
acters of suitable subgroups of G. With this pow-
erful induction theorem, Brauer proved that
L(s, x,K/F) extends to a meromorphic function in
C, and that the quotient of the Dedekind zeta
functions (k(s)/Cr(s) is an entire function. In this
work (for which Brauer received the Society’s Frank
Nelson Cole Prize in 1949), the interplay between
character theory and number theory came to its
fruition. Later, the representations of Galois groups
became an important topic in the theory of mod-
ular forms, but that is another story.

Coda

About a hundred years ago Dedekind posed to
Frobenius the problem of factoring a certain de-
terminant associated with a finite group. The so-
lution of this abstract problem led Frobenius to the
invention of character theory, and subsequently the
representation theory of finite groups. Today,
these theories provide basic tools for various
branches of algebra, and their generalizations to
the case of topological and Lie groups play an im-
portant role in harmonic analysis. In the meantime,
group characters and representations have come
to be used extensively in many applied fields, such
as spectroscopy, crystallography, quantum me-
chanics, molecular orbital theory, and ligand field
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theory. These amazingly diverse applications, made
possible by the purely theoretical work of Dedekind
and Frobenius which predated them by decades,
seem to provide another striking instance of the
great “unreasonable effectiveness” of mathemat-
ics.
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