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Biographical Sketch

Wolfgang Heinrich Johannes Fuchs was born in Mu-
nich on May 19, 1915. He joined the faculty of
Cornell University in 1950, where he remained
through his retirement in 1985 until his death on
February 24, 1997. His life and career were char-
acterized by an unrelentingly positive and sup-
portive attitude. He read avidly (in many languages),
travelled widely, and was devoted to intellectual
dignity and the international mathematical com-
munity. He wrote two important monographs and
more than sixty-five papers in complex function
theory and related areas. These achievements were
recognized by the award of three fellowships:
Guggenheim (1955), Fulbright-Hays (1973), and
Humboldt (1978).

Wolfgang graduated in 1933 from Johannes
Gymnasium in Breslau (Wroclaw), where his
teacher, Hermann Kober (remembered for his Dic-
tionary of Conformal Representations), convinced
him to become a mathematician. Wolfgang’s obit-
uary of Kober, published in 1975, contains warm
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memories of those times. Outside school hours he
studied Russian and Chinese.

Graduation occurred shortly after Hitler as-
sumed power in Germany. Wolfgang’s parents were
classified as Jews, and they recognized at once
that a normal life would be impossible in Ger-
many. They arranged for Wolfgang to enter St.
John’s College, Cambridge, in the fall term of 1933
and were able to join him before war erupted in
1939.

At this time the predominant figures in analy-
sis at Cambridge were G. H. Hardy and J. E. Little-
wood, and Wolfgang soon came under their spell.
He received a Ph.D. in 1941 under the direction of
A. E. Ingham [10]; we discuss this work below.

In 1938 Wolfgang received a fellowship to Ab-
erdeen, where he was fortunate to have W. W. Ro-
gosinski, another refugee, as a colleague. They had
known each other from Cambridge days and shared
an interest in summability. Their collaboration in-
tensified in the summer of 1940, when both were
interred on the Isle of Man as “enemy aliens”. He
would later describe this period as a “beautiful
summer vacation”: there was a rich mathematical
environment, and, since a chef of Buckingham
Palace was another detainee, the food was rather
good.

In 1943, while still at Aberdeen, he met and
married Dorothee Rausch von Traubenberg, an-
other refugee from Germany, who was a student
at the university. “His relationship with her was the
center of his being” [W. K. Hayman]. Dorothee
came from a distinguished academic family. Her
father was dismissed from a professorship at Kiel
in 1937 for his pacifist beliefs, but, above all, for
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being married to a Jewish woman. He continued
his research in atomic physics without a proper po-
sition, assisted only by his wife. However, his sud-
den death in 1944 left her unprotected, and
Dorothee’s mother was soon sent to Theresien-
stadt, where she was ordered to document this re-
search. In this way her life was spared until the
camp was liberated by the Red Army in 1945.

In time, Wolfgang’s work (in particular, [12]) at-
tracted the attention of R. P. Agnew, who was chair-
man of the Cornell mathematics department.
Agnew invited Wolfgang to Cornell for 1948-49,
where he accepted a permanent appointment.

At Cornell Wolfgang carried out his research on
Nevanlinna theory (value-distribution theory). This
was the most sustained output of his career and
is discussed below. While Nevanlinna theory was
already well known among complex analysts, it was
usually viewed as a tool rather than as a subject
of its own. It had attracted almost no research in
the U.S. before the early 1950s.

Wolfgang was drawn to the subject by Albert
Edrei, of Syracuse University. Edrei had been trained
by G. Polya and M. Plancherel in Zirich and thus
had a strong function-theoretic background. In
1950 Edrei, then at the University of Saskatchewan,
heard I. J. Schoenberg lecture about his conjecture
on the characterization of generating functions of
“totally positive sequences”. Within a few months
Edrei applied Nevanlinna theory to settle this prob-
lem completely. This convinced him that many
important and beautiful results were ripe for har-
vest, and in 1955, at a mathematics picnic at Fall
Creek Park in Ithaca, Wolfgang agreed to join him
in the chase.

Nevanlinna theory remained the main focus of
both Edrei and Fuchs for the remainder of their ca-
reers. They, their students and co-authors, and
other groups developing in China, England, Ger-
many, and parts of the former Soviet Union entered
a long golden age of one-variable value-distribu-
tion theory. Almost all subsequent work that dealt
with functions of finite order used the formalisms
and computational techniques that Edrei and Fuchs
introduced. When Rolf Nevanlinna died, Wolfgang
was the obvious choice to deliver the address de-
voted to Nevanlinna’s theory at the memorial con-
ference in 1981.

Edrei and Fuchs remained close friends until
Wolfgang’s death, and Edrei died the following
year, on April 29, 1998.

Wolfgang was also anxious to study new ideas
from others, and his monographs influenced a
generation of complex analysts. Extremal length?
In [20] P. Koosis writes, “The most accessible in-
troduction is in W. Fuchs'’ little book” [16]. This “lit-
tle book” also includes Mergelyan’s solution to the
weighted approximation problem and an attractive
selection of ideas from potential theory.
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He read
widely and
kept detailed
notebooks
with his own
derivations
and impres-
sions from
his reading.
Frequently
he would
contribute
these exposi-
tions to the
original au-
thors, and
often this be-
came what
was pub-
lished. This
made him a
valuable edi-
tor of several
mathemati-
cal journals, notably the Proceedings of the AMS.

“My recollection is that [Wolfgang] always felt
that one-variable value-distribution theory ...was
too narrow and needed infusion of the kind of
geometric ideas advocated by Ahlfors. ...[The]
essence of his message was just to broaden the sub-
ject. At first I thought he was merely making a
philosophical statement, but twice he wrote me
complimenting me on specific things I said in my
geometrical work. Although I believe he was un-
duly impressed with something rather trivial with
which he happened not to be familiar, I came to
understand that this advocacy was more than an
empty gesture” [H. Wul.

“What impressed me is that he was still very
eager to learn what was happening ..., so he would
take new papers and really work through them in
all details” [W. Bergweiler, who was at Cornell in
1987-89 under Wolfgang’s aegis].

Two of his many foreign contacts warrant spe-
cial mention. In fall 1964 he participated in an of-
ficial exchange with the USSR Academy of Sciences
and attended an international conference in Ere-
van the following summer. There he intensified his
contacts with several mathematicians in the out-
standing schools of value-distribution theory and
approximation theory. Soon after, he worked out
Arakelyan’s construction of functions of finite
order with infinitely many Nevanlinna defects
(available at that time only in a short Doklady
note), and his 1967 Montreal lectures [18], with all
details, became the standard reference for this
work. Work by the Soviet mathematicians Keldysh,
Mergelyan, and Goldberg, in addition to Arakelyan,
occupy the major portion of [18]. His efforts to
bring important work to the attention of Western
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P{hotograph courtesy of Dorothee Fuchs.

Wolfgang Fuchs, 1949.
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mathematicians continued all his life. This orien-
tation also led him to purchase gift memberships
in the American Mathematical Society for several
colleagues from abroad.

“Mathematicians of the

world can admire how in
the years of the cold war he
was building bridges be-
tween the divided spheres
of mathematicians. Today
itis hard to imagine ...what
was the common situation
of fifteen years ago. [In
those times] personal con-
tacts were the privilege of
only a very narrow circle.
W. Fuchs understood that
separation and mutual mis-
trust would only be detri-
mental to the science of
mathematics. Many people
understood this fact, but
only a few took an active
part in popularizing the
achievements of Soviet
mathematicians in the
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Fuchs in Berlin, October 1978.

West” [A. A. Goldberg].

He was thrilled to make
an official visit to China in
1980. The Cultural Revolution had ended only a few
years earlier, and during that period no one in
China could enter a scientific career. Wolfgang en-
thusiastically lectured and arranged for math-
ematics students to come to the U.S. to help restore
mathematics in China. This was an important re-
source and contact for Chinese mathematicians,
since function theory was one of the few active
areas of mathematical research in China at that
time (cf. [9]). “In simple words, the work done by
Zhang [Guang-Hou] and me in the seventies was
mainly based on the knowledge of French schol-
ars [active before 1940] and the influence of Edrei
and Fuchs’s papers” [Yang Lo]. Wolfgang publi-
cized the work of Yang, Zhang, and others and
arranged for many mathematicians to visit the
U.S. Thus he felt outrage at the massacre of June
1989 in Tiananmen Square and at once organized
and arranged that the letter [1] be published in the
Notices. “[It] was first suggested to me by [Wolf-
gang]. As a Chinese-American I would never have
done it alone” [H. Wu]. His concern continued for
the rest of his life: the letter [2] decried the reim-
prisonment of the dissident Wang Dan. Because of
human rights considerations, he publicly declined
later invitations to China and, on other occasions,
to Israel.

Wolfgang was a charter member of the Ithaca
chapter of Amnesty International and served as co-
ordinator. “Our group had strong links with the in-
ternational scientific community, and Wolfgang
took an active role in establishing contacts with sci-
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entists in Eastern Europe, the Palestinians in the
West Bank, and elsewhere, including such well-
known dissidents as Andrei Sakharov and Yuri
Orlov. He continued to attend meetings and sup-
port Amnesty activities long after the state of his
health would have justified slowing down” [Peter
Wetherbee].

He contributed a poem at the 1985 conference
to celebrate de Branges’s proof of the Bieberbach
conjecture. It is the closing item in the published
proceedings (1986), and the way he describes the
history of the problem and its solution displays and
preserves some of the charm his colleagues and
friends long appreciated. “My first encounter with
Wolfgang Fuchs changed my life. I visited Cornell
in 1965 to consider an offer from the mathemat-
ics department. One evening in Wolfgang’s home
convinced me that it would be a privilege to live
and work in the same community as this wonder-
fully wise, kind, and witty man” [Clifford Earle,
1997].

Some Mathematical Accomplishments

We describe some aspects of Wolfgang’s research
that display his breadth, insight, power, and in-
fluence in analysis. A full bibliography and dis-
cussion appear in a special issue of Complex Vari-
ables [3] dedicated to him and Edrei.

Thesis

Many theorems about entire and meromorphic
functions are obtained by comparing growth rates
of appropriate increasing real-valued functions. If
f is entire, the most common such function asso-
ciated to fis the maximum modulus

M(r) = M(r, f) = max If(re'?)],

but for given p > 0 we could as well consider
My(r,f), the Ly-mean of fon {|z| = r}.Wolfgang’s
thesis [10] confirmed a remarkable conjecture by
Ingham: when p # co, M), itself is almost an ana-
lytic function.

Let f and g be analytic in
{r1 < |z| < r2} and suppose for a fixed
0 < p < o0 we have My(r,f) = My(r,g)
for a sequence of r with limit point in
(r1,r2). Then Mp(r,f) = Mp(r,g) for
rn<r<rnm.

This theorem completely fails when p = c. Hay-
man considers this and [8], written with Erdés, his
favorites. The theorem is not hard to prove when
fand g have no zeros, and “the proof of the ana-
lyticity [in r of the L, mean] across the modulus
of a zero is a brilliant and subtle piece of work”
[Hayman].

Nevanlinna Theory

Wolfgang’s greatest impact on American math-
ematics came from his work on Nevanlinna theory.
Nevanlinna developed his theory in the 1920s as
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a potential-theoretic analysis of Picard’s theorem
(1879), which asserts that a nonconstant mero-
morphic function in the plane cannot omit three
values. The obvious example f(z) = e? shows that
the theorem is sharp. For the next fifty years, Borel,
Valiron, and others attempted to find more in-
sightful proofs. Not only was Nevanlinna’s ap-
proach the most successful, but his techniques
became standard in potential theory and the foun-
dation for a subject of its own. Thus, let f be mero-
morphic in the plane. If 0 < ¥ < o and n(r, a) is
the number of solutions to the equation f(z) = a,
with |z| < r, account being taken of multiplicities,
we set

.
N(r,a) = J n(t, a)t=1 dt

(this is slightly modified when f(0) = a). Nevan-
linna’s characteristic T(r) = T(r, ) can be defined
as

T(r) = jé N(r, @) du(a),

where i is the uniform distribution on the Riemann
sphere C, and the deficiency 6(a) = é(a,f), a € C,
is
. N(r,a)
6a)=1-1 .
(@=1-lmsew )

It is elementary that T(r) 1 o and 0 < 6(a) < 1.
Of course, 6(a) = 1 if the equation f(z) = a has no
solutions. Nevanlinna’s famous Second Funda-
mental Theorem implies that

(1) Zé(a) <2,
a

a deep generalization of the Picard theorem. Nevan-
linna theory in the plane asks for refinements of
(1), given other properties of f. Nevanlinna’s T(r)
plays the role of the maximum modulus M(r) in
the special case that f'is entire; we then simply have
O0() =1. The standard references are [18] and
[19].

Nevanlinna’s key insight was his “lemma of the
logarithmic derivative”, which states that for most
large r,

21 ’
(2) £I%+f

?(reie)’ do = o(log(rT(r))).

Thus, the left side of (2) is negligible when com-
pared to T(r). Since in (2) we may replace fby f — a
for any complex number a, (2) indicates that if f
is very close to a complex value a on a portion I
of {|z| =r}, then f" must also be small on I.
Wolfgang’s first works revisited the expression
(2) in a direct manner, by estimating
f‘/
7 (2)
where I is any subarc of {|z| = r}. This integral is
far more treacherous than (2); in fact, it diverges
whenever I contains a zero or pole of f. His esti-

3) M@mEL

ldz|,
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mates appear in [14] and [15]; later Petrenko found
the sharpest bounds.

Wolfgang obtained two striking applications
from his estimates. To explain them, we need the
notion of the order p of a meromorphic function

f:

o log T(r, )
@ p= llrrrhsogp logr
For example, exp(zk) has order k.In [14] Wolfgang
showed that when p < oo, (1) alone does not de-
scribe the full situation: in addition, we have that

(5) > 612(a) < o,

which confirmed a conjecture of Teichmiiller. Wolf-
gang considered this and the paper [8] (with Erdds,
discussed below) his two best. Some years later,
Weitsman, following insights of Hayman, showed
that 1/3 is the optimal exponent in (5). That (5) re-
flects special properties of functions of finite order
became clear when, with Hayman, Wolfgang
showed (cf. [18], Chapter 5, and [19], Chapter 4)
that Nevanlinna’s defect relation (1) is sharp among
all entire functions.

Paper [15] proved a conjecture that G. Polya
posed in his famous paper [23]. Let f be entire and
of order p < o with power series development

(6) f(2) =X axz"™.
If ng/k — oo as k — oo, then
. L(r,f) _
ISP Ny~

where L and M are, respectively, the minimum and
maximum modulus of fon {|z|=r}. Thus, in a
very precise sense, these gap series behave as
monomials for arbitrarily large values of r.

The first joint work of Edrei and Fuchs ([5] and
[6]) completely characterized entire functions f of
finite order for which > 6(a) = 2;i.e., equality holds
in (1). Not only is p a positive integer (this was
shown earlier by Pfluger), but the global asymptotic
behavior and Taylor expansion of f are completely
described. In particular, only a finite number of
nonzero terms can appear in the deficiency sum
(1). These conclusions were obtained as limiting
cases when the difference 2 — >’ d(a) is sufficiently
small. One significant problem arising from this
work remains open to this day: If p is “close to”
aninteger k and > 6(a) is “nearly” equal to 2, can
there be only finitely many nonzero terms in (1)?

Their paper [7] introduced two major ideas that
have transformed much future research. First, they
made a serious study of “Pélya peaks” and showed
that these peaks gave a new, elegant, and unified
way to interpret the hypothesis that the order p
in (4) be finite. This led to the common principle
that a function f should be studied by comparing
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Figure 1. The
possible values of
(u, v) must always be
inside the first
quadrant. According
to the “ellipse
theorem”, they are
also limited to the
portion outside the
ellipse u? + v2—
2UVCosTTp = sin1p.
The shaded regions
here show the setin
question for p = .33
and p =.7.

(1, 1) (1, 1)

\

its characteristic T(r) to simple local comparison
functions defined intrinsically in terms of T(r). Be-
fore [7] authors were forced to create many ad hoc
comparisons between T(r) and r”, but after [7]
most of these notions were forgotten.

The derivation by Edrei and Fuchs in [7] of a key
inequality of Goldberg provided an essential foun-
dation on which A. Baernstein later could build his
*-function. The *-function continues to have a
major impact on symmetrization and geometric
function theory.

While the impact of [7] on later work was enor-
mous, its main conclusion should not be ignored.
The “ellipse theorem” gives a complete relation be-
tween any two terms that appear in the deficiency
sum (1) and the order p of a functiog f when
0 < p < 1.Thus let a and b be fixed in C, and set
u=1-20o(a), v=1- 36(b). Any understanding of
the pair (u,v) sheds light on any two terms ap-
pearing in (1). It is clear that (u, v) is always con-
fined to the square O < u,v < 1. Edrei and Fuchs
prove that, in addition, the point (u, v) must lie on
or outside the ellipse

u’ +v2 — 2uv coswp = sin® wp
and this condition is best possible in all cases. See
Figure 1.

This result is nearly forty years old. Except in
some trivial cases, when p > 1 there is no complete
description of the possibilities of {(u,v)} as f
ranges over all meromorphic functions of order p.
For entire functions, the “trivial case” occurs when
p is an integer k, in which case (u, v) can lie any-
where in the square, with fx(z) = exp(zk) being ex-
tremal.

Closure Problems

Although Wolfgang wrote fifteen papers during his
stay in Britain, he is probably best remembered
today for his paper [11] on the closure of the func-
tions {e~{t%} in Ly(0, ). The subject begins with
Weierstrass’s theorem that polynomials are dense
in Cla, b]. H. Miintz proved in 1914 that if S is any
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subset of the positive integers, then the linear
spanof {t™; m € S} isdensein L»(0, 1) if and only
if S¢m™! =c0. This result suggested that ap-
proximation of rather general functions might be
possible by using specific subclasses that have at-
tractive structures and led to a wide development.
A more refined analysis is needed in [11]; on the
finite interval (0, 1) it corresponds to a study of
the closure of {(log(1/x))%}. In addition, the pos-
sibility that the a,’s are positive but not necessarily
integers raises many technical complications. Let

) Yir)=2 > ay!

ay<r

for r > a;. Wolfgang’s theorem shows that the
system {e~'t%} is complete in L»(0, ) if and
only if

o0

J lexp Y (X)lr 2 dr = co.
ay

Roughly speaking, this says that if a, ~ «v as
v — oo, then the system is complete if « < 1/2 and
incomplete if o« > 1/2.

The basic problem is that the integral may con-
verge without the {a,} satisfying the Blaschke
condition Y aj! < co. This necessitates consider-
ation of a function of the form

A W

(8) H(z) = Vﬂzl <Z+ ™ exp( ZZ/av)>

to cancel out the zeros of a certain function G(z),
analytic in the right half-plane. The paper, written
before the contribution of functional analysis to
closure problems in complex analysis was fully ap-
preciated, involves a highly sophisticated appli-
cation of the Ahlfors Distortion Theorem and
shows Wolfgang already at the height of his ana-
lytical powers.

Although (8) is regular only in the right half-
plane, Wolfgang uses an inverse integral trans-
form to obtain the desired function orthogonal to
the family {e Tt9v}.

The product (8) itself has many uses. It provided
a key ingredient for [12], which was so admired by
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Ph.D. Students of Wolfgang Fuchs:
Tseng-Yeh Chow (1953)

Alan Schumitzky (1965)

Linda R. Sons (1966)

David Drasin (1966)

Virginia W. Noonburg (1967)

M. A. Selby (1970)

I-Lok Chang (1971)

Subinoy Chakravarty (1975)

Agnew. Let f be of exponential type k (we write
f € Ex): this means that logM(r) = O(kr) as
r — oo, with M(r) equal to the maximum modulus
as above. Let us call a sequence {a,} of positive
real numbers a determining sequence correspond-
ing to ‘Ey if the conditions ay,+1 —ay > ¢ > 0 for
all v, f € Eg, and f(ay)=0 for v=1,2,... imply
that f = 0. The most famous theorem of this type
is due to F. Carlson: If k < 1, then {v; v >0} is a
set of uniqueness for Zg, and the example
f(z) = sin Ttz shows that this bound on k is exact.
The contribution of [12] is to give a condition both
necessary and sufficient for any k: If 1 is con-
structed as in (7) from the {a,}, then
lim sup Y (r)r 2K/ = oo,
¥ — o0

Several other papers are in this vein and are ex-
tensively discussed in the monographs of Man-
delbrojt [22] and Boas [4]. These problems, with
more general weights than e~!, were also consid-
ered in the thesis of Malliavin, who related them
to “Watson’s problem”. In 1967 Wolfgang showed
that his original approach led to an elegant solu-
tion to one result in Malliavin’s thesis.

In the 1950s Malliavin carried the ideas of (8)
much further and deduced the converse to Polya’s
maximal density theorem concerning gap series.
In [23] Pélya had proved that if a power series of
the form (6) has radius of convergence one and the
(Polya) maximal density of the nonzero coeffi-
cients in (6) is D, then every arc of {|z| =1} of
length greater than 27D contains a singularity of
f. This richly amplifies the well-known fact that the
circle of convergence of any power series has at
least one singularity.

While the precise definition of maximal density
is too complicated to be reproduced here, any sub-
set of integers does have such a density (this den-
sity is defined in terms of a lim sup). Thus it is nat-
ural to ask if the Pélya density is the precise notion
needed to guarantee Poélya’s theorem. Malliavin
was influenced by [13] to develop an extensive
theory, which among other things showed that
Polya’s notion of density was exact. In [20], Chap-
ter 9, Koosis uses Malliavin’s arguments to estab-
lish this converse directly from [13]. This discus-
sion also provides an exhaustive explanation of the
significance of products such as (8).
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Additive Number Theory

Erdés shared Wolfgang’s enthusiasm for their joint
paper [8]: “[It] certainly will survive the authors by
a few centuries” (quoted in [24]). An excellent ex-
position is in [21], Chapter II.

Thus, let A = {ay} be anondecreasing sequence
of nonnegative integers, and for n € Z let r(n; A)
be the number of solutions to the inequality
aj+aj <n with a;,aj € A, using any consistent
method of enumeration. Special techniques are
available when A =9 = {m?, m > 0} in this case
r(n; A) is simply the number of points of the in-
tegral latticein {|z| < n!/2}, and so r(n; Q) ~ Tn.
In classical work dating back to Hardy in 1915, it
was shown that this asymptotic relation cannot be
attained too rapidly: when A = Q and c = 1T, then

) lr(n; A) — cn|
9) hr,?qs;,lp o) > 0,
where ®(n) = {nlogn}/4.

These arguments were heavily based on the in-
terpretation of r(n; A) when A = . The contribu-
tion of [8] is that such limitations are, in H. Hal-
berstam’s words from 1988, “a law of nature.” In
fact, if A is any such sequence, then there is a uni-
versal ®(n) t oo such that (9) must hold for any
¢ > 0. Of course, if we allow ¢ =0, then a suffi-
ciently sparse A allows that r(n;a)n—! — 0 as
rapidly as desired. Erdés-Fuchs show that ®(n) =
ni/41og=1/? n gives (9) for any A.
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