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T
his is largely, but not entirely, a histor-
ical survey. It puts various matters to-
gether that are usually considered in
separate contexts. Moreover, it leads to
open, probably quite difficult problems

and has analogues in contemporary mathematics.
There are three parts.

The first part is about a certain range of clas-
sical results in algebraic topology concerning con-
tinuous real functions and maps, vector fields,
etc., that can be stated in a very simple way: just
replace “continuous” by “linear”. They thus seem
to be reduced to problems of algebra, essentially
linear algebra, where the solution is relatively easy.
The proofs of all these statements, however, do not
use such a reduction principle. They are beautiful
and in general quite difficult, using elaborate ideas
and techniques of topology such as cohomology
operations, spectral sequences, K-theory, and so
on.

In these cases the absence of a reduction prin-
ciple from continuity to linearity is thus a missing
link between two areas. Of course, such a link is
not necessary since the results are proved. Still, it
might be interesting to have, at least in special
cases, a direct reduction to linearity which could
throw new light onto old and new mathematics.

We begin, in that first part, with a very ele-
mentary example. It contains in a nutshell the
problem to be discussed later for analogous but
more complex phenomena.

The second part is about the homotopy of the
unitary groups. It leads to a different linearization
phenomenon stating that maps of a sphere into a
unitary group are homotopic in the infinite unitary
group to a linear map (in the situation of the first
part it is, in general, not true that any continuous
solution is homotopic to a linear one). Again, no di-
rect proof is known—by differential geometry, by
approximation, or by optimization. This lin-
earization result is due to the close relation be-
tween the classical Hurwitz-Radon matrices and
Bott periodicity. Since the latter is the source of
topological K-theory and general homology theo-
ries, a direct approach would establish a link be-
tween an important old matrix problem and refined
methods of algebraic topology.

The third part is a short outlook concerning top-
ics of contemporary interest. It is about recent
trends in homology theories for spaces with infi-
nite fundamental group G using Hilbert space
methods (Hilbert-G-modules, `2-homology, and
`2-Betti numbers). The presentation, necessarily a
little technical, turns around the von Neumann al-
gebra of G considered just as an algebra, forget-
ting the analysis behind it. We first recall the (weak)
Bass conjecture (1976), which has become a theo-
rem for several classes of groups but is still open
in general, and give it a simple von Neumann al-
gebra formulation. Application to algebraic topol-
ogy and group homology again lead, in a very spe-
cial example, to linearity.

We probably all agree that eventually reducing
a difficult problem to a “nice” situation is at the
heart of mathematics. What I present here is a
modest attempt to list topics where a direct link
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to linearity or to easy algebra probably exists but
is not known. If found, it might, even in different
contexts, have some general significance. But in
most other areas, nice situations certainly are of
a quite different nature; there is no need to list ex-
amples.

Vector Fields and Vector Functions
Two preliminary remarks seem appropriate.

1) The results in the first part are all about cer-
tain positive integers (dimensions, number of vec-
tor fields, etc.). They state that, apart from those
values of these integers where (multi-)linear solu-
tions exist, there are no continuous solutions. This
negative statement can be turned into a positive
one, mainly about the existence of zeros; see Propo-
sition 3. Moreover, in some of those cases where
a linear solution exists, there are also other con-
tinuous solutions of a different nature (not ho-
motopic to linear ones).

2) We, of course, do not suggest that the re-
spective topological results should have been
proved from the outset by reduction to linearity.
On the contrary, these problems were a source of
stimulation for developing interesting tools that
still are very important, e.g., in modern homotopy
theory. The linearization phenomenon emerged
only a posteriori after the topological theorems had
been established.
Tangent Vector Field on a Sphere
A tangent unit vector field v on Sn−1 ⊂ Rn (given
in coordinates ξ1, . . . , ξn of Rn by 

∑
ξ2
i = 1) is a

function that attaches to x ∈ Sn−1 a vector v(x) sat-
isfying

(1) 〈v(x), x〉 = 0,

(2) |v(x)|2 = 〈v(x), v(x)〉 = 1

for all x ∈ Sn−1. Here 〈 , 〉 is the standard scalar
product in Rn .

Linearity implies that (2) is equivalent to

(2′) |v(x)|2 = 〈x, x〉 for all x ∈ Rn.
If n is even, v(x) = (−ξ2, ξ1,−ξ4, ξ3, . . . ) is such

a field, linear in x. What about linear fields if n is
odd? Let

vi =
∑
aikξk

be the components of v(x). Then (1) means∑
aikξiξk = 0 for all x; i.e., the matrix aik is skew-

symmetric. If n is odd, its determinant is 0, and
thus there is an x ∈ Sn−1 with v(x) = 0, in contra-
diction to (2).

Proposition 1. A linear tangent unit vector field
on Sn−1 exists if and only if n− 1 is odd.

We now ask the same question for continuous
vector fields. These are, of course, more interest-
ing from the viewpoint of geometry and analysis.
Given such a field on Sn−1, we consider the great

circle determined by x and v(x) and move the
point x, in the v(x)-direction, to its antipode −x,
for all x ∈ Sn−1. This is a homotopy (a continuous
deformation) between the identity map and the an-
tipodal map of Sn−1.

At this point the homological concept of degree
comes into play. Its value is 1 for the identity and
(−1)n for the antipodal map. Homotopic maps
have the same degree, so we get 1 = (−1)n; i.e., n
is even.

Proposition 2. A continuous tangent unit vector
field on Sn−1 exists if and only if n− 1 is odd.

The crucial point is now to express these facts
in a different way. We write Pn for the problem:
Does there exist on Sn−1 a tangent unit vector
field?

Theorem L (“Linearization”). If Pn has a continu-
ous solution, then it also has a linear solution.

Theorem L is proved “indirectly” by using a
method from algebraic topology. There is no harm
in doing so. By a “direct” proof we would mean a
procedure replacing a continuous field by a linear
one (for example, through a variational principle
where in the space of all continuous fields there
would be an extremal expected to be linear). Such
a direct proof would reduce the topological prob-
lem to very elementary linear algebra.

In the more complicated situations to be de-
scribed below, a direct reduction to a transparent
algebraic argument, though not necessary, might
be even more interesting.

Remarks. 1) The negative statement “There is, for
even n− 1, no continuous tangent unit vector field
on Sn−1” can be turned into a nontrivial existence
statement for zeros, as follows.

Proposition 3. Let fi(ξ1, . . . , ξn), i = 1, . . . , n, be
continuous functions satisfying∑

ξifi(ξ1, . . . , ξn) = 0

for all x with |x| = 1. If n is odd, then the fi have
a common zero.

Otherwise the fi could be normalized so as to
be the components of a unit tangent vector field
on Sn−1. If the fi are polynomials, one has an al-
gebraic statement for which no algebraic proof
seems to be known. For the complex analogue,
however, there is an algebraic proof by van der
Waerden (1954).

2) The above proof of Proposition 2 is by ele-
mentary algebraic topology. For differentiable vec-
tor fields there are other classical proofs, using
analysis or geometry; they are all based on some
version of the concept of degree. A very different
analytic proof, however, is due to Milnor (1978).
None of these proofs is by reduction to linearity.
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Vector Functions of Two (or More) Variables,
Multiplications in Rn
The well-known vector cross-product x× y in R3

is a function of two vectors that is bilinear and ful-
fills

(3) 〈x× y, x〉 = 〈x× y, y〉 = 0,

(4) |x× y|2 = |x|2|y|2 − 〈x, y〉2.
For which n does such a bilinear vector product
exist in Rn?

We assume that it exists in Rn and imbed Rn
in Rn+1 = R⊕ Rn. We write X ∈ Rn+1 as X = ξ + x,
ξ ∈ R, x ∈ Rn, and similarly Y = η + y ∈ Rn+1, and
put

(5) X · Y = ξη− 〈x, y〉 + ξy + ηx + x× y.
Then 1 + 0 ∈ Rn+1 is a two-sided identity for that
product, and an easy computation using (3) and (4),
namely,

|X · Y |2 = ξ2η2 + 〈x, y〉2 − 2ξη〈x, y〉 + ξ2|y|2
+ η2|x|2 + 2ξη〈x, y〉 + |x|2|y|2 − 〈x, y〉2

= ξ2η2 + ξ2|y|2 + η2|x|2 + |x|2|y|2,
yields

(6) |X · Y |2 = |X|2|Y |2 .
The product (5) turns Rn+1 into an “algebra”; the

commutative and associative laws are not required.
It fulfills, however, the norm product rule (6).

We consider for a moment such algebras in Rn
with norm product rule. The product X · Y can eas-
ily be modified so as to contain a two-sided iden-
tity whose existence we will assume in the fol-
lowing and denote 1. A bilinear product can be
given by the multiplication table of a basis of Rn ;
it is convenient to have 1 as a basis element.

The classical examples for n = 1,2,4, and 8
are:
R1 = R
R2 = C
R4 = quaternion algebra H (associative but not

commutative)
R8 = “Cayley numbers” or Octonion algebra

(not associative, not commutative)

We do not give the well-known multiplication ta-
bles for C (basis 1, i), H (basis 1, i, j, k), and the
Octonions. We recall, however, that all these alge-
bras fulfill the norm product rule (which implies
that there are no zero-divisors).

If we write ξj for the components of X, ηj of
Y, ζj of X · Y, the norm product rule becomes

(7) (ξ2
1 + · · · + ξ2

n)(η2
1 + · · · + η2

n) = ζ2
1 + · · · + ζ2

n .

Because of the “composition of quadratic forms”
given by (7), the algebras with norm product rule
are also called composition algebras. In 1898 Hur-
witz proved that such a “composition of quadratic
forms” with bilinear functions ζj of the ξj and ηj,
with real or complex coefficients, can exist for
n = 1,2,4,8 only.

Proposition 4. A bilinear multiplication in Rn with
two-sided identity and with norm product rule ex-
ists if and only if n = 1,2,4,8.

In the same spirit as before, we consider the cor-
responding problem for continuous multiplica-
tions. One would expect that continuity gives much
more flexibility than bilinearity. However, Adams
proved in 1960 that:

Theorem A. A continuous multiplication with two-
sided identity and norm product rule exists only
for n = 1,2,4,8.

Thus, if we now write Pn for the continuous mul-
tiplication problem in Rn (with the above proper-
ties), one again has Theorem L, except that linear
is to be replaced by bilinear. And a “direct” proof
would reduce the proof of Adams’s famous The-
orem A to the very old Hurwitz argument of lin-
ear algebra.

The original proof of Adams’s theorem was a
real tour de force, using the whole range of meth-
ods of algebraic topology known at that time. A
very simple proof became available later thanks to
the development of topological K-theory and the
Atiyah-Hirzebruch integrality theorems; the proof
is simple, but the prerequisites are certainly not.

Here too an algebraic corollary can be men-
tioned for which no algebraic proof is known.

Proposition 5. Rn is a bilinear division algebra if
and only if n = 1,2,4, or 8.

Division algebra means a product without zero-
divisors (associativity and commutativity are not
required). If such a product is given, it can be
renormalized so as to fulfill the norm product
rule, but one loses bilinearity. Theorem A then
says that n = 1,2,4, or 8.

If we return to vector products of two vectors
in Rn , the earlier arguments combined with the
Hurwitz Theorem (Proposition 4) yield

Proposition 6. A nontrivial bilinear vector prod-
uct fulfilling (3) and (4) exists in R3 and in R7 and
in no other Rn .

Indeed, it follows that n + 1 must be 1, 2, 4, or
8. We have to show only that such a vector prod-
uct actually exists in R7. We first note that for n = 3
the product (5) defines the usual quaternion mul-
tiplication in R4, where in X = ξ + x the R-multi-
ple ξ of 1 is the “real part”, x the “imaginary part”.
Conversely, starting from the quaternion product,
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one considers imaginary quaternions x, y ∈ R3

and puts

x× y = x · y + 〈x, y〉,
which is imaginary. Then

(x · y) · y = x · (y · y) = −|y|2x
(since y · y = −|y|2 for y ∈ R3)

= (x× y) · y − 〈x, y〉y
= −〈x× y, y〉 + imaginary terms;

whence 〈x× y, y〉 = 0, and similarly 〈x× y, x〉 = 0.
By the norm product rule valid for the quater-
nions one has

|x · y|2 = |x|2 · |y|2 = |x× y − 〈x, y〉|2
= |x× y|2 + 〈x, y〉2 ;

i.e., (4) holds.
Exactly the same procedure works for the 

Octonions in R8 = R⊕ R7. Although the product is
not associative, the “alternative” law (X · Y ) · Y =
X · (Y · Y ) holds, and only this has been used (ac-
tually the alternative law holds in any composition
algebra). Thus x× y = x · y + 〈x, y〉 , x, y ∈ R7, is a
bilinear vector product.

For a continuous vector product in Rn , the for-
mula (5) defines, exactly as in the bilinear case, a
continuous product with two-sided identity and
norm product rule in Rn+1. Again using Adams’s
Theorem A, we get

Proposition 7. A continuous vector product in Rn
fulfilling (3) and (4) exists if and only if n = 3
or 7.

Writing Pn for the existence problem of a vec-
tor product of two vectors in Rn , one has Theo-
rem L (with bilinear instead of linear).

An interesting corollary of Proposition 7 con-
cerns almost-complex structures on Sn. Such a
structure is given by a continuous field J(x) of lin-
ear transformations of the tangent space at x ∈ Sn
with J(x)2 = (minus)identity. (On a complex-ana-
lytic manifold, multiplication of complex vector
components by 

√−1 is such a field. But we do not
assume that complex-analytic coordinates are
given.)

Given the field J on Sn, we consider x ∈ Sn, a
unit tangent vector y(x) (i .e. ,  two vectors
x, y ∈ Rn+1 with |x| = |y| = 1 and 〈x, y〉 = 0), and
the oriented tangent 2-plane determined by y and
J(x)y. We choose x× y to be the unit vector or-
thogonal to y in that plane and corresponding to
the orientation.

We then have a vector product x× y defined for
|x| = |y| = 1 and 〈x, y〉 = 0 only, but it can easily
be extended to all vectors x, y ∈ Rn+1 so as to ful-
fill (3) and (4) and be continuous. Therefore n + 1
must be 3 or 7; whence n = 2 or 6.

Proposition 8. Sn admits an almost-complex struc-
ture only for n = 2 and 6.

On S2 such a structure exists, of course, since
S2 can be turned into the Riemann sphere. On S6

a (linear) almost-complex structure can be derived
from the Octonions in R8; it has been known since
1951 that it cannot come from a complex-analytic
structure on S6.

A vector product of r vectors in Rn , r < n , is a
(multilinear) vector function v(x1, . . . , xr ) ∈ Rn that
fulfills

(1) r 〈v(x1, .., xr ), xj〉 = 0, j = 1, ..., r ;

(2) r |v(x1, ...xr )|2 = determinant of the 〈xj , xk〉.
Condition (2) r above implies that v 6= 0 if and

only if the r vectors xj are linearly independent.
For r = 2 this is the vector product above. The

case r = 1, vector field on a sphere, has been
treated in the very beginning; a solution exists
only if n is even.

For which (r , n) does there exist such a vector
product? We assume r ≥ 2 and fix an arbitrary unit
vector xr. Restricting the other variables to the
Rn−1 orthogonal to xr clearly yields a vector prod-
uct of r − 1 vectors in Rn−1. Continuing with the
reduction, we get a vector product of 1 vector in
Rn−r+1, which implies that n− r must be odd. For
r ≥ 2, reducing to 2 vectors yields n− r + 2 =
3 or 7; i.e., r = n− 1 or r = n− 5.

For arbitrary n > 1 and r = n− 1 there is a well-
known multilinear solution: Take for v the vector
orthogonal to the hyperplane spanned by the vec-
tors xj , j = 1, . . . , n− 1 (if they are linearly inde-
pendent), with suitable orientation and suitably
normalized. In terms of the n× (n− 1)-matrix of
the components of the xj, the components of v
are given by the (n− 1)× (n− 1)-minors with the
usual signs.

For r = n− 5 we know that (2,7) has a bilinear
solution. What about (3,8)? Here again, a multi-
linear vector product can be given explicitly in
terms of the Octonions. A more elaborate argu-
ment, using Octonions again, shows that (4,9)
does not have any multilinear solution. On the
other hand, a topological method (cross-section of
a Stiefel-manifold fibering, Steenrod squares; see
survey [E1]) proves that even the continuous (4,9)-
problem does not have a solution.

In summary: A continuous vector product of r
vectors in Rn exists only in the cases (1, n) with n
even, (n− 1, n), (2,7), and (3,8) , and in these cases
there is a (multi-)linear solution.

Writing P(r ,n) for the problem, Is there a vector
product of r vectors in Rn? we have:

Theorem L. If P(r ,n) admits a continuous solution,
then for that pair (r , n) it also has a (multi-)linear
solution.
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Vector Functions of One Variable, Maximal
Number of Orthonormal Solutions
We return to one vector function of one variable
in Rn (tangent vector field problem on Sn−1) and
consider s orthonormal solutions. In other words,
we have s + 1 vector functions vj (x), j = 0,1, . . . , s
in Rn , defined for |x| = 1 with v0(x) = x, and

〈vj (x), vk(x)〉 = δjk, j, k = 0,1, . . . , s.

We assume that the vectors vj are linear func-
tions of x and write vj (x) = Ajx where Aj is a real
n× n-matrix, A0 = E (unit matrix). Then

〈vj (x), vk(x)〉 = 〈Ajx,Akx〉 = δjk〈x, x〉

for all x ∈ Rn . This implies that all Aj are 
orthogonal matrices, that ATj Aj = E where ATj
denotes the transposed matrix, and that for 
j 6= k

ATj Ak +ATkAj = 0.

For k = 0 this yields ATj +Aj = 0, j = 1, . . . , s ;
whence

(8) A2
j = −E, AjAk +AkAj = 0

for j 6= k, j, k = 1, . . . s.

In addition the matrices have to be orthogonal
or, equivalently, skew-symmetric.

Such matrices, with real or complex entries, 
are called Hurwitz-Radon matrices. They were 
independently1 examined around 1920 by 
Hurwitz and Radon; they determined for given 
n the maximum possible number s . If n =
odd.16α2β, β = 0,1,2,3, then

smax = 8α + 2β − 1.

The quantity ρ(n) = 8α + 2β is called the Radon
number of n, and the relations (8) are called the
Hurwitz matrix equations.

Proposition 9. The maximum number of ortho-
normal tangent vector fields on Sn−1 depending
linearly on y ∈ Sn−1 is ρ(n)− 1.

Again, the continuous analogue was established
by Adams (1962) in his famous

Theorem B. The maximum number of continuous
orthonormal tangent vector fields on Sn−1 is
ρ(n)− 1.

The proof is yet more difficult and technical than
the original proof of Theorem A. So far no simpler
argument of algebraic topology has been found. If,
by analogy to the foregoing, we write Pn,s for the
problem, Is there a system of s orthonormal tan-

gent vector fields (s -frames) on Sn−1? then we
again have Theorem L, this time with Pn replaced
by Pn,s.

In the continuous case the same holds for lin-
early independent fields instead of orthonormal
ones, since orthonormalization does not affect
continuity.

Hurwitz-Radon Matrices and Homotopy
Groups
We begin with some remarks concerning the Hur-
witz-Radon matrix problem (8).

The proofs by Hurwitz and Radon were by ma-
trix computations. A different proof, of a more 
conceptual nature, was given in 1942 by the 
author using classical representation theory 
applied to a certain finite group Gs (generated by
symbols A1, . . . , As, εwith relations dictated by (8),
i.e., ε2 = 1, A2

j = ε,AjAk = εAkAj, j 6= k). Instead
of looking for maximal s given n, one asks for min-
imal n given s . Minimal n is provided by irre-
ducible orthogonal representations with ε 7→ −E .
The advantage of this method is that it gives ex-
plicitly all solutions and shows very simply that
there exist solutions with matrix entries 0, +1,
and −1 only; see [E2]. We note here, for use in the
next section, that the same matrix problem can, of
course, be formulated for unitary representations
and this is simpler than the orthogonal problem.

In that case the minimal n is 2
s
2 for even s and 2

s−1
2

for odd s . All solutions are direct sums of the
minimal ones. In a solution for s + 1, omitting the
last matrix As+1 of course yields a solution for s .
For even s , a minimal solution is obtained in this
way from a minimal solution for s + 1, since

2
s
2 = 2

(s+1)−1
2 .  In other words, the solutions for even 

s are not essential; they all come from s + 1.
Let A1, ..., As be a set of orthogonal Hurwitz-

Radon matrices, i.e., a solution of (8); let A0 = E ;
and let α0, α1, . . . , αs be real numbers withΣα2

j = 1. From (8) it follows easily that the n× n-
matrix

(9) f (a) = ΣαjAj
is orthogonal, and this is equivalent to (8). We
write a = (α0, α1, . . . , αs ) ∈ Ss in Rs+1 and con-
sider f as a (linear) map of Ss into the orthogonal
group O(n). Combining with the natural imbedding
of O(n) into the infinite orthogonal group O (the
limit of the usual inclusions O(n) → O(n + 1)), we
get a map F : Ss → O. Conversely, any linear map
F : Ss → O of the form (9) (the image necessarily
lies in some O(n)), with A0 = E , is given by or-
thogonal Hurwitz-Radon n× n-matrices. The ho-
motopy class of F is an element of the homotopy
group πsO.

[Remark: The matrix (9) being orthogonal shows
that a solution of the Hurwitz equations (8) is

1Hurwitz died in 1919. His paper appeared in 1923.
Radon’s work was submitted in 1922 and also was pub-
lished in 1923.
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equivalent to the composition of quadratic forms,
generalizing (7),

(α2
0 + · · · +α2

s )(ξ
2
1+, · · · , ξ2

n) = (ζ2
1 + · · · + ζ2

n ),

where the ζi are bilinear in the αj and ξi. ]
One can proceed in exactly the same way with

a unitary solution of (8). Then f and F (we use the
same letters) yield a homotopy class in πs (U )
where U is the infinite unitary group, the limit of
the inclusions U (n) → U (n + 1) . Both cases are
closely related to Bott periodicity (1956). Here we
restrict ourselves, for simplicity, to the unitary
case; the orthogonal case can be dealt with in the
same way, though the details are a little more com-
plicated.

As for the homotopy group πsU (n), it has been
known since around 1940 that

πsU (n) ∼= πsU
(
s + 1

2

)
if s is odd and n ≥ s + 1

2
,

πsU (n) ∼= πsU
(
s + 2

2

)
if s is even and n ≥ s + 2

2
.

The isomorphisms are given by the imbedding
U (n) → U (n + 1). These “stable” groups are the ho-
motopy groups πsU.

The Bott periodicity theorem determined the
groups πsU completely:

πsU = Z if s is odd,
= 0 if s is even.

If s is even, any solution of (8) yields, as it must,
a nullhomotopic map f : Ss → U (n), since it comes
from a solution for s + 1, so that f can be extended
to a linear map Ss+1 → U (n) and is therefore null-
homotopic (even in a linear way).

For odd s , however, one has the interesting re-
sult:

A minimal solution of the Hurwitz-Radon prob-
lem yields, for odd s , through Ss → U (n) → U given
by f above, a generator of πsU.

Note that here n = 2
s−1

2 , while in the usual 
approach the generator, in the stable group
πsU ( s+1

2 ) , lies in dimension n = s+1
2 . For the 

lowest cases s = 1 and 3, these n are equal, and
the generators are easily recognized to be identi-
cal. This is not so for s > 3, so that a proof is
needed. It makes use (see [E2]) of Bott’s theorem
in its full topological statement. On the algebraic
side it is based on a simultaneous analysis of the
solutions of the matrix problem (8) for all values
of s .

What about the multiples of the generator? The
group operation (addition) for two elements of

πsU can be described in a simple way: One just
places the two maps Ss → U (n) over the diagonal
in U (2n). One therefore can obtain all elements of
πsU, i.e., of πsU (n) for sufficiently high n, through
unitary Hurwitz-Radon matrices. This can be ex-
pressed again as a linearization result of a differ-
ent nature:

Theorem L ′. Any continuous map Ss → U (n),
n ≥ s+1

2 , or ≥ s+2
2 respectively is homotopic in U

to a linear map.

A direct proof of that theorem would reduce Bott
periodicity to the purely algebraic discussion of
Hurwitz-Radon matrices.

What Bott proved was actually more than the pe-
riodicity of homotopy groups: One considers ΩU ,
the space of loops in U beginning and ending in
1 ∈ U . The periodicity of homotopy groups
πs+2(U ) = πs (U ) for all s ≥ 0 is essentially the
same as a homotopy equivalence between ΩΩU
and U and thus a periodicity with period 2 for all
iterated loop-spaces of U. For the groups of ho-
motopy classes of maps of arbitrary spaces (cell
complexes) X into U and into the iterated loop-
spaces of U, one therefore has the same periodic-
ity. The (abelian) groups thus obtained constitute
a cohomology functor called topological K-the-
ory. This was the first example of an “extraordi-
nary” cohomology theory, and it seems interest-
ing that it is closely related to the unitary
Hurwitz-Radon matrices.

Everything can also be said, mutatis mutandis,
about the orthogonal (or the symplectic) Hurwitz-
Radon matrices and the infinite orthogonal (or
symplectic) group and the corresponding K-the-
ory; here the periodicity has period 8.

Von Neumann Algebra of a Group

About the Bass Conjecture
Here we consider the complex group algebra CG
of a discrete group G . Recall that it is the complex
vector space having the group elements as basis,
with product given by the group multiplication of
the basis elements. The identity element 1 ∈ G is
the identity for the algebra product. An idempo-
tent a ∈ CG is an element fulfilling a2 = a. The
idempotent conjecture says that the only idempo-
tents in CG are 0 and 1, as in C or any division
ring, provided the group G is torsion-free, i.e., has
no elements of finite order 6= 1 (elements of finite
order easily yield nontrivial idempotents of CG).
In the following we always assume G to be torsion-
free.

A strong tool to deal with this problem is the
“canonical” trace κ(a), also called the Kaplansky
trace of a ∈ CG; it is the coefficient of 1 ∈ G of a.
A little more generally, let A = (aij ) be an idem-
potent (n× n)-matrix with entries in CG and
κ(A) = Σκ(aii). The image of A in CGn is a finitely
generated projective CG-module P, and we write
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also κ(P ) for κ(A), since κ is independent of the
imbedding of P in some CGn.

Kaplansky Theorem. κ(A) is a nonnegative real
number, equal to 0 only if A = 0.

Actually κ(A) is known to be rational, but here
we will not make use of this.

We recall that the von Neumann algebra N(G)
of G can be defined as the algebra of all G-equi-
variant bounded linear operators on the Hilbert
space `2G of square-summable complex functions
on G . A simple proof of the above theorem is ob-
tained by imbedding CG into N(G) ; then κ(A) can
be identified with the von Neumann trace of A . Al-
though the idempotent map defined by A need not
be selfadjoint, it is equivalent to a selfadjoint one
(orthogonal projection). In other words, κ(A) = κ(P )
is the von Neumann dimension of the Hilbert-G-
module `2G⊗CG P.

Another notion of trace is given by the aug-
mentation of Σaii. It is an integer, namely, the di-
mension of the C-vector space C⊗CG P, which we
write in short d(P ) . The Bass conjecture says that
these two traces are equal:

(10) κ(P ) = d(P ).

This is the weak form of the conjecture, implied
by the strong one, which we do not formulate here;
see [B]. It has been proved for several big classes
of groups G, such as linear groups, solvable groups
(of finite homological dimension), hyperbolic
groups, 3-manifold groups, groups of cohomo-
logical dimension 2 (over Q ). The proof of the
simple equation (10) is very indirect and different
for the various classes, using arithmetic methods,
cyclic homology of groups, homological dimen-
sion, etc. (Bass 1976, Eckmann 1986).

Note that for an idempotent a ∈ CG the pro-
jective P is the left ideal CGa ⊂ CG and d(P ) is
necessarily equal to 0 or 1. Thus κ(a) = 0 or
κ(1− a) = 0, which proves the idempotent con-
jecture for the respective groups.

Projective Modules over N(G)
Beyond the equality (10), i.e., the weak Bass con-
jecture, one can say more: Through the imbed-
ding of CG in N(G) the projective module P be-
comes a finitely generated projective N(G)-module
N(G)⊗CG P that turns out to be a free N(G) -
module of rank equal to d(P ) = dimCC⊗CG P . This
can be expressed as an isomorphism of N(G) -
modules

N(G)⊗CG P = N(G)⊗C (C⊗CG P ),

or more intuitively as an associativity formula

(11) (N(G)⊗C C)⊗CG P = N(G)⊗C (C⊗CG P ),

where everything is purely algebraic. In particular,
N(G) is considered just as an algebra.

For the proof, however, one uses the fact that
the N(G) is a finite von Neumann algebra and thus
admits a center-valued trace: For the projection
onto N(G)⊗CG P its value is precisely κ(P ).identity
(here a deep result on finite conjugacy classes in
G following from [B], Theorem 8.1, is used). If the
weak Bass conjecture holds, it is equal to
d(P ).identity, which is the center-valued trace of
the above free module. And projective modules
having the same center-valued trace are isomor-
phic.

[Actually, more is true. The algebraic category
of finitely generated projective N(G) -modules is
equivalent to the category of finitely generated
Hilbert-G-modules (and G-equivariant bounded
linear operators as morphisms). And if two N(G) -
projectives have the same center-valued trace, then
the corresponding Hilbert-G-modules are isomet-
rically G-isomorphic. The von Neumann dimension
can be carried over to finitely generated projective
N(G) -modules; a special feature is that submod-
ules of finitely generated projective N(G) -mod-
ules are again projective.]

Conversely, the center-valued traces show that
(11) implies the (weak) Bass conjecture for G ,
κ(P ) = d(P ).

Theorem L ′′. The associativity formula (11) is
equivalent to the weak Bass conjecture κ(P ) = d(P )
for all finitely generated projective CG-modules.

For many classes of groups, κ(P ) = d(P ); whence
(11) is a theorem, and certainly not an easy one,
with different proofs according to the respective
class. Dare one ask here for a more direct ap-
proach to Theorem L ′′? For which groups? In what
generality?
Return to Topology:  Poincaré-2-Complex
First, some very short technical remarks about
Hilbert space methods in algebraic topology.

In recent years homotopy invariants of a space
X (cell-complexes of finite type with infinite fun-
damental group G ) have been introduced and ap-
plied with the help of Hilbert-G-modules: `2-ho-
mology modules (reduced, i.e., cycles modulo the
closure of the boundary space) and `2-Betti num-
bers (their von Neumann dimension). These con-
cepts actually go back to Atiyah (1976), but were
fully developed much later.

In view of the category equivalence above, one
gets a purely algebraic approach to all this: G
operates as a covering transformation group on 
the universal covering X̃ of X; the chain groups of
X̃ are free ZG-modules, and tensoring them over
CG with the algebra N(G) , one obtains a complex
of finitely generated free N(G) -modules. Its ho-
mology groups are not projective in general, but
finitely presented N(G)-modules. Their “projective
part”, corresponding to reduced `2-homology,
yields the `2-Betti numbers, and they also yield the
Novikov-Shubin invariants (Farber, Lück, 1995).
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If G fulfills the Bass conjecture, then the 
same procedure can be applied to a finitely 
dominated space X, since the chain groups of 
X̃ are finitely generated projective ZG-modules,
and the tensor product over CG yields free N(G) -
modules. This is interesting, for example, for Poin-
caré complexes.

A connected space is called a Poincaré-n-
complex if it fulfills the classical Poincaré duality
relations well known for closed n-manifolds—
an approximation to the latter. We restrict atten-
tion to a very special application. It concerns the
theorem (the author et al.; cf. the survey [E3]):

A Poincaré-2-complex X with infinite funda-
mental group G is homotopy equivalent to a closed
surface of genus ≥ 1 .

No finiteness assumptions are required; X is fi-
nitely dominated. An important ingredient in the
proof (we mention here only the orientable case)
is to show that the first ordinary Betti number
β1(X) is ≥ 2. The methods above greatly simplify
the argument, as follows.

The `2-Betti numbers bi(X) compute the Euler
characteristic of the space and fulfill Poincaré du-
ality in the manifold- or Poincaré complex-case, ex-
actly as the ordinary Betti numbers do. The Betti
number b0 in case of an infinite group G is easily
seen to be = 0. Thus in our situation

χ(X) = β0 − β1 + β2 = 2− β1 = −b1;

whence indeed β1 ≥ 2.
The Poincaré complex above is aspherical; i.e.,

all homotopy groups in dimensions ≥ 2 are 0. It
is thus a classifying space for G , and the homol-
ogy of G is the same as the homology of X. (The
cohomological dimension being 2, the Bass con-
jecture is fulfilled; this we have already used above
implicitly.) Passing to the universal cover of the sur-
face, one can express the result in terms of the
group G , yet another linearity statement:

Theorem L ′′′. A group whose homology fulfills
Poincaré duality of dimension 2 is isomorphic to
a plane motion group operating freely with com-
pact fundamental domain on the Euclidean or hy-
perbolic plane.

If a group G is the fundamental group of a
closed aspherical n-manifold, then its homology
fulfills, of course, Poincaré duality of dimension
n. Is the converse true? For dimensions n ≥ 3 this
problem is still unsolved, except for partial re-
sults in dimension 3.
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