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Geometry of Solitons
Chuu-Lian Terng and Karen Uhlenbeck

A
solitary wave is a traveling wave of the
form u(x, t) = f (x− ct) for some
smooth function f that decays rapidly
at infinity. It is relatively easy to find
nonlinear wave equations that admit

solitary wave solutions. For example,

utt − uxx = u(2u2 − 1)

has a family of solitary wave solutions

u(x, t) = sech(x coshθ + t sinhθ),

parameterized by θ ∈ R . But we do not expect
that the “sum” of two such solutions will again be
a solution. However, the special class of soliton
equations, the subject of this article, does have a
form of nonlinear superposition. An n-soliton so-
lution is a solution that is asymptotic to a nontrivial
sum of n solitary waves 

∑n
i=1 fi(x− cit) as t → −∞

and to the sum of the same waves∑n
i=1 fi(x− cit + ri) with some nonzero phase shifts

ri as t →∞. In other words, after nonlinear inter-
action the individual solitary waves pass through
each other, keeping their velocities and shapes
but with phase shifts. Equations with multisoliton 
solutions are very rare (they occur nearly always
in one space dimension); these equations are called
soliton equations.

The Korteweg-de Vries equation

(KdV) qt = −(qxxx + 6qqx)

is a well-known example of a soliton equation. 
If q(x, t) = f (x− ct) solves KdV, then f ′′′+
6f f ′ − cf ′ = 0 . The asymptotic condition on f , 
lim |x |→0 f (x) = 0, implies that f (x) = c

2sech2(
√
c

2 x) .
So

q(x, t) =
c
2

sech2
(√c

2
(x− ct)

)
is a family of solitary wave solutions for KdV pa-
rametrized by c ∈ R .

KdV does have multisoliton solutions. In Figure
2 we graphically show the wave profiles of a 2-soli-
ton solution of KdV by showing the graph of
qi(x) = q(x, ti) for a sequence of increasing times
ti. The asymptotic behavior and phase shifts can
be seen in these pictures.

In classical mechanics a Hamiltonian system in
2n-dimensions is called integrable if it has n in-
dependent constants of the motion whose Poisson
brackets are all zero. The concept of complete in-
tegrability can be extended to infinite dimensions
or partial differential equations (PDE), but is only
one part of the rich structure found in the class
of “completely integrable” or “soliton” equations.
These equations are best described by their pro-
totypes: KdV, nonlinear Schrödinger, and sine-Gor-
don equation (SGE). Phenomena that have been
identified include:

• multisoliton solutions,
• Hamiltonian formulations,
• a hierarchy of commuting flows described by

partial differential equations,
• formulation in terms of a Lax pair of opera-

tors,
• a scattering theory,
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Figure 1. Wave profile for KdV 1-soliton.
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• inverse scattering transforms,
• the Painlevé property,
• an algebraic geometric description of solu-

tions periodic in space variable,
• formal algebraic solutions in terms of loop-

group data.
In this article, after giving a little historical back-

ground on how soliton equations arose in classi-
cal differential geometry, we reinterpret the clas-
sical Bäcklund transformations in terms of actions
of loop groups, or dressing transformations; we
outline how different categories of solutions to the
equations come about due to different choices of
scattering data; and we finish with two of the most
challenging open problems in the area.

A detailed list of references can be found in the
Journal of Differential Geometry Survey, volume 4,
on integrable systems [9] and in an expository ar-
ticle on solitons by R. Palais [7].

Solitons and the Classical Differential
Geometry of Surfaces in R3

Most expositions of soliton theory outline the his-
tory of the Korteveg de Vries (KdV) equation, be-
ginning with the physical observation of S. Russell
of a bow wave in a canal in 1834. The equations
were first written down by Boussinesq in 1871
and in 1895 by Korteweg and de Vries. In addition
to describing water waves, the KdV equation also
arises as a universal limit of lattice vibrations as
the spacing goes to zero. The surprising numeri-
cal experiments of Fermi, Pasta, and Ulam in 1955
on an anharmonic lattice and the ingenious ex-
planation by Zabusky and Kruskal in 1965 in terms
of solitons of the KdV equation were quickly fol-
lowed by a ground-breaking paper of Gardner,
Greene, Kruskal, and Miura [3], which introduced
the method of solving KdV using the inverse scat-
tering transform for the Hill’s operator. This brings
us into the modern era. However, there is a sepa-
rate circle of ideas that originates in geometry.

A central theme in the nineteenth century geom-
etry was the local theory of surfaces in R3, which
we might regard as the prehistory of modern con-
structions in soliton theory. The SGE arose first
through the theory of surfaces of constant Gauss
curvature −1 in R3, and the reduced 3-wave equa-
tion can be found in Darboux’s work on triply or-
thogonal systems of R3. In 1906 a student of Levi-
Civita, da Rios, wrote a master’s thesis in which he
modeled the movement of a thin vortex by the mo-
tion of a curve propagating in R3 along its binor-
mal. It was much later, in 1971, that Hasimoto
showed the equivalence of this system with the
nonlinear Schrödinger equation qt = i

2 (qxx
+ 2 |q | 2q). These equations were rediscovered in-
dependently of their geometric history. The main
contribution of the classical geometers lies in their
methods for constructing explicit solutions of
these equations rather than in their discovery of
the equations themselves.

A few of the basic ideas from classical geome-
try of surfaces are needed to describe the geo-
metric problems. Let M be a surface in R3. The first
fundamental form I is the induced metric on tan-
gent planes of M , i.e.,

I(v,w ) = 〈v,w〉,
the dot product of v,w in R3 . The negative of the
unit normal e3 is a map from M to the unit sphere
S2 of R3. Its differential A at a point maps the tan-
gent space at that point to itself and is given by a
symmetric map relative to I. A is called the shape
operator. The second fundamental form is the
canonical bilinear form defined by A , i.e.,

Figure 2. KdV 2-soliton.
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where A =

(
p P
0 0

)
, B =

(
q Q
0 0

)
are elements of

the Lie algebra of the group of rigid motions of R3.
The compatibility conditions for the above first-

order system for X and E are called the Gauss and
Codazzi equations. This is a system of second-
order partial differential equations involving six
functions (the coefficients of I and II). As we will
see later, the number of functions involved in the
Gauss and Codazzi equations can be reduced by
special coordinate choices. The Fundamental The-
orem of Surfaces says that two fundamental forms
that satisfy the Gauss and Codazzi equations de-
termine a surface in R3 up to rigid motion.

Pseudospherical Surfaces and Bäcklund
Transformations
An important contribution of the classical geome-
ters is the study of pseudospherical surfaces, which
led to SGE. A pseudospherical surface is a surface
of Gaussian curvature −1 in R3. Such a surface has
a special set of asymptotic coordinates in which
the two fundamental forms are

I = dx2 + cosq (dxdt + dt dx) + dt2,
II = sinq (dxdt + dt dx),

where q is the angle between the x and t-curves.
With this special choice of coordinates, the Gauss
and Codazzi equations boil down to a single equa-
tion in q

(SGE) qxt = sinq.

The Fundamental Theorem of Surfaces gives us a
local correspondence between solutions of SGE
and surfaces of constant Gaussian curvature −1
in R3 up to rigid motions. Although SGE has many
global solutions defined on R2, the corresponding
surfaces always have singularities. In fact, Hilbert
proved that there is no complete immersed surface
in R3 with sectional curvature −1.

The idea of Bäcklund transformations comes
from a construction on pseudospherical surfaces
called a line congruence. A line congruence in R3

is a two-parameter family of lines

L(u, v) : x(u, v) + τξ(u, v), −∞ < τ <∞.
A surface M given by Y (u, v) = x(u, v)+
t(u, v)ξ(u, v) for some smooth function t is called
a focal surface of the line congruence if the line
L(u, v) is tangent to M at Y (u, v) for all (u, v). Hence
ξ(u, v) lies in the tangent plane of M at Y (u, v),
which is spanned by xu + tuξ + tξu and
xv + tvξ + tξv. This implies that t satisfies the fol-
lowing quadratic equation: det(ξ, xu + tξu, xv+
tξv ) = 0. In general, this quadratic equation has two
distinct solutions for t . Hence generically each line
congruence has two focal surfaces, M and M∗.
This results in a diffeomorphism ̀ : M →M∗ such
that the line joining p and p∗ = `(p) is tangent to

II(v,w ) = A(v) ·w. If v is a unit tangent vector at
p, then II(v, v) is the curvature of the plane curve
σ at p, where σ is the intersection of M and the
plane spanned by v and the normal line at p. The
principal curvatures of M are the eigenvalues of II
with respect to I, which is the same thing as the
eigenvalues of the shape operator A . The mean cur-
vature is the arithmetic mean of the principal cur-
vatures. The Gaussian curvature is the intrinsic cur-
vature of the surface and is given by the product
of the principal curvatures.

In regions where the principal curvatures are
never equal, it is possible to choose line of curva-
ture coordinates, which are coordinates along the
eigendirections of A , or the directions of princi-
pal curvature. If the Gauss curvature is negative,
it is possible to choose asymptotic coordinates,
which are coordinates along the directions v in
which II(v, v) = 0. Calculations are much easier in
these special coordinate systems, and it is the
choice of such special coordinate systems that
links special geometry to interesting partial dif-
ferential equations.

The Fundamental Theorem of Surfaces is based
on a compatibility condition for ordinary differ-
ential equations in two independent variables,
which is the same zero-curvature condition we will
revisit when we discuss Lax pairs. If A and B are
n× n matrices depending on two variables x and
y , then the pair of equations

(1) Vx = VA, Vy = VB

can be solved for n× n matrix valued maps V for
all initial values exactly when

(2) Ay − Bx = [A,B].

Here [A,B] = AB − BA . This condition comes from
requiring that Vxy = Vyx. We will call (2) the com-
patibility condition for (1).

We obtain such a system if we choose a pa-
rametrization X(x, y) for a surface in R3 and
E = (e1, e2, e3) a local orthonormal frame such that
e3(x, y) is normal to M at X(x, y). Note that E(x, y)
lies in the group O(3) of 3× 3 orthogonal matri-
ces. Then we can write

Xx = E
(
p
0

)
, Xy = E

(
q
0

)
,

Ex = EP, Ey = EQ,

where p and q are 2× 1-matrix valued functions
and P and Q are so(3)-valued functions (here so(3)
is the space of real 3× 3 skew-symmetric matri-
ces). Moreover, p, q, P, and Q can be expressed 
in terms of coefficients of I and II . Letting

V =

(
E X
0 1

)
, we obtain

Vx = VA, Vy = VB,
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angles s1 = tan θ1
2 and s2 = tan θ2

2 respectively. The
Bianchi Permutability Theorem gives a third local
solution q3 to the SGE

tan
q3 − q

4
=
s1 + s2
s1 − s2 tan

q1 − q2

4
.

To see how the scheme works, we start with the
trivial solution q = 0 of SGE. Then (3) can be solved
explicitly to get q∗(x, t) = 4tan−1(esx+ t

s ) , which is
the 1-soliton solution of SGE. Application of the
Bianchi Permutability Theorem gives the 2 -
soliton solutions

q(x, t) = 4tan−1

 s1 + s2
s1 − s2

es1x+ 1
s1
t − es2x+ 1

s2
t

1 + e(s1+s2)x+( 1
s1

+ 1
s2

)t

 .
Repeated applications of the theorem give com-
plicated but explicit n-soliton solutions. Note that
the parameters s1, s2 in the above formula for 2-
solitons are real. But for s1 = eiθ and s2 = −e−iθ ,
although q1, q2 are not real valued,

q3(x, t) = 4tan−1
(

sinθ sin(T cosθ)
cosθ cosh(X sinθ)

)
is real and a solution of the SGE, where X = x− t
and T = x + t are the laboratory coordinates. This
solution is periodic in T and is called a breather.

The surface corresponding to q = 0 degener-
ates to a straight line. In Figure 4 we show the wave
profile ∂q∂X (·, T ) of a 1-soliton of SGE and the cor-
responding surfaces for a sequence of different si.
We show in Figures 5 and 6 wave profiles ∂q∂X (·, Ti)
of a 2-soliton and a breather of SGE for a sequence
of increasing times Ti. Alongside each is the cor-
responding pseudospherical surface. We use s1 = 1
and s2 = 1/

√
3 for the 2 -soliton, and we use

s1 = 1
5 (4 + 3i) and s2 = −s̄1 for the breather. The

time sequence Ti for the breather covers a half pe-
riod.

Lie Transformations and Lax Pairs
A key development in the understanding of soli-
ton theory occurred in 1968 when P. Lax observed
that many properties of KdV are explained from
an associated linear isospectral problem [4]. This
associated linear system has come to be called a
“Lax pair”.

If a PDE is given with q as dependent variable,
a linear system depending on a parameter

Ex = EA, Et = EB

in which A and B are n× n matrix-valued functions
of q and x-derivatives of q is called a Lax pair of
the PDE if the compatibility condition
At − Bx − [A,B] = 0 is the PDE in question. Fix t ,
and let L(t) denote the operator ∂∂x +A . The com-
patibility condition can be rewritten as a Lax
equation

both M and M∗. We will call ` also a line congru-
ence.

A line congruence ` : M →M∗ is called pseu-
dospherical with constant θ if the angle between
the normal of M at p and the normal of M∗ at
p∗ = `(p) is θ and the distance between p and p∗
is sinθ for all p ∈M (see Figure 3).

In 1883 A. Bäcklund showed that if ̀ is a pseu-
dospherical line congruence, then both M and M∗
are pseudospherical and ̀ maps asymptotic lines
to asymptotic lines. However, the transformations
come about from showing that this construction
can always be realized. For any pseudospherical
surface M , constant θ, and unit vector v0 ∈ TMp0

not a principal direction, there exist a unique 
surface M∗ and a pseudospherical congruence
` : M →M∗ with constant θ such that−−−→
p0p∗0 = (sinθ)v0 . Analytically this is equivalent to
the statement that if q is a solution of SGE, then
the following overdetermined system of ordinary
differential equations is solvable for q∗ :

(3)

 q
∗
x = qx + 4s sin(q

∗+q
2 ),

q∗t = −qt + 2
s sin(q

∗−q
2 ),

where s = tan θ
2. Moreover, a solution q∗ is again

a solution of SGE. We will call both ̀ and the trans-
form from q to q∗ a Bäcklund transformation.
This description of Bäcklund transformations gives
us an algorithm for generating families of solutions
of the PDE by solving a pair of ordinary differen-
tial equations. The procedure can be repeated, but
the miracle is that after the first step, the proce-
dure can be carried out algebraically. This is the
Bianchi Permutability Theorem. Let ̀ i : M0 →Mi be
two pseudospherical congruences with angles θi
respectively and with sinθ2

1 6= sinθ2
2. Then there

exist an algebraic construction of a unique surface
M3 , and pseudospherical congruences
˜̀

1 : M2 →M3 and ̃̀ 2 : M1 →M3 with angles θ1 and
θ2 respectively such that ˜̀2`1 = ˜̀

1`2 . The ana-
lytic reformulation of this theorem is the follow-
ing: Suppose q is a solution of the SGE and q1, q2
are two solutions of the above system (3) with

P
P*

0

`

Figure 3. Pseudospherical line congruence.
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The compatibility condition for this system is ex-
actly that qxt = sinq. System (4) is the Lax pair for
the SGE.

Bäcklund Transformations and Dressing
Actions
Many beautiful transformations constructed by
classical geometers play an important role in con-
structing solutions to various soliton equations. In
addition to Bäcklund and Lie transformations,
there are Ribaucour, Bianchi, and Darboux trans-
formations. They were natural to the classical
geometers, but seem to come from nowhere from
the point of view of partial differential equations.

The modern explanation begins with “dressing
transformations”, which appeared first in an arti-
cle by Zakharov and Shabat [12]. Bäcklund trans-
formations will be the simplest kind of dressing
transformations. Let E(x, t, λ) be the solution of (4)
satisfying the initial condition E(0,0, λ) = I. We will
call this E the frame for the solution q (it is also
called a wave function). Since the coefficients of sys-
tem (4) depend holomorphically on the parameter
λ ∈ C \ {0} , the solution E(x, t, λ) depends holo-
morphically on λ ∈ C \ 0. Let G denote the group
of meromorphic maps f : C→ SL(2,C) that are
regular at λ = 0 and ∞ and satisfy

(*) f (λ̄)∗f (λ) = I, f (−λ̄) = f (λ).

We can factor the product f (λ)E(x, t, λ) as the prod-
uct Ẽ(x, t, λ)f̃ (x, t, λ) so that Ẽ(x, t, λ) is

∂L
∂t

= [L,B].

This implies that L(t) is conju-
gate to L(0) for all t . In other
words, L(t) is isospectral.

A Lax pair for SGE was con-
structed by M. Ablowitz, D.
Kaup, A. Newell, and H. Segur
in 1973. We will explain how
this Lax pair can be obtained
from the classical Lie transfor-
mations. Sophus Lie observed
that the SGE is invariant under
Lorentz transformations. In as-
ymptotic coordinates, which
correspond to light cone coor-
dinates, a Lorentz transforma-
tion is (x, t) 7→ ( 1

λx, λt) . If q is a
solution of the SGE, then so is
qλ(x, t) = q( 1

λx, λt) for any
nonzero real constant λ. Let Mλ
denote the pseudospherical
surface corresponding to qλ .
There is a relation between Lie
transformations and the mod-
ern notion of a Lax pair. Namely,
choose for each λ a local or-
thonormal frame eλ1 , e

λ
2 , e

λ
3 on Mλ such that eλ1 is

∂
∂x and eλ3 is normal to Mλ. Let Eλ be the O(3) -val-
ued map such that eλ1 , e

λ
2 , e

λ
3 are the columns, and

wλ = (Eλ)−1dEλ the so(3)-valued 1-form. Substi-
tute ( 1

2λx,2λt) for (x, t) in ωλ to get a one-para-
meter family of flat so(3)-valued 1-forms. Here a
n× n-valued 1-form w is flat if dw +w ∧w = 0. To
get the Lax pair of SGE, we need to identify the Lie
algebra so(3) with the Lie algebra su(2) of skew
Hermitian 2× 2 matrices of trace 0. This allows us
to rewrite the family of the flat so(3)-connections
as a family of flat su(2)- valued 1-forms:

(
−iλ −qx2qx

2 iλ

)
dx +

i
4λ

(
cosq −sinq
−sinq −cosq

)
dt.

Flatness is equivalent to the solvability of the fol-
lowing first-order system for all λ:

(4)


Ex = E

(−iλ −qx2
qx
2 iλ

)
,

Et = i
4λE

(
cosq −sinq
−sinq −cosq

)
.

Figure 4. SGE 1-soliton wave and corresponding surfaces.
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holomorphic for λ ∈ C \ 0 and f̃ (x, t, ·) is in G .
(Note we reverse the order.) A direct computation
shows that Ẽ satisfies an equation of the form (4)
for some q̃. Hence Ẽ is the frame for a new solu-
tion q̃ of SGE. The transformation

q 7→ f]q := q̃

defines an action of G on the space of solutions
of SGE and is an example of a dressing transfor-
mation.

A meromorphic map f with a single simple pole
is called a simple factor, and the dressing trans-
formation given by a simple factor can be obtained
algebraically. Let s be a nonzero real number, V0
a one-dimensional linear subspace of R2, π0 the
orthogonal projection of R2 onto V0 , and
π⊥0 = I −π0 . Then

fis,π0 (λ) = π0 +
λ− is
λ + is

π⊥0

is a simple factor. Note that fis,π0 (λ)−1 = f−is,π0 (λ) .
By residue calculus, we see that if we can factor
fis,π0E as Ẽf̃ , then f̃ (x, t, λ) must be of the form
fis,π (x,t) for some projection π (x, t) . So we need to
find π (x, t) such that

Ẽ(x, t, λ) =
(
π0 +

λ− is
λ + is

π⊥0
)

× E(x, t, λ)
(
π (x, t) +

λ + is
λ− is π

⊥(x, t)
)

is holomorphic for λ ∈ C \ 0. Hence the residue of
the right-hand side at ±is should be zero. This im-
plies that π (x, t) has to be the projection of R2 onto
the subspace

V (x, t) = E(x, t, is) t (V0).

Moreover, Ẽ turns out to be the frame for a new
solution q̃ of the SGE. Set A = E−1dE and
Ã = Ẽ−1dẼ. The formula for Ẽ implies that

f̃A− df̃ = Ãf̃ .

We obtain the pair of ordinary differential equa-
tions (3) relating q and ̃q by comparing the residues
at λ = ±is.

The Bianchi Permutability Theorem also follows
naturally from this point of view. Given nonzero
real numbers s1, s2 such that s2

1 6= s2
2 and two pro-

jections π1, π2 of R2, we can find two projections
ξ1, ξ2 and g such that

g = fis1,ξ1fis2,π2 = fis2,ξ2fis1,π1 .

Moreover, ξ1, ξ2 can be written algebraically in
terms of s1, s2, π1, and π2 and hence g. By the same
reasoning, if gE = Ẽg̃ , then g̃ is algebraic in
f̃1(x, t, λ) and f̃2(x, t, λ) . This reinterprets the clas-
sical permutability formulas as being the conse-
quence of the noncommutativity of simple
factors. Moreover, this procedure works for anyFigure 5. SGE 2-soliton wave and corresponding surface.
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equations with Lax pairs. Hence it gives a general
scheme for constructing Bäcklund transforma-
tions for any soliton equations. A detailed de-
scription of this can be found in [10].

Types of Solutions
Given a rapidly decaying function u on the line, con-
sider the first equation of (4) with asymptotic and
boundedness conditions:

(5)


ψx = ψ(aλ + u),
limx→−∞ e−aλxψ(x,λ) = I,
e−aλxψ(x,λ) bounded in x.

Beals and Coifman showed that this system has a
unique solution ψu(x,λ) and

mu(x,λ) = e−aλxψu(x,λ)

is meromorphic for λ ∈ C \R , has asymptotic ex-
pansion at λ =∞, and may have a discontinuity
along the real line in the λ-plane. The singularity
data Su of mu is the scattering data for u, and the
map from u to Su is called the scattering transform.
The inverse of this map is the inverse scattering
transform. Let f (λ) =mu(0, λ) , and define

(6)
E(x,λ) = f (λ)−1eaλxmu(x,λ) = f (λ)−1ψu(x, t, λ).

Since ψu is a solution of ψ−1ψx = aλ + u and since
E(x,λ) and ψu(x,λ) differ by a multiplicative con-
stant matrix f (λ),

(7) f (λ)−1eaλx = E(x,λ)mu(x,λ)−1.

This means that we have replaced the inverse scat-
tering transform by a factorization problem.
Namely, to obtain u(x) from f (λ), we first factor
f (λ)−1eaλx as a product E(x,λ)m−1(x,λ) so that
E(x,λ) is holomorphic for λ ∈ C \ 0 and m(x,λ)
has the same type of singularities as f (λ). Then
u = E−1Ex − aλ . Moreover, if u(x, t) is a solution of
SGE, then use of the Lax pair shows that the scat-
tering data of u(·, t) can be expressed explicitly in
terms of that of u(·,0). Therefore, the inverse scat-
tering transform can be used to solve Cauchy prob-
lems with rapidly decaying inital data. This moti-
vates us to introduce a more general notion of
scattering data to include many different classes
of solutions other than the rapidly decaying class.

In the language of this article, the goal of scat-
tering theory is to identify from a given solution
q an f such that q = f−1]0. In other words, for the
frame E of q, we wish to solve

f (λ)−1ea(λx− 1
4λ t) = E(x, t, λ)f̃ (x, t, λ)−1

for some f and f̃ so that f and f̃ have power 
series expansion at 0 and ∞. Here a = diag(−i, i),
and ea(λx− 1

4λ t) is the frame for the trivial solution Figure 6. SGE breather wave and corresponding surface.
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by conditions describing a real form of any com-
plex simple Lie group or one of the symmetric
spaces. In general, inverse scattering transforms,
f 7→ f]0, have singularities unless the scattering
data f are chosen carefully. It is one of our con-
tributions to observe that if the reality conditions
contain those associated to a compact Lie group,
then the inverse scattering transforms yield soli-
tons and Schwartz class solutions.

Some Intriguing Open Problems
The recent interest of geometers in integrable sys-
tems was initiated by S. S. Chern in the 1970s.
Chern and his coworkers were interested in using
submanifold geometry to find new examples of
soliton equations. Both E. Calabi and Chern had
used geometric methods to describe minimal sur-
faces in spheres. In the early 1980s physicists dis-
covered that 2-dimensional Einstein equations,
harmonic maps, and self-dual Yang-Mills all had
formulations in terms of Lax pairs. Wente’s con-
struction of a counterexample to the Hopf con-
jecture, an immersed torus in R3 with constant
mean curvature, was later observed to be con-
structible by methods from soliton theory. This has
led to several decades of work by both mathe-
maticians and physicists on a new class of prob-
lems that can be static (elliptic) or evolution equa-
tions, depending on the signature of space-time.
We describe two different open problems at this
interface.

A map s : C→ SU (n) is harmonic if it is a criti-
cal point for the energy functional

E(s) =
∫
C

tr((s−1sx)2 + (s−1sy )2)dxdy.

The Euler-Langrange equation written in terms of
P := 1

2s
−1 ∂s

∂z̄ and Q := 1
2s
−1 ∂s

∂z = −P∗ is

∂P
∂z̄

=
∂Q
∂z

= −[P,Q].

K. Pohlmeyer was the first to find the Lax pair for
this equation:

E−1Ez = (1− λ)P, E−1Ez̄ = (1− λ−1)Q.

The first definite progress in understanding this
equation was due to the physicists A. Din, V. Glaser,
R. Stora, and W. Zakrzewski. Their work was pub-
licized among mathematicians by Eells and his
coworkers and led to a good understanding of
harmonic maps from S2 to SU (n) . Perhaps it is not
so surprising that information on the solutions on
T2 is recovered via the algebraic geometry meth-
ods that were developed for periodic solutions for
soliton equations. The Gauss map of a constant
mean curvature surface in R3 is harmonic, and
these methods have been applied to constant mean
curvature tori in R3. The recent survey article by
N. Hitchin discusses the state of knowledge about
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q = 0 of SGE. We will call f scattering data for the
solution q.

Inverse scattering theory concerns recon-
structing solutions q from f. There are classical
methods in complex variables that in principle ac-
complish this. For example, Birkhoff factoriza-
tions and Riemann-Hilbert problems are two of the
techniques. The text by Pressley and Segal [8] and
the paper by Beals and Coifman [1] are good basic
references.

To make the theory rigorous, it is necessary to
identify exactly the class of solutions one wishes
to construct. Here are some examples. In the fol-
lowing, we assume f satisfies condition (∗ ) and is
regular at 0 and ∞.

•Soliton solutions. Choose f as a rational map.
This is the case of applying Bäcklund transforma-
tions repeatedly, starting with the trivial solution.

•Local analytic solutions. Choose f as a local
holomorphic map on a neighborhood of 0 and ∞.
Solutions obtained from such f are locally defined
analytic functions.

•Algebraic geometry solutions. Choose f as for
the local analytic solutions but require that
f−1(λ)af (λ) is a finite Laurent polynomial. The fac-
torization can be done by solving a system of or-
dinary differential equations. This class of solutions
includes the so-called “finite-gap” periodic solu-
tions obtained by theta function theory on Riemann
surfaces. McKean’s article [5] gives an exposition
of this type of solution.

•Formal algebraic solutions. Choose f as a pair
of formal power series based at 0 and ∞. The fac-
torization can be done formally, and hence many
formal solutions can be constructed. Solutions
from this class appear in conformal field theory
and string theory. Van Moerbeke has a nice set of
expository lectures on this [6].

•Scaling invariant solutions. Each soliton equa-
tion has an action of the multiplicative group R∗
of nonzero real numbers on the space of solu-
tions. For example, the R∗-action for SGE is the Lie
transformation, i.e., r · q(x, t) = q(rx, 1

r t) . A scaling
invariant solution is a solution that is invariant
under the R∗-action. These solutions can be un-
derstood by isomonodromy methods. Beals and
Sattinger give a good description of this in [2]. So-
lutions of this type appear in quantum cohomol-
ogy.

•Schwartz class (rapidly decaying) solutions.
Here f is meromorphic with finitely many poles on
C \R, f has an asymptotic expansion at λ = 0 and
∞ , and the limits lims→0+ f (r ± is) are smooth
functions. Soliton solutions are a subclass of this
class.

We have not explained in detail the role of con-
dition f (λ̄)∗f (λ) = I , which is a reality condition for
both SGE and nonlinear Schrödinger equations. It
is a condition associated to the compact group
SU (2). This condition can be dropped or replaced
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these geometric problems in [9], as well as the Eu-
clidean monopoles we mention below.

On the other hand, one does not understand the
type of scattering data f (λ) that will give a harmonic
map from a surface of genus greater than one to
SU (n) . To characterize these scattering data, one
needs a more complete understanding of periodic
solutions than is currently available.

The anti-self-dual Yang-Mills equations in
R4 = C2 can be described rather simply in terms
of their Lax pairs. The equations are for an SU (2)-
connection, which we write in complex coordi-
nates in terms of two 2× 2 traceless complex ma-
trices Az̄,Aw̄ and their Hermitian adjoints
Az = −A∗̄z , Aw = −A∗̄w . The commutator of two
complex operators

Dλ =
∂
∂w̄

+Aw̄ + λ
∂
∂z

+Az,

D′λ =
∂
∂w

+Aw ∓ λ−1 ∂
∂z̄

+Az̄

encode the equation in its Lax pair

[Dλ, D′λ] = 0.

The choice of minus sign in D′λ gives the elliptic
equation on R4 familiar to mathematicians, while
the choice of plus sign gives an equation on R2,2.

The monopole equations are obtained by letting
w = t + iu and assuming all the fields are inde-
pendent of u. If the minus sign is used, a mono-
pole equation on R3 is obtained, which has been
analyzed in a beautiful sequence of papers by
Nahm, Donaldson, and Hitchin. If the plus sign is
used, a wave equation on R2,1 is obtained, and mul-
tisoliton solutions have been found by R. Ward and
his coworkers. The cover image shows some fea-
tures of a 3-soliton solution. This is an interesting
and natural equation, which is gauge invariant and
has both solitons and solutions of the linear wave
equation as special solutions. Further investigation
of scattering and inverse scattering theory for this
equation may lead to some new ideas about inte-
grable systems.
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About the Cover
Solitons are usually associated with certain so-called integrable non-
linear wave equations in one space dimension (in particular the Kor-
teweg-de Vries, Sine-Gordon, and nonlinear Schrödinger equations), and
for a long time it was not clear whether soli-
ton behavior was possible in higher space di-
mensions. Indeed, a simple scaling argument
(“Derrick’s Theorem”) showed that in more
dimensions, wave equations that arise from
classical field theories could not have soli-
ton solutions. But Richard Ward’s Modified
Chiral Model is a dimension reduction of
the self-dual Yang-Mills gauge theory model,
and Derrick’s Theorem does not apply. In
fact, Ward was able to use twistor methods
to prove the existence of soliton solutions of
his model, and Christopher Anand devised
an algorithm for writing down explicit n-
soliton solutions. The cover picture shows
twelve frames of a flipbook animation of an Anand-Ward 3-soliton in-
teraction, and was produced by R. Palais’s 3D-Filmstrip visualization
program using Pascal routines provided by Anand. In the first four
frames, the two solitons on the right approach each other along a line.
They merge in frame five and in frame six this combined object fis-
sions into two solitons that move apart at right angles to the original
direction of approach. One of these fission product solitons then co-
alesces with the third of the original solitons in frame seven, and in
frames eight to twelve there is another fission of this second combined
object, with the two solitons that result moving away from each other
in a line parallel to the line along which the original pair approached.

— R. Palais
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