
Lattices, Linear Codes,
and Invariants, Part I
Noam D. Elkies

1238 NOTICES OF THE AMS VOLUME 47, NUMBER 10

H
ow should 24-dimensional toy 
merchants most efficiently store their
marbles? This is one rather fanciful
statement of the “sphere packing 
problem” in R24. This problem is not

just a plaything of high-dimensional Euclidean
geometry: it relates to a surprising range of math-
ematical disciplines, pure as well as applied, 
including number theory, finite groups, orthogo-
nal polynomials, and signal transmission. The
same is true of the closely related discrete 
problem of error-correcting codes. This is already
true for the important special cases of “lattice”
packings and “linear codes”.

The present article is a two-part  series devoted
to lattices, linear codes, and their relations with
other branches of mathematics. Even a two-part 
series does not afford enough space to indicate all
the mathematical disciplines relevant to the study
of lattices and codes; we have chosen to focus our
attention on certain invariants attached to lattices
and codes. In each case these are invariant in two
senses: they can (but do not always) distinguish
nonisomorphic lattices or codes, and they can be
written as generating functions that are invariant,
or at least transform predictably, under certain
transformations of the variables. Part I, in this
issue, mainly concerns lattices, whose relevant in-
variants are “theta functions”. Linear codes, and
their close connections with lattices, will be the
theme of Part II.

As is usually the case in expository works, very
little in Part I (in fact nothing outside the paren-
thetical remark on [EOR]) is my own work. I have
attributed all results and ideas whose authors are
known to me and apologize in advance if I have
misattributed anything, or did not give a source for
a result whose origin I do not know or wrongly 
believed to be classical or well known. At any rate,
I do not claim any such result as my own.

The Sphere Packing Problem
The sphere packing problem is: What is the maxi-
mal density of a sphere packing in a Euclidean
space Rn of given dimension n? Here a sphere
packing in Rn is a collection S of balls of the same
radius r whose interiors are disjoint; the density
∆(S) is the proportion of (the volume of) Rn cov-
ered by S.1 Intuitively, one wants to pack a large
container with identical n-dimensional balls as ef-
ficiently as possible. Modern mathematical termi-
nology distinguishes between the (closed) “ball”
Br (x0) := {x | r ≥ |x− x0|} of radius r about x0
and the “sphere” {x | d(x, x0) = r}; one would thus
like to speak of “ball packing” rather than “sphere
packing”, but the problem long predates the
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1Since  Rn has infinite volume, this proportion must be
interpreted as limU Vol(∪B∈SB ∩U )/Vol(U ) with U in
an increasing sequence of convex subsets of  Rn whose
union is all of  Rn. For arbitrary sphere packings S, the
limit need not exist, or could depend on the choice of U,
so it is not immediately obvious that a maximal density
exists. Fortunately the existence of a maximal density is
not too hard to show, and all  S that we shall consider
will have an evident density  ∆(S) not depending on the
choice of U.
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modern terminology, and one usu-
ally writes of S as a family of
“spheres” rather than “balls” in this
context.

For n ≤ 3, sphere packing in Rn
provides a good model for many fa-
miliar packing problems: pennies
on a tabletop, atoms of a single el-
ement in a crystal, oranges or can-
nonballs in a crate, etc. The problem is trivial for
n = 1: the maximal ∆ = ∆(S) is 1, and is attained
for instance by S = {[2k− 1,2k + 1]| k ∈ Z} . See
Figure 1. The case n = 2 is less trivial. The densest
packing has been known since antiquity but was
proved optimal only early in the twentieth century.
To obtain it, tile the plane with regular hexagons
of side 2r/

√
3, and let S consist of the circles in-

scribed in those hexagons; this is a circle packing
with ∆(S) = π/2

√
3 ≈ .9069. See Figure 2. For n = 3

the problem was posed by Kepler. Again, the
solution has long been surmised, but a proof was
announced only a few years ago; see T. Hales’s ar-
ticle in the April 2000 Notices.

Naturally the sphere packing problem in di-
mension n ≥ 4 is more recent, though still at least
a century old: it is contained in the eighteenth of
the famous list of problems posed by Hilbert in
1900. While one does not as often need to pack 24-
dimensional marbles as three-dimensional ones,
packing spheres in high dimensions still has im-
portant applications, as in signal processing, where
the space of available signals often has the struc-
ture of a bounded but large subset of Rn for some
large n. Of course, the problem has the same math-
ematical appeal for n ≥ 4 as for n < 4; as noted in
the introduction, there are also many specific ap-
plications and connections within mathematics.

At present, the sphere packing problem has not
been solved for any n ≥ 4. A few nmay be tractable:
the approach that solved the case n = 3 might
eventually, with considerably more effort and com-
putation, handle n = 4 as well; other methods may
settle the cases n = 8 and n = 24, which admit re-
markably dense packings that we shall describe
later. But in general one does not expect to get a
closed form for the maximal density as a function
of n: one can prove upper bounds and construct
or prove the existence of packings that yield lower
bounds, but these upper and lower bounds are usu-
ally quite far apart.

A simple lower bound is 2−n, obtained by start-
ing from any sphere packing and adding more and
more disjoint balls to it until no room is left. One
then has a packing S = {Br (xi)} such that
∪iB2r (xi) = Rn . Since each B2r (xi) has volume
2nVol(Br (xi)), it follows that S has ∆(S) ≥ 2−n . Ex-
actly the same bound applies to packings of trans-
lates of any given centrally symmetric convex body
of finite positive volume; in this generality it is
known as the Minkowski-Hlawka bound, Minkowski

having obtained it for spheres with a rather more
complicated method. It is rather embarrassing that
for large n this simple-minded approach to the
sphere packing problem yields a bound that is
within a factor nO(1) of the best lower bound
known, where O(1) denotes a bounded expres-
sion. (For other families of centrally symmetric
bodies, notably lp balls with p > 2, one can improve
the bound to c−n for some c < 2, as shown in
[EOR].) By comparison, the best asymptotic upper
bound known is 2−An+o(n) with A ≈ .599, requir-
ing a much subtler argument that applies only to
spheres and their affine images [CS, Ch. 9, espe-
cially pp. 247, 265]; here o(n) denotes an expres-
sion that, when divided by n, tends to 0 as n tends
to infinity.

Lattices and Lattice Packings of Spheres
An important special case of a sphere packing is
a lattice packing. Any sphere packing S is com-
pletely described by its common radius r and the
set C of centers of the spheres in the packing:
S = {Br (x) | x ∈ C} . The spheres do not overlap if
and only if d(x, x′) ≥ 2r for all distinct x, x′ ∈ C,
i.e., if and only if the minimal (nonzero) distance
of C is at least 2r. To find ∆(S) , multiply the den-
sity of C by the volume of a ball of radius r in Rn;

−1 0 1

Figure 1. The densest packing in one dimension. The collection S consists
of all intervals [2k− 1, 2k + 1] with k an integer.

Figure 2. The densest packing in two dimensions. The plane is
tiled with regular hexagons, and S consists of the circles
inscribed in those hexagons.
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here the density of a point set is the average
number of points per unit volume, and the ball vol-
ume is given by the formula rnπn/2/Γ (n/2 + 1) .
Now S is said to be a “lattice packing” if C is a lat-
tice in Rn. This means that C is a discrete additive
subgroup of Rn not contained in any hyperplane;
equivalently, C consists of all integer linear com-
binations 

∑n
j=1 cjvj of some vectors vj ∈ Rn that

constitute a basis for Rn. This is true of the opti-
mal packings for n = 1, where C = 2Z , and for
n = 2, where C consists of the centers of the hexa-
gons (as long as the hexagonal tiling is translated
so that one of the hexagons is centered on the ori-
gin). The maximal density is also attained by a lat-
tice packing for n = 3 and conjecturally for many
other n, including all n ≤ 8 and n = 24.

These conjecturally maximal packings are
known to be optimal at least among lattice pack-
ings for all n ≤ 8. For instance, the best lattice
packing for n = 8 may be described as follows: C
consists of the vectors in Z8 ∪ (Z + 1

2 )8 the sum of
whose coordinates is even. Equivalently, this is
the lattice of integer linear combinations of the
eight vectors 2e1, (ej − ej+1) for 1 ≤ j ≤ 6, and
1
2

∑8
j=1 ej , where e1, . . . , e8 are the standard unit

vectors in R8. Here r = 2−1/2 and C has density 1,
so ∆(S) = π4/384 ≈ .2537. This C ⊂ R8 is nowa-
days called the E8 lattice; we shall say much more
about it later.

The minimal distance of any lattice C is the
minimum of |x| over nonzero x ∈ C, i.e., the min-
imal (nonzero) length of C .2 For E8, this minimal
length is 

√
2, realized by the 112 vectors ±ei ± ej

for i < j and the 128 vectors 1
2

∑8
j=1 ajej with

aj = ±1 and 
∏
j aj = 1 , for a total of 240.

Let A be the invertible n× n matrix with column
vectors v1, . . . , vn; then the lattice generated by
these vectors is C = {Ac | c ∈ Zn}, with

density of C = 1/|detA|.
For any given C, there are many choices for the gen-
erators vj and thus for the “generator matrix” A :
the columns of a matrix B generate C if and only
if B = AM for some n× n integer matrix M of de-
terminant ±1. Such matrices M constitute a group
denoted by GLn(Z). A lattice C′ is isometric with
C if it is obtained from C by an orthogonal linear
transformation of Rn, and homothetic if it is iso-
metric with αC for some α > 0; isometry and ho-
mothecy are equivalence relations preserving the
density of the associated sphere packing (under a
homothecy the radius r is also multiplied by α).
The lattices generated by matrices A and A′ in

GLn(R) are isometric if and only if A′ = UAM for
some M ∈ GLn(Z) and U in On(R), the group of or-
thogonal n× n matrices; likewise the lattices are
homothetic if and only if A′ = αUAM , for some
α > 0, U, and M , with U and M as before. Since
|detA′| = αn|detA|, there is a unique α, namely
|detA|−1/n , such that |detA′| = 1. Thus a lattice
in Rn is specified by an n× n matrix of determi-
nant ±1 up to multiplication from the left and
right by matrices from On(R) and GLn(Z). We may
choose A and U to have determinant +1, i.e., to lie
in the “special” linear and orthogonal groups of
n× n matrices; we have thus identified the set Λn
of homothecy classes of lattices in Rn with the 
double coset space SOn(R)\SLn(R)/GLn(Z) . This is
also the space of isometry classes of lattices of
density 1, also known as unimodular lattices.

This tells us several things about Λn. We first
obtain its dimension. The Lie groups SLn(R)
and SOn(R) have dimension n2 − 1 and 

(
n
2

)
respectively, while SLn(Z) is discrete. Thus Λn
has dimension n2 − 1−

(
n
2

)
= (n− 1)(n + 2)/2 . For

n = 1 this dimension is 0 as expected, since Λn con-
sists of a single point: all lattices in R are 
homothetic. For n = 2 we find that Λn is closely re-
lated to the familiar action of SL2(Z) on the upper
half-plane by fractional linear transformations.
Indeed, each of the cosets in SO2(R)\SL2(R) has a

unique representative of the form y−1/2
(

1 x
0 y

)
,

obtained by rotating the first column vector to

a positive multiple of 
(

1
0

)
; thus SO2(R)\SL2(R) is

isomorphic with the upper half-plane

H := {τ = x + iy | y > 0}.

If a matrix 
(
a b
c d

)
∈ GL2(Z) has determinant +1 Z

transformation τ 7→ (aτ + b)/(cτ + d) .  This,

together with the fact that the involution 
(−1 0

0 1

)
of determinant −1 is required to act by
x + iy ↔ −x + iy, completely describes our action 
of GL2(Z) from the right on SO2(R)\SL2(R) .  
It is a classical fact that

{(x, y) | x2 + y2 ≥ 1, |y| ≤ 1/2}
is a fundamental domain for the action of SL2(Z)
on H ; adding to this the condition x ≥ 0 yields a
fundamental domain for GL2(Z) . See Figure 3. If
x + iy is a point in that fundamental domain, the
corresponding unimodular lattice has minimal
length y−1/2 . The point x + iy = eπi/3 =
(1 +

√−3)/2 of the domain has minimal y and thus
maximal y−1/2. We conclude that the density is
maximized by the hexagonal lattice, here scaled to
density 1. Once n > 2 it is of course much harder
to visualize Λn; the spaces Λn become still more 
complicated as n increases, but at least for small
n there is a classical “reduction theory” that 
yields explicit fundamental domains and 

2We avoid the word “norm”, which has two common and
conflicting meanings: in the context of lattices and qua-
dratic forms, a vector x is usually said to have norm
|x|2 ; but elsewhere in mathematics |x| is often called the
norm of x .
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identifies the densest lattice packings of spheres
in those dimensions.

The identification of Λn with

SOn(R)\SLn(R)/GLn(Z)
also yields a natural choice of measure on Λn,
from invariant Haar measures on SLn(R) and
SOn(R) . For n = 2 the resulting measure on
H = SO2(R)\SL2(R) , and thus on Λ2=H/GL2(Z), is
the one coming from the familiar hyperbolic met-
ric dxdy/y2 invariant under all fractional linear
transformations τ 7→ (aτ + b)/(cτ + d) with
ad − bc > 0. The n = 2 fundamental region, though
not compact, has finite area since 

∫∞
y0
dy/y2 <∞;

it is known that in fact Λn has finite measure for
all n. Thus integration yields a well-defined notion
of averaging over Λn—intuitively, of properties of
a “random” or “typical” unimodular lattice. For in-
stance, we may ask for the average minimal length
of such a lattice or the probability that a random
lattice in Rn has minimal length ≥ 2r . If that prob-
ability is positive, then there exists such a lattice
and thus a lattice packing of spheres with
∆ ≥ rnπn/2/Γ (n/2 + 1) . A lower bound r0 on r
therefore yields a lower bound on an n-dimen-
sional lattice packing of spheres. It is not hard to
derive an r0 that yields lattice packings with
∆ ≥ 2−n, the same result we found earlier for un-
restricted packings. (The Minkowski-Hlawka bound
likewise applies even to lattice packings.) This
makes it even more embarrassing that we cannot
do better than nO(1)2−n for large n: we cannot
pack n-dimensional spheres significantly better
than is achieved by a random lattice!

Of course, it is conceivable that the cases of
small n, where the best lattices are much better
than random, are misleading and that for high n
the random lattices really are essentially best pos-
sible; it is an important open question whether
there exist sphere packings with ∆ > 2−θn for
some fixed θ < 1 and all n. But our embarrassment
is even more acute than this indicates: not only can
we not improve on 2−n, but also we do not even
know how to attain this density for large n (say
n > 2000). It is not even easy to construct any se-
quence of lattices of dimensions n →∞ whose
densities exceed 2−θn for any fixed θ <∞; the
smallest θ for which such a sequence is known is
≈ 1.39, using surprisingly sophisticated ideas from
number theory and algebraic geometry [TV,
p. 585].

This seems paradoxical: surely we could take say
n = 5000 and just choose a (pseudo)random lattice
C , which will almost certainly yield a sphere pack-
ing S with ∆(S) > 2−5010. A lattice in Rn is speci-
fied, for instance, by the n2 entries of a generator
matrix; with modern computers it is easy to store
and manipulate n2 entries for n = 5000. Generat-
ing random lattices according to the natural mea-
sure on Λn is not entirely trivial, but there are
known and efficient ways to do this given a good

pseudorandom number generator. The explanation
of the apparent paradox is that for large n we
know no feasible way to compute the minimal
length of a general lattice C given its generators.
Much work has been spent on this important prob-
lem, but even modern lattice reduction techniques
fail long before n reaches 5000. Thus our C almost
certainly yields a good sphere packing, but we
cannot prove it.

Theta Functions and Modular Forms
Sometimes an appropriate response to a difficult
mathematical problem is to pose a much harder
problem. Here we find the minimal nonzero length
intractable, and thus ask for all the lengths of vec-
tors of C and their multiplicities. Equivalently, we
ask for the following generating function of the
squared lengths, called the theta function (or theta
series) of C :

ΘC(z) :=
∑
x∈C

z(x,x) = 1 +
∑
m>0

Nm(C)zm,

where Nm(C) = #{x ∈ C | (x, x) =m} is the num-
ber of lattice vectors of length 

√
m . For instance,

ΘZ(z) =
∞∑

k=−∞
zk

2
= 1 + 2(z + z4 + z9 + · · · ),

a specialization of the classical elliptic function ϑ3.
The series defining ΘC(z) converges absolutely for
0 ≤ z < 1. As a function of a complex variable, ΘC

−1 0 1

Figure 3. Fundamental domains for the actions of SL2(Z) and
GL2(Z) on the upper half plane. The circle is the unit circle, and
the vertical lines are at x = −1/2, x = 0 , and x = 1/2 . The total
shaded region is a fundamental domain in the case of SL2(Z),
while the right-hand half is a fundamental domain in the case
of GL2(Z) .
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may have a branch point at the origin. But a sub-
stitution z = eciτ (c a positive constant) yields an
analytic function of τ ∈H. Naturally there is no
way known to compute ΘC(z) for a general lattice
C ∈ Rn once n is large enough; but theta func-
tions, relations among them, and their properties
as analytic functions yield much important infor-
mation concerning lattices and their vectors’
lengths.3

An easy identity relates the theta functions of
any two lattices C1 ⊂ Rn1, C2 ⊂ Rn2 with the theta
function of their direct sum C1 ⊕C2 ⊂ Rn1+n2 :

ΘC1⊕C2 (z) = ΘC1 (z)ΘC2 (z).

A more interesting identity arises from the Pois-
son summation formula. Given a suitable function
f : Rn → C and a lattice C ⊂ Rn , Poisson’s formula
relates the sum 

∑
x∈C f (x) of f over C with the

sum of the Fourier transform

f̂ (y) :=
∫
Rn
f (x)e2πi(x,y)dx

of f over the dual lattice C∗ . The dual lattice is de-
fined by

C∗ := {y ∈ Rn | (x, y) ∈ Z for all x ∈ C};
as the name suggests, C∗ is again a lattice in Rn,
and (C∗)∗ = C. If A is a generator matrix for C then
the transpose of A−1 generates C∗ . Thus the den-
sities of C and C∗ are reciprocals. A function f is
“suitable” for the Poisson formula if both f and f̂
decrease rapidly enough; in particular, the Gauss-
ian f (x) = exp(−c(x, x)) is suitable for all c > 0
(more generally, all c of positive real part). The
Fourier transform of a Gaussian is again propor-
tional to a Gaussian, so the Poisson formula will
relate ΘC with ΘC∗ . We find:

ΘC(e−πy ) = Dy−n/2ΘC∗ (e−π/y )

where D is the density of C .
We note in passing the following interpretation

of this identity in terms of the geometry of
TC := Rn/C. Topologically, TC is just an n-torus, but
we consider it as a Riemannian manifold, with the
metric inherited from Rn. The lengths of vectors
in C can then be interpreted as the lengths of
closed geodesics on TC. As to the lengths of y ∈ C∗,
those are proportional to square roots of eigen-
values of the Laplacian on TC, associated to the
eigenfunction x 7→ e2πi(x,y) . The Poisson formula
thus relates for TC the spectrum of the Laplacian
with the geodesic lengths.

The Poisson formula is particularly nice when
C = C∗, i.e., when C is self-dual. This happens if and
only if C is unimodular and integral, integral mean-
ing that (x, y) ∈ Z for all x, y ∈ C . In terms of a gen-
erator matrix A , this means that det(A) = ±1 and

the “Gram matrix” ATA has integer entries. Ex-
amples of self-dual lattices are Z and the lattice
E8 exhibited above, as well as C1 ⊕C2 when C1 and
C2 are self-dual. If C is self-dual then the Poisson
formula is a functional equation for ΘC. Also, the
squared lengths of all the lattice vectors are au-
tomatically integers, so ΘC is an analytic function
on the unit circle |z| < 1. An alternative and even
nicer formulation of this is in terms of the analytic
function

θC(τ) := ΘC(eπiτ ) =
∑
x∈C

eπi(x,x)τ

on H , mentioned earlier. The functional equation
relates θC(τ) with θC(−1/τ) ; the integrality yields
θC(τ) = θC(τ + 2). Iterating these two identities
gives the ratio between θC(τ) and θC(g(τ)) where
g is any fractional linear transformation in the
group Γ generated by the involution τ ↔ −1/τ and
the translation τ 7→ τ + 2. These are the maps
τ 7→ (aτ + b)/(cτ + d) with 

(
a b
c d

)
in the subgroup

of SL2(Z) generated by 
(

0 −1
1 0

)
and 

(
1 2
0 1

)
. It can

be shown that this is the same as the index-3
subgroup of SL2(Z) consisting of matrices 
congruent mod 2 to either the identity 

(
1 0
0 1

)
or the

involution 
(

0 1
1 0

)
. Thus Γ is an example of a 

congruence subgroup of SL2(Z), i.e., a subgroup 
defined by congruence conditions on the matrix
entries. We find that, for all 

(
a b
c d

)
∈ Γ,

θC
(aτ + b
cτ + d

)
= (εg

√
cτ + d)nθC(τ),

where 
√· is the principal branch of the square root

and εg is an 8th root of unity depending on (c, d)
in an explicit but somewhat complicated way
(which incorporates Quadratic Reciprocity!).

This condition on θC is quite demanding. An an-
alytic function φ on H satisfying the identity
φ
(
aτ+b
cτ+d

)
= (εg

√
cτ + d)nφ(τ) for all g ∈ Γ (and

some mild growth conditions that are automatically
satisfied by a theta function) is called a modular
form of weight (n/2) for Γ. The subgroup Γ of SL2(Z)
is one of many congruence subgroups for which
the modular forms have been determined com-
pletely. For Γ, it is known that any modular form
is a weighted homogeneous polynomial in ΘZ ,
which has weight 1/2, and the modular form

δ8(t) := eπiτ
∞∏
m=1

(
(1− eπimτ )(1 + e2πimτ )

)8
= eπiτ − 8e2πiτ + 28e3πiτ

− 64e4πiτ + 126e5πiτ · · ·
of weight 4. So, for instance, if n < 8, we conclude
that θC = θnZ . In particular, C has 2n vectors of
length 1, from which it readily follows that C is
isomorphic with Zn, the direct sum of n copies of

3Further discussion of some of the topics in this section
may be found in [S].
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the lattice Z . For n = 8 we have a lattice E8 that is
not isomorphic with Z8, because E8 has no vectors
of length 1 at all. It is known (see, e.g., [CS])4 that
any self-dual lattice in R8 is isomorphic with either
Z8 or E8. Thus θE8 must be the unique linear com-
bination of θ8

Z and δ8 whose constant and eπit co-
efficients are respectively 1 and 0. We calculate

θE8 (τ) = θ8
Z (τ)− 16δ8(τ)

= 1 + 240e2πiτ + 2160e4πiτ

+ 6720e6πiτ + · · · .
We can now easily compute for each integer m the
number Nm(E8) of vectors of E8 of length 

√
m : it

is simply the coefficient of emπiτ in the expansion
of θE8 . For instance, we confirm our count
N2(E8) = 240 of minimal vectors.

Continuing in this manner past m = 2, we find
that not only does N1 vanish but so do
N3,N5,N7, . . . . Could it be that Nm(E8) = 0 for all
odd m, and thus that the length of every vector of
E8 is the square root of an even integer? It tran-
spires that this is true, and not hard to prove. The
key is that, for any integral lattice C , the map ν
from C to Z/2Z defined by x 7→ (x, x) mod 2 is a ho-
momorphism. Our claim is then that for E8, this ν
is the zero homomorphism, and it is enough to
check it on generators of the lattice. We have al-
ready exhibited generators each of whose length
is 
√

2 or 2, whence our claim follows. A lattice is
said to be even if the length of every lattice vector
is the square root of an even integer. Suppose C
is a lattice that, like E8, is both even and self-dual.
Then θC is a linear combination of terms eπimτ
with 2|m, and thus is invariant not only under
τ 7→ τ + 2 but also under τ 7→ τ + 1. Therefore θC
is a modular form of weight n/2 for the group gen-
erated by τ 7→ τ + 1 and τ ↔ −1/τ. It turns out
that this group is all of SL2(Z).

The modular forms for SL2(Z) are again known:
they are the weighted-homogeneous polynomials
in θE8, which has weight 4, and the weight 12 form

δ24(τ) := e2πiτ
∞∏
m=1

(1− e2πimτ )24

= e2πiτ − 24e4πiτ

+ 252e6πiτ − 1472e8πiτ · · ·
whose e2πimτ coefficient is the value at m of Ra-
manujan’s celebrated multiplicative tau function.5

In particular, n/2 must be a multiple of 4, so if Rn
contains an even self-dual lattice then n is a multi-
ple of 8 . This necessary condition is also

sufficient: if 8|n then the direct sum of n/8 copies
of E8 is an even self-dual lattice in Rn.

The coefficients of θE8 can even be given in
closed form by identifying that theta function with
a normalized Eisenstein series .  For each
k = 1,2,3, . . . , the normalized Eisenstein series

E4k(τ) :=
1

2ζ(4k)

∑∑
c,d∈Z

(c,d)6=(0,0)

1
(cτ + d)4k

is a modular form of weight 4k for SL2(Z). Here ζ
is Riemann’s zeta function, defined by
ζ(s) :=

∑∞
n=1 n−s (s > 1); the normalizing factor

1/2ζ(4k) assures that E4k(τ) → 1 as τ → i∞. Using
the Fourier series for 

∑
d∈Z(x + d)−4k to expand

E4k(τ) in powers of e2πiτ, one finds

E4k(τ) = 1 +
4k
−B4k

∞∑
m=1

σ4k−1(m)e2πimτ.

Here B4k is the (4k) -th Bernoulli number
−2(4k)!ζ(4k)/(2π )4k , known to be rational for each
k = 1,2,3, . . . ; and σj (m) is the sum of the j-th
powers of the positive divisors of m. For instance,
E4(t) = 1 + 240

∑∞
m=1σ3(m)e2πimτ is a modular

form of weight 4 for SL2(Z). Since all such forms
are multiples of θE8, and E4, θE8 have the same con-
stant coefficient 1, we conclude that θE8 = E4. Thus
for each positive integer m there are exactly
240σ3(m) vectors of E8 of length 

√
2m.

Similarly we conclude that θ2
E8

=E8 =1+
480

∑∞
m=1σ7(m)e2πimτ . Equating the series for E2

4
and E8, we find the otherwise mysterious identity

σ7(m) = σ3(m) + 120
∑

m1+m2=m
σ3(m1)σ3(m2).

Returning to theta series, we find that any even
self-dual lattice C in R16 must have θC = E8. While
E8 was the unique such lattice in dimension 8, there
are two even self-dual lattices in dimension 16.
One, of course, is E8 ⊕ E8. The other is a lattice we
might call E16, obtained in the same way we de-
fined E8: it is generated by 2e1, (ej − ej+1) for
1 ≤ j ≤ 14, and 1

2

∑16
j=1 ej , where e1, . . . , e16 con-

stitute an orthonormal basis for R16. That the lat-
tices are not isomorphic may be seen from the fact
that E16 is not generated by its 480 vectors
±ei ± ej of length 

√
2, whereas the minimal vec-

tors of E8 ⊕ E8 do generate E8 ⊕ E8. Recalling our
earlier discussion of Rn/C , we find that the tori
R16/E16 and R16/(E8 ⊕ E8) are nonisomorphic
compact Riemannian manifolds with the same

4In general, for each n there are only finitely many iso-
morphism classes of self-dual lattices in Rn , but their
number grows superexponentially with n.
5The reader already conversant with modular forms for
SL2(Z) may well wonder what became of the Eisenstein
series of weight 6. Its absence is explained by the factors 

εng forced on us by Poisson summation. These factors 
cannot extend consistently to all of SL2(Z) unless 8|n.

To see this, consider g =
(

1 −1
1 0

)
=
(

1 1
0 1

)(
0 −1
1 0

)
, with

g3 = −
(

1 0
0 1

)
.
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Laplacian spectrum; this was the first example of
isospectral manifolds discovered (Witt 1941 and
Milnor 1964).

In dimension 24 we find for the first time that
the theta function of an even self-dual lattice C is
not completely determined: the modular-form

condition tells us only that θC = θ3
E8

+ aδ24 for
some integer a. To use C for sphere packing, we
want its minimal length to be as large as possible;
let us try, then, to choose a so that the e2πiτ co-
efficient of θC vanishes, i.e., so that N2(C) = 0 and
all nonzero lattice vectors have length at least 2.
This condition does completely determine θC; we
find that a = −720 and thus that

θC = θ3
E8
− 720δ24 = 1 + 196560e4πiτ

+16773120e6πiτ + · · ·
Thus any such C would have minimal length 2, at-
tained by 196560 minimal vectors, and also
16773120 vectors of the next-lowest length 

√
6, etc.

By comparing the first few coefficients with those
of the Eisenstein series E12 , we find that
N2m(C) = (65520/691)(σ11(m)− τ(m)) for each
m = 1,2,3, . . ., where τ(m) denotes Ramanujan’s
tau function.

This still begs the question of whether such a
lattice exists. J. Leech constructed one in 1966; it
was proved unique a few years later in several
ways, among them H.-V. Niemeier’s classification
of all even self-dual lattices in R24 (the last case
in which all such lattices are known). We shall de-
scribe Leech’s remarkable lattice L24 explicitly in
Part II, using the extended binary Golay code (also
to be introduced in Part II). The density π12/12!
of the resulting sphere packing in R24 is almost
certainly the largest possible in that dimension.

In addition to classifying various kinds of lat-
tices up to isomorphism, we may consider the au-
tomorphism group of a specific lattice C. The prob-
lem of finding the unimodular lattice C ⊂ Rn with
the largest minimal length has a large symmetry
group, namely the group On(R) of orthogonal lin-
ear transformations of Rn. Often the solution of a
highly symmetric problem will itself have a large
and/or interesting symmetry group, and this hap-
pens in several cases for our problem. The auto-
morphisms of any lattice C ⊂ Rn are those
φ ∈ On(R) such that φ(C) = C . These constitute a
discrete subgroup Aut(C) of the compact group
On(R); thus Aut(C) is finite. This group always
contains the central element −1, taking each
v ∈ Rn to −v. For most lattices C (i.e., in all but a
measure-zero subset of Λn), {±1} is all of Aut(C),
but at least in small dimensions the optimal lat-
tices are far from typical in this respect.

One source for nontrivial automorphisms is re-
flections in hyperplanes. For nonzero w ∈ Rn, the
reflection rw in the hyperplane orthogonal to w is

given by v ↔ v − 2
(
(v,w )/(w,w )

)
w . Thus if w ∈ C

and 2(v,w ) ∈ Z(w,w ) for all v ∈ w ,  then 
rw ∈ Aut(C). Such vectors w are called roots of C .
For example, if C is integral, then any w ∈ C with
(w,w ) = 1 or (w,w ) = 2 is a root. A root lattice is a
lattice generated by the roots it contains. Roots and

Figure 4. The root lattice of B2. The origin is marked by a circle,
and the roots are marked by crosses. Other lattice points are

marked by solid dots. The resulting lattice is just Z2 in R2 .

Figure 5. The root lattice of G2 . The origin is marked by a circle,
and the roots are marked by crosses. Other lattice points are

marked by solid dots. The resulting lattice is homothetic to the
hexagonal lattice that appears in Figure 2 if the center of some

circle in Figure 2 is regarded as the origin.
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root lattices arise naturally in the classification of
Lie groups and algebras; in that context, the group
generated by reflections rw for certain roots w ∈ C
is called the “Weyl group” of the corresponding Lie
algebra. For example, the root lattice of the Lie
group Bn is isomorphic with Zn, with roots ±ei and
±ei ± ej for 1 ≤ i < j ≤ n . See Figure 4. The cor-
responding reflections generate Aut(Zn) . This
group has a normal subgroup {±1}n and is the
semidirect product of that subgroup with the sym-
metric group Symn, acting on {±1}n by permuting
its coordinates. This group is also known as the “hy-
peroctahedral group” because it is the group of
symmetries of the hyperoctahedron (cross-poly-
tope) with vertices ±ei , and as the “signed per-
mutation group” because it consists of the n× n
signed permutation matrices, i.e., matrices with en-
tries in {0,±1}, each of whose rows and columns
contain exactly one nonzero entry. The root lattice
of the smallest exceptional Lie group G2 is homo-
thetic with the hexagonal lattice in R2 . See
Figure 5. The roots are the six minimal vectors, of
length 

√
2, and the six vectors of next smallest

length 
√

6; again the corresponding reflections
generate the automorphism group, which here is
the dihedral group of 12 elements. For a final ex-
ample, the E8 lattice is a root lattice, associated with
the largest of the exceptional simple Lie groups
(which is also called E8). We have already described
its 240 roots; the corresponding reflections again
generate Aut(E8) , this time a group of order
21435527, which we describe further in the next
paragraph.

The Leech lattice L24 has no roots, and indeed
Aut(L24) contains no reflections in hyperplanes
nor any other orientation-reversing automorphism.
In other words, Aut(L24) is its own determinant-
one subgroup. Even so, Aut(L24) cannot be simple,
because it still contains the central involution −1.
But the quotient of Aut(L24) by its center {±1} is
simple. This quotient group Co1 was determined
by J. H. Conway and bears his name, as does
Aut(L24) itself, usually6 called Co0. Now it is not
unusual for simple groups to arise as quotients of
Aut(C) (or of normal subgroups of Aut(C)) for in-
teresting lattices C ; for instance, Aut(Zn) yields
Altn , and the determinant-one subgroup of
Aut(E8)/{±1} is isomorphic with an orthogonal
group SO+

8(Z/2Z) . But Co1 is a “sporadic” simple
group: one of the 26 finite simple groups not con-
tained in infinite families of alternating groups or
matrix groups of Lie type. A list of these groups
may be found in R. Salomon’s Notices article on the
classification of finite simple groups (42 (1995), pp.
231–239). The Leech lattice and its automorphism
group play a central role in the story of the

sporadic groups. R. L. Griess used L24 and Co1 to 
construct the largest of these groups, the “Monster”
(named after Griess and B. Fischer, who had inde-
pendently predicted its existence), from whose
subgroups all but six of the sporadic simple 
groups can be recovered. These include Co1 itself
and eleven further sporadic groups arising natu-
rally from subgroups of Co1 . For instance,
Co0 = Aut(L24) acts transitively on the 196560
vectors of minimal length 2 and on the 16773120
vectors of next-smallest length 

√
6; the point sta-

bilizers in these transitive actions are Conway’s
sporadic simple groups Co2 and Co3. Mathieu’s
highly transitive permutation groups, which were
the first five sporadic groups discovered, also
occur in Co0 via the constructions of L24 from
Golay’s error-correcting codes. We turn to error-
correcting codes in Part II of this article.
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