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Jürgen K. Moser died of
prostate cancer on De-
cember 17, 1999, in
Zürich, Switzerland. He
was seventy-one years
young. One of those rare
people with a gift for see-
ing mathematics as a
whole, he was very much
aware of its connections
to other branches of 
science. His research 
had a profound influence
on mathematics as well
as on astronomy and
physics.

Moser was born on July
4, 1928, in Königsberg, in
East Prussia. He spent

1947–53 at the university in Göttingen, receiving
his doctorate in 1952 under the direction of Franz
Rellich. It was Rellich who kindled his interest 
in physics. A more important influence on him, 
however, was Carl Ludwig Siegel, who returned to 
Göttingen in 1950 after ten years in Princeton. Moser
learned number theory and celestial mechanics from
him and wrote the notes for Siegel’s course on the
latter topic. These notes became the first draft of
Siegel’s 1956 book. Moser revised the book in 1971,
and it was reissued under their joint authorship.

A Fulbright Fellowship allowed Moser to spend
a stimulating year (1953–54) at New York Univer-
sity (NYU). He went back to Göttingen as Siegel’s
assistant (1954–55), and this interval was followed 
by a two-year assistant professorship at NYU 
and three years as associate professor at the

Massachusetts Institute of Technology (MIT). He 
returned to NYU as a full professor in 1960 and 
remained there until 1980. Moser then joined the
faculty of the Eidgenössische Technische
Hochschule (ETH) in Zürich, Switzerland. He retired
in 1995 at the mandatory retirement age of sixty-
seven.

Moser made deep and important contributions to
an extremely broad range of questions in dynamical
systems and celestial mechanics, partial differen-
tial equations, nonlinear functional analysis, complex
geometry, and the calculus of variations. More specif-
ically, he did major work on KAM theory (named in
honor of Kolmogorov, Arnold, and Moser), regular-
ity questions and Harnack inequalities for elliptic
and parabolic partial differential equations (PDEs),
Nash-Moser theory, biholomorphic equivalence, and
completely integrable Hamiltonian systems.

For his outstanding research achievements, Moser
received many honors and awards. He was elected
to membership in the National Academy of Science
of the USA (NAS) in 1973, and he was a foreign mem-
ber of several national academies. In addition, he
received the Craig Watson Medal of the NAS for his
contributions to dynamic astronomy (1967), the first
AMS-SIAM George David Birkhoff Prize in Applied
Mathematics (1968), the L. E. J. Brouwer Medal of
the Dutch Scientific Society for his work in analysis
and classical mechanics (1984), the Cantor Medal
of the German Mathematical Society (1992), and the
Wolf Prize (1995). He delivered the AMS Gibbs 
Lecture (Dallas, 1973), the Pauli Lectures (ETH, 1975),
the AMS Colloquium Lectures (Toronto, 1976), the
Hardy Lectures (Cambridge, 1977), the Fermi 
Lectures (Pisa, 1981), the von Neumann Lecture
(SIAM, Seattle, 1984), and three invited addresses
at International Congresses of Mathematicians.

To those who knew him Moser exemplified 
a creative scientist and, perhaps even more
important, a human being. His standards were 
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high and his taste im-
peccable. His papers
were elegantly written.
Not merely focused on
his own research, he
worked successfully
for the well-being of
mathematics in many
ways. He stimulated
several generations of
younger people by his
penetrating insights
into their problems,
scientific and other-
wise, and by his warm
and wise counsel, con-
cern, and encourage-
ment. My experience

as his student was typical: then and afterwards I
was made to feel like a member of his family. Moser
had an important influence in his role as director
of the Courant Institute of Mathematical Sciences
at NYU (1967–70), as director of the Mathematics
Research Institute of the ETH (1984–95), as presi-
dent of the International Mathematical Union
(1983–86), and through his active membership on 
numerous advisory bodies. He was a lifelong music
lover—he played the cello—and amateur astronomer.
He enjoyed biking and swimming. At the age of sixty,
he took up paragliding.

With his untimely death at seventy-one, many
of us in the mathematics community lost a hero,
friend, and mentor.

Some of Moser’s mathematics will be discussed
in the three segments below. John Mather treats
KAM theory, Louis Nirenberg describes Moser’s
work in partial differential equations, and Henry
McKean writes about completely integrable
Hamiltonian systems. A three-volume selecta of
his work, as chosen by Moser himself, is planned
by the publisher Izhevsk. The first volume,
Integrable Systems and Spectral Theory, 296 pages
(translated into Russian), appeared in 1999. The two
further translated volumes, as well as an edition of
the selecta in English, are expected to appear soon.

—Paul H. Rabinowitz

John N. Mather

The theme of Moser’s work in dynamical systems
was “stable and random motions”, a phrase that ap-
pears in the title of a very influential book [M9] of
his. He explained “the larger picture of the stabil-
ity problem for Hamiltonian systems” as follows:1

Speaking quite intuitively, we are fa-
miliar with systems with very
unstable, even ergodic, behavior, as
…demanded by statistical mechanics.
…On the other hand, there are other
systems exhibiting clearly stable be-
havior, as, for example, the planetary
motion of the solar system. The prob-
lem is to decide which systems have 
stable and which unstable behavior.

At this stage of the knowledge one can
establish stability of a Hamiltonian sys-
tem only if a system is sufficiently close
to so-called integrable systems—these
are systems for which so many inte-
grals are known that stability is evi-
dent. Moreover small perturbations of
such systems do not affect the stabil-
ity behavior too much. This is the mean-
ing of KAM theory …. But as the system
recedes further from the exceptional
integrable system stability will deteri-
orate and ultimately get lost. This is
the expected phenomenon which one
would like to understand. For example,
the planetary system has the special
feature that the masses of the planets
are small compared to that of the sun,
so that the forces between the planets
are much smaller than those between
the planets [and] the sun. If one ne-
glects the former, one has the Kepler
approximation, in which all planets
move on ellipses. This is the integrable
approximation which is evidently sta-
ble, and this system will retain its 
stability for small masses of the 
planets. If we enlarge the masses of 
the planets sufficiently, we would 
expect the system to become unstable.

More generally one studies small per-
turbations H = H0 + εP of an integrable
Hamiltonian H0. For such an integrable
system of n degrees of freedom, one
has n independent integrals in involu-
tion whose level sets are n-dimensional
tori. In this case stability is obvious.
After small perturbation of such a 
system, i.e., for small ε, the system 
corresponding to the Hamiltonian
H = H0 + εP still possesses a large set
of invariant tori. This is the content of
the so-called KAM theory. In other
words, for most initial points in phase
space the orbits lie on such tori and 
exhibit stable behavior. For n > 3 the
exceptional orbits not lying on such
tori may leak out and escape slowly. For

John N. Mather is professor of mathematics at Princeton
University. His e-mail address is jnm@math.princeton.edu.
1Recent developments in the theory of Hamiltonian 
systems, SIAM Review 28 (1986), pp. 459–485.

Göttingen, 1947.
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n = 2 such slow escape is not possible
since the exceptional orbits on a
three-dimensional energy surface are
trapped between the two-dimensional
tori. Nevertheless, the set of these tori
generally forms a rather complicated
Cantor set, even for simple and smooth
Hamiltonians.

The stability problem in celestial mechanics goes
back to Newton. Nevertheless, the modern formu-
lation is due to Poincaré (1890), who first recognized
the importance of random motions (or “chaos”, in
the currently popular terminology). This aspect of
Poincaré’s work was greatly extended by G. D. 
Birkhoff. However, the fundamental problem 
remained unsolved, as Moser explained in his 
historical comments on pp. 8–9 of [M9]. This is the
problem of constructing quasi-periodic solutions
(i.e., invariant tori) in the N-body problem. Weier-
strass knew formal power series expansions for such
solutions, and he suggested the problem of their
convergence to Mittag-Leffler as a prize question to
be sponsored by the Swedish king. Poincaré won the
prize with his famous 1890 paper. The prize was
awarded for the wealth of ideas; Poincaré did not
solve the problem. From the remarks of Weierstrass
and Poincaré quoted in [M1, pp. 8–9], it would appear
that Weierstrass favored the view that the series
converge and Poincaré favored the opposite view.

Both agreed, however, that the question had not
been settled rigorously.

Moser remarked [M9, p. 9] that the work of 
Kolmogorov [K1] showed that the series do con-
verge at least if a certain Hessian determinant does
not vanish. Here, H is analytic. In action-angle 
coordinates I = (I1, . . . , In) and θ = (θ1, . . . , θn) ,
the unperturbed H0 is a function of I alone:
H0 = H0(I) . Here I is in an open ball Bn in Rn, and
θ is in Tn = Rn/Zn . The Kolmogorov theorem 
assumes the nonvanishing of the Hessian deter-
minant: det(∂2H0/∂I2) 6= 0 .

The equations of motion have Hamiltonian form
in action-angle coordinates, namely,

(1)
•
θ = ∂H/∂I,

•
I = −∂H/∂θ.

For the unperturbed Hamiltonian H0, the second

equation reduces to 
•
I = 0. So each torus I◦ × Tn

is invariant, I◦ denoting a particular point I. On this
torus, the equations of motion take the form•
θ =ω◦ := ∂H/∂I(I◦) . Every trajectory has the 
form t 7→ θ◦ + tω◦ ; such a flow on the torus is
called a Kronecker flow with rotation vector ω◦. 
Kolmogorov’s assertion is that the tori whose 
rotation vectors satisfy a Diophantine condition,
namely, there exist C > 0 and ν > 0 such that

(2)

∣∣∣∑miω◦
i

∣∣∣ > C/(∑ |mi|
)ν

for all m ∈ Zn r 0,

persist. This means that for ε small, the Hamil-
tonian system H0 + εP has an invariant torus with
a Kronecker flow of rotation vector ω◦, and this
torus is close to the invariant torus of the unper-
turbed system with the same rotation vector.

If the Diophantine exponent ν is greater than n,
then almost every vector ω◦ ∈ Rn satisfies the
Diophantine condition (2) for some Diophantine 
coefficient C > 0. It follows that ω◦ = ∂H/∂I(I◦)
satisfies a Diophantine condition with exponent ν
for almost every I◦ ∈ B, in view of Kolmogorov’s
nondegeneracy condition det(∂2H0/∂I2) 6= 0 .

Moser tells2 how Mathematical Reviews asked
him to review [K2]. He was disappointed that 
neither [K1] nor [K2] contained a proof of the re-
sult announced in [K1]. He wrote to Kolmogorov
asking for an argument, but never received a reply,
so he indicated in his review that there was only
a sketch of a proof. Moser was very excited about
Kolmogorov’s result because of its relevance to the
stability problem of elliptic fixed points of area-
preserving mappings, a problem C. L. Siegel had
urged him to pursue.

2Recollections, The Arnoldfest: Proceedings of a Confer-
ence in Honour of V. I. Arnold for His Sixtieth Birthday
(E. Bierstone, B. Khesin, A. Khovanskíi, J. Marsden, eds.),
Fields Institute Communications, vol. 24, Amer. Math.
Soc., 1999, pp. 19–21.
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Since Kolmogorov’s proof was not available to
Moser, he continued to try to prove the invariant
curve theorem for area-preserving twist maps. In
1961 he succeeded, but in the smooth category
rather than the analytic category. Moser saw it as
a shortcoming that he was unable to give a proof
in the analytic category. The Russians, on the other
hand, considered that Moser had extended 
Kolmogorov’s theorem from the analytic category
to the smooth category and that this was its main
virtue. This has come to be the accepted view.

Moser’s proof [M4] of his invariant curve 
theorem combined ideas from Kolmogorov’s 
announcement [K1] with a fast iteration method
Moser developed to prove a general implicit 
function theorem [M3] similar to that formulated
by J. Schwartz in a 1960 paper generalizing Nash’s
embedding theorem [N1]. Moser’s fast iteration
method was based on a generalization of New-
ton’s method, familiar to students of freshman
calculus as a numerical method of finding roots
of equations. Moser got the idea of using a method
like Newton’s from Kolmogorov’s papers [K1] and
[K2]. He combined this with a smoothing tech-
nique due to Nash [N1], which permitted him to
carry out the proof in the smooth category.

Moser discussed a number of applications of 
fast iteration methods in his Pisa lectures [M7]. In
particular, he proved the Kolmogorov theorem
with estimates. Then he proved his differentiable
version of Kolmogorov’s theorem by using his 
estimates for Kolmogorov’s theorem together 
with approximation techniques of Bernstein and
Jackson.

There is a loss of derivatives in the conclusion
of Moser’s theorem: if H is Cr , then Moser’s theo-
rem asserts the existence of invariant tori of class
Cr−d, where d > 0 depends on the number n of 
degrees of freedom and the Diophantine expo-
nent ν, but not the differentiability class r . The
method of [M7] gives a better upper bound for d
than the method of [M3] and [M4].

Let Kδ be the subset of Bn consisting of vectors
whose distance to the boundary is ≥ δ. Moser’s
proof shows that there exists r0 > 0 and d > 0
such that for any δ > 0, C > 0, ν ≥ n, r ≥ r0, there
exists ε > 0 such that if the conditions

• P has Cr norm < ε ,
• I◦ ∈ Kδ , and
• ω◦ := ∂H/∂I(I◦) satisfies a Diophantine con-

dition with coefficient C and exponent ν
are satisfied, then the invariant torus I◦ × Tn for
H0 “persists” for the perturbed system H = H0 + P,
in the sense that this system has an invariant torus
with rotation vector ω◦. Moreover, this torus is of
differentiability class Cr−d, it is Cr−d close to the
original torus, and the coordinate transformation
that exhibits the flow on it as a Kronecker flow is
of class Cr−d and is close to the identity transfor-
mation in the Cr−d topology.

Moser’s student Pöschel showed in 1982 that
such tori nearly fill phase space, in the following
sense: if η > 0 is given, they fill out a set of mea-
sure > meas(Kδ)− η provided ε is small enough.
(Here, the measure is ordinary Lebesque measure
on Rn or R2n.) The earlier analytic version of this
theorem is due to Arnold [A2].

Both Kolmogorov’s and Moser’s proofs rely on
a rapid iteration method. Here is a very approximate
description of the proofs: Both authors introduced
a nonlinear functional equation whose solution
would imply the persistence of the invariant tori.
They linearized this equation and solved the 
linearized equation. Kolmogorov iterated and 
stated that the resulting sequence converged. In
[M4] Moser, using the method of [M3] that he 
created to simplify Nash’s proof [N1], smoothed 
and iterated and proved convergence.

This very general description also describes the
Picard method of proving the ordinary implicit
function theorem (except for smoothing in the
case of Moser’s proof). However, the Picard con-
vergence proof does not apply in either the
Kolmogorov or the Moser setting, and entirely new
ideas were needed. The difficulty concerns the 
linearized equation, which, of course, may be 
expressed in the form “solve Ax = y for x”. In the
context of Kolmogorov’s and Moser’s proofs, A is
a linear operator on an infinite-dimensional func-
tion space. It is invertible, but A−1 is unbounded
with respect to any reasonable norm. The un-
boundedness of A−1 makes it impossible to apply
the Picard convergence proof.

The linear operator that appears in Kolmogorov’s
and Moser’s proofs is closely related to the differ-
ential operator ω◦ ·O :=

∑
ω◦
i (∂/∂θi) acting on

functions of vanishing mean value on the n-torus
Tn. In the case of Kolmogorov’s proof, one would
consider real analytic functions; in the case of
Moser’s, highly differentiable functions. The prop-
erties of the linear operators that appear in

Kolmogorov (left) and Moser in Stockholm,
1962.
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Kolmogorov’s and Moser’s proofs are similar to the
properties of this operator, and we will use it for
illustration.

Consider the Fourier expansion

(3) x(θ) =
∑
x̂(m)e2πim·θ.

The equation ω◦ ·Ox = y is equivalent to the 
infinite family of equations

(4) 2πiω◦ ·mx̂(m) = ŷ(m), m 6= 0 ∈ Zn,
which is formally solvable as long as
ω◦ ·m :=

∑
ω◦
i mi never vanishes for m 6= 0, i.e., 

as long as ω◦
1, . . . ,ω

◦
n are linearly independent

over Q.
For the formal solution to represent a function,

some further condition is needed. For example, if
ω◦ satisfies the Diophantine condition (2), then x
is analytic (resp. C∞) if y is. Thus, ω◦ ·O is in-
vertible on the space Cω0 (Tn) (resp. C∞0 (Tn) ) of real
analytic (resp. infinitely differentiable) real-valued
functions of vanishing mean value on Tn. In fact,
in the infinitely differentiable case, the Diophan-
tine condition is the necessary and sufficient 
condition for invertibility of ω◦ ·O . In the real 
analytic case, a weaker condition suffices.

On the Banach space Cr (Tn) , the operator
(ω◦ ·O)−1 is unbounded. This unboundedness 
is due to “small divisors”. In fact, if ε > 0, there 
are infinitely many m 6= 0 ∈ Zn such that
|ω◦ ·m| 6 |m|−n+ε . From this, it follows that
(ω◦ ·O)−1 : Cr → Cr−n+ε is unbounded. On the
other hand, (ω◦ ·O)−1 : Cr → Cr−d is bounded 
if d > ν + n , in the case that ω◦ satisfies a 
Diophantine condition of exponent ν. This is the
phenomenon of “finite loss of derivatives”. These
facts are elementary exercises in Fourier series. 
The loss of derivatives makes Moser’s proof diffi-
cult; the fact that d is independent of r makes 
it possible.

Both Kolmogorov’s and Moser’s proofs are based
on fast iteration methods. These contrast with 

Picard’s method, where the (k + 1)st iterate uk+1 is
related to the earlier iterates by the inequality
‖uk+1 − uk‖ 6 λ‖uk − uk−1‖ ,  where 0 < λ < 1 . 
According to Sinai, Kolmogorov’s convergence
proof depends on an estimate like the following
to relate certain constructed norms:

(5) ‖uk+1 − uk‖k+1 6 CΛk‖uk − uk−1‖νk ,
where C and Λ are (large) positive constants and
ν > 1. If ‖u1 − u0‖1 is small enough, (5) implies
that ‖uk − uk−1‖k converges very rapidly to zero.

The inequality (5) is obtained only at the cost
of introducing different norms on the two sides of
(5). Roughly speaking,

‖u‖k = sup
{
|u(I, θ)| : |I − I◦| 6 δk,

|Imθ| 6 ρ(1/2 + 1/2k)
}
.

Here I◦ is the action of the unperturbed torus 
that we wish to prove persists. The supremum is
taken over the set of complex n -vectors
I = (I1, . . . , In) and θ = (θ1, . . . , θn) satisfying the
given inequalities. This means that we extend 
the real analytic function u of 2n real variables
(I1, . . . , In, θ1, . . . , θn) to a holomorphic function
of 2n complex variables. In the case that no such
extension to the given domain is possible, ‖u‖k is
defined to be +∞. The positive numbers δk must
be chosen to tend very rapidly, but not too rapidly,
to zero. A sequence satisfying a recursion relation
δk+1 = δαk with 1 < α < ν < 2 will do, provided
that δ1 is small enough. Finally, ρ is a positive 
number, related to H0 and P. Roughly speaking, 
H0 and P must extend holomorphically to the 
domain |Imθ| 6 ρ , and |P (I, θ)| must be small 
in that domain.

As Kolmogorov noted in [K1], his iteration
method is a form of Newton’s method. This is
what permits one to prove (5) with any exponent
ν < 2. For details of this method in proofs of 
related theorems, see Arnold [A1], Moser [M7, §6],
and [M9, Chap. V]. Arnold [A2] gave a proof of
Kolmogorov’s theorem by a different method.

Thus the proof of Kolmogorov shows that an 
invariant torus whose rotation vector ω0 satisfies
(2) persists for the perturbed Hamiltonian
H = H0 + P. How small |P (I, θ)| must be in the 
domain |Imθ| < ρ is related to the Diophantine 
exponent and coefficient.

The proof of the estimate that we have repre-
sented by (5) is very long, although it is a series of
straightforward applications of Cauchy’s integral
formula and elementary manipulations.

In the differentiable case, the difficulties caused
by the unboundedness of (ω0 ·O)−1 are of a very
different nature. When one solves the linearized
problem, there is a loss of derivatives. Imitating 
the method of Kolmogorov would mean a loss of
derivatives. After a finite number of iterations, all
derivatives would be lost, and it would be

Moser at New York University in 1963.
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impossible to continue the iteration. Moser’s so-
lution (following Nash) was to solve the linearized
problem and to smooth, e.g., by convolution with
a bump function ρλk (x) = ρ(λkx). One has to choose
λk going to infinity very fast, but not too fast. For
example, a sequence satisfying a recursion relation
λk+1 = λαk with 1 < α < 2 will do, if λ1 is large
enough. However, the estimates required to prove
convergence are difficult. The knowledge that Nash
had carried out similar estimates for the isomet-
ric embedding problem clearly was a great help,
but Moser’s insight that these methods could also
apply to the very different stability problem in
Hamiltonian mechanics was most remarkable.

In his Pisa lectures [M7] Moser showed that fast
iteration methods constitute a very versatile tool,
with many applications to analysis. The version of
the fast iteration method used in [M3] and [M4] is
now known as the Nash-Moser method.

The first result Moser proved [M4] as a result
of his theory solved a fundamental problem 
proposed by G. D. Birkhoff [Bi, pp. 662–663] after
deep study of Poincaré’s ideas. Let f be an area- 
and orientation-preserving diffeomorphism of a re-
gion of the plane having the origin as a fixed point.
Birkhoff describes the origin as stable if it has ar-
bitrarily small invariant neighborhoods and un-
stable otherwise.

Moser [M4] obtained sufficient conditions for 
stability when f is highly differentiable. Let 
λ and ω be the eigenvalues of the derivative df0 of
f at the origin. Since f is area- and orientation- 
preserving, λω = 1. The only case that is interesting
for the stability question is when λ is nonreal. 
In this case, λ =ω and so |λ| = 1. Birkhoff showed
[Bi, pp. 111–229] that if λ is imaginary and is not a
third or fourth root of unity, then there exists an 
analytic coordinate system x, y, centered at the 
origin, such that dx∧ dy is the standard area form
on R2 and

(6)
f (z) = N(z) + R(z)

N(z) = ze2πi(β0+β1r2), R(z) = O(r5),

where z = x + iy and r =
√
x2 + y2 . This is the 

special case of the Birkhoff normal form that 
is most relevant to Moser’s theorem. Here β0 and
β1 are real numbers, and e2πiβ0 = λ . The number
β1 is called the first Birkhoff invariant.

Moser [M4] showed that if β1 6= 0 (in addition to
the conditions stated above), then the origin is
stable. In particular, stability is a consequence of
a condition on the 3-jet of f at the origin, and this
condition is satisfied for an open dense set of 
3-jets. This is contrary to what Birkhoff expected,
even in the analytic case. According to Arnold,3

Kolmogorov expected such a result in the analytic

case, but not in the differentiable case. Indeed, in
1954 he even wrote that the differentiable case of
his theorem would “obviously” be false [K2]. It
would seem that Moser’s differentiable version of
the Kolmogorov theorem was totally unexpected.

We have discussed KAM theory above in the
context of differential equations, but it applies
also to diffeomorphisms. For an f as above, 
the area- and orientation-preserving condition 

3Jürgen Moser (1928–1999): Déclin des Mathématiques
(après la mort de Jürgen Moser), Gaz. Math., no 84 (Avril
2000), 92–95.
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corresponds to Hamilton’s equations. The 
nonvanishing of the first Birkhoff invariant 
corresponds to the nondegeneracy condition
det(∂2H0/∂I2) 6= 0 . The normal form N in the de-
composition (6) plays the role of the integrable
system. Since β0 and β1 are real, all small circles
{r = ε} are invariant under N. Since β1 6= 0, the ro-
tation number varies with ε. The remainder term
R plays the role of the perturbation term. In this
case, the persistence result means that f has many
invariant curves that surround the origin and so 
the origin is stable, as Moser showed in [M4].

Even in the case f is analytic, it does not appear
to be possible to prove this result by the Kolmogorov
method; the problem is that the remainder term is
too large. In this sense the Nash-Moser method gives
a better result than the Kolmogorov method, even
in the analytic case: it shows that tori persist for Cr
small perturbations, not just for Cω small pertur-
bations (although it shows the existence of Cr tori,
not real analytic ones). This extra robustness of the
Nash-Moser method seems to play an essential role
in applications Moser gave of his theorem in three
papers in 1966 and 1968, one of them joint with 
W. H. Jeffreys, to the 3-body problem and to con-
tainment in a magnetic bottle, even though these
systems are analytic. Arnold [A2] improved 
Kolmogorov’s technique in another way, and this
led to a very difficult theorem of Arnold’s concern-
ing the 3-body problem.

Acknowledgments: I wish to thank M. R. Herman
for many enlightening discussions over many years,
V. I. Arnold for a very stimulating discussion, and
Ya. Sinai for telling me that Kolmogorov explained
his proof to Moscow mathematicians and for sug-
gesting improvements in a draft of this article.

Louis Nirenberg

Jürgen Moser was one of the most profound 
analysts of the last half century. His work ranged
over different fields of mathematics, both pure and
applied. Much of his deepest work was concerned
with dynamical systems, especially small divisor
problems and relations with celestial mechanics.
He also did fundamental work in functional analy-
sis—the Nash-Moser theory—and partial differen-
tial equations, and he made deep contributions in
completely integrable systems, geometry, and
complex analysis. Moser was also a master of ex-
position. His papers and published lectures are
beautifully written.

This segment of the article is devoted primar-
ily to some of Moser’s contributions in partial 

differential equations. In the 1960s Moser pub-
lished a series of wonderful papers in the field.

Nash-Moser Theory
I start with the fundamental papers [M3] and [M7],
which developed what is now called the Nash-
Moser theory, or technique, in nonlinear functional
analysis.

In a most remarkable paper [N1], John Nash
proved that any Riemannian manifold may be 
embedded isometrically in a Euclidean space of 
sufficiently high dimension. To do so he devised
a deep extension of the classical implicit function
theorem. In its simplest form it requires solving
an equation of the form

(1) F (u) = f ,

for a function u (of some variables). Here f is a 
function and F is a nonlinear operator (possibly a
partial differential operator). The function f is 
supposed to be “close” to a fixed function f0, for
which we have a solution u0 , i.e., F (u0) = f0. One
assumes the Frechet derivative F ′(u) is invertible
for u and f “close” to u0 and f0. However, and
here lies the difficulty, in applying the inverse F−1

u ,
there is some loss of derivatives. Thus the usual
Picard iteration scheme:

ui+1 = ui + F ′(u0)−1(f − F (ui)),
with ui = u0 for i = 0,

fails: one runs out of derivatives. Nash’s scheme
involved using smoothing of the functions.
J. Schwartz in 1960 presented an abstract version
of Nash’s procedure. In [M3], in just a few pages,
Moser presented a different, very applicable, way
of attacking such problems, also involving smooth-
ing operators, but using Newton’s iteration scheme:

(2) ui+1 = ui + F ′(ui)−1(f − F (ui)).

With this scheme, even though the error
ei = F (ui)− f satisfies, formally,

Jürgen Moser and wife Gertrude, 1975.

Louis Nirenberg is professor emeritus of mathematics at
the Courant Institute of Mathematical Sciences at New York
University. His e-mail address is nirenl@cims.nyu.edu.
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(3) ei+1 = O(e2
i ) ,

i.e., there is accelerated convergence, one still runs
out of derivatives.

Moser modified Newton’s method by using a
family of smoothing operators TN , N = 1,2, . . . .
Let |u|s be the Cs norm of u for s = 0,1, . . . . The
operators TN send the spaces Cs into C∞ and are
such that TN tends to the identity operator as
N →∞. Also, for some C > 0 and δ > 0,

|TN v|r+s ≤ CNs+δ|v|r for all r , s ≥ 0,(4)

|(I − TN )v|r ≤ CN−s+δ|v|r+s for all r , s > 0.(5)

Moser’s scheme is: For a suitable sequence of
increasing integers Ni, use the iteration:

ui+1 = ui + TNi F
′(ui)−1(f − F (ui)).

There is now no loss of derivatives, and estimates
(3), (4), and (5) enable one to obtain convergence
of this ui in some Cs topology.

Moser used a variant of the technique of [M3]
in his famous paper [M4] on invariant curves of
area-preserving maps of an annulus—the beginning
of his contribution to KAM theory—which led to
Moser’s solution of Birkhoff’s problem, as de-
scribed by J. Mather earlier in this article.

In his lectures [M7] Moser presented useful mod-
ifications of the Nash-Moser techniques of [M3]
and [M4] and applied them to a number of prob-
lems, including (i) invariant manifolds of vector
fields and (ii) a simplified form of results of
Kolmogorov and Arnold concerning vector fields
on a torus. In terms of (1), (ii) involves a situation
where F ′(0) is invertible while for u 6= 0, F ′(u) may
not be. But , as in [M4], the problem treated is a con-
jugacy problem, and this additional information is
used to help make the method work. These self-con-
tained papers are extremely beautiful—full of fas-
cinating mathematics. I recommend that all grad-
uate students read them.

Since Moser’s work, many others have used and
modified the Nash-Moser technique for a variety
of problems. See, for example, the work of
R. S. Hamilton (1982), L. Hörmander (1985), and 
Alinhac-Gérard (1991).

Another word about the Nash isometric em-
bedding: Mathias Günther found an ingenious
proof of it in 1989—it even lowers the dimension
of the space in which the embedding occurs—
which uses standard elliptic theory and completely
avoids the Nash-Moser technique. In recent years
a number of results first proved via Nash-Moser
have been re-proved without it. Nevertheless, I re-
gard the technique as one of the most important
developments in nonlinear analysis in the last half
century.

Moser’s Derivation and Extension of the
DeGiorgi-Nash Estimates for Elliptic and
Parabolic Equations
Hilbert’s Nineteenth Problem asked about the 
regularity of stationary points of the functional

(6)
∫
Ω
f (x,u,∇u)dx · · ·dxn.

Here Ω is a domain (open connected set) in Rn in
which we consider functions u. The function f is
assumed to be smooth, even analytic, in all its
variables, and the corresponding Euler equation is
assumed to be uniformly elliptic, i.e., for some
c0 > 0,

c0|ξ|2 ≤
n∑

i,j=1

fuxi uxj (x,u,∇u)ξiξj ≤ 1
c0
|ξ|2

for all values of the arguments of f and all ξ ∈ Rn .
Hilbert posed the

Question. If f is smooth (or real analytic), is every
solution u smooth (or real analytic)?

In dealing with the variational problem, one
normally already knows that u and ∇u are in L2,
i.e., u is in the Sobolev space W1,2. For simplicity
I will consider f in (6) depending only on ∇u, say
f = f (ux1 , . . . , uxn ).

In 1938 C. B. Morrey proved the desired regularity
in case n = 2. But for n > 2 the problem remained
open for about twenty years. By well-known ellip-
tic theory at the time, it was known that to prove
the desired regularity it sufficed to show that u is
in C1,α locally, i.e., u is in C1 and ∇u is Hölder 
continuous of some order α. This was proved 
independently by E. De Giorgi [DeG] and J. Nash 
[N2]. An extremal u of (6), if it were smooth, would 
satisfy the Euler equation∑

i
∂ifui = 0;

here ∂i = ∂
∂xi .

Any first derivative of u, v = uxk = uk, would
satisfy

(7)
∑
i,j
∂i(fuiuj ∂jv) = 0.

For an extremal u in W1,2, it is easily seen that

v = ∂ku is also in W1,2
loc . Furthermore, v is a weak

solution of (7), i.e., for every function φ ∈ C∞0 (Ω)
(in C∞(Ω) with compact support)

(8)
∑
i,j

∫
fuiuj vjφi = 0.

Equation (8) then automatically holds for every φ
in W1,2 having compact support. One wants to
prove that v is in Cαloc for some 0 < α < 1, i.e., v
is Hölder continuous locally. That is what De Giorgi
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and Nash proved. They considered a general 
linear elliptic equation in divergence form,

(9) Lv =
∑
i,j
∂i(aij (x)vj ) = 0,

with coefficients aij merely bounded and mea-
surable, such that, for some c0 > 0,

(10) c0|ξ|2 ≤
∑
i,j
aijξiξj ≤ 1

c0
|ξ|2.

Theorem 1. (De Giorgi, Nash). A weak solution v
in W1,2

loc of (9) belongs to some Cαloc .

Nash proved the analogous result for linear 
parabolic equations. Their proofs are quite 
different and quite elaborate. In a ball
Br = {|x| < r} they established

(11) |v(0)|2 ≤ C
rn

∫
Br
v2

and, for some α in (0,1),

(12) |v(x)− v(y)| ≤ C
rα+n/2

[∫
Br
v2
]1/2

|x− y|α

for x, y ∈ Br/2. Here C and α depend only on n and
c0.

A general principle is operating here: progress
in partial differential equations is intimately con-
nected with discovery of new a priori estimates for
solutions, and new inequalities.

In [M1] Moser discovered new, very elegant,
proofs of their theorem using Sobolev’s inequal-
ity in an iterative way. Many people have since
used his ideas. His ingenious proof of (11) begins
with the weak form of (9) in Br: for every φ in W1,2

with compact support in Br,

(13)
∑
i,j

∫
φiaijvj = 0.

Moser’s proof of (11) proceeds by making various
choices for φ, depending on v . Roughly, he takes
φ’s of the form a power of a fixed cut off function
times a power of v . Recursively using the Sobolev
inequality leads to estimates of the form

(14)
[∫

Br/2
|v|2pj+1

] 1
pj+1 ≤ Cj

∫
Br
v2,

where p = n
n−1 and Cj is bounded independently

of j . As j →∞, the left-hand side of (14) tends 
to (measBr/2)×maxB1/2 |v|2 , from which (11) 
follows.

Moser then gives an elegant proof of (12) using
a kind of Harnack inequality. But Moser’s next
paper in the subject, [M2], derives a full analogue
of the classical inequality of Harnack for positive
harmonic functions. Namely, he proves

Theorem 2. Let v be a positive weak solution of 
(9) in a domain D, with v ∈ W1,2. For any compact
subset D′ of D

max
D′

v ≤ c min
D′

v,

where c depends only on D, D′, and c0.

The Hölder continuity of general solutions,
namely (12), then follows easily from this theorem.

In his proof of Theorem 2, Moser works again
with powers of the solution. He also makes use of
a result of Fritz John and me on functions of
bounded mean oscillation (BMO). One day he was
on a train going home from New York with Fritz,
who told him about our work. That night Moser 
realized that he could use it to complete his proof
of the Harnack inequality. In 1970 E. Bombieri [Bo]
found a proof of it that did not need BMO.

In [M2] Moser also gives some beautiful appli-
cations of Theorem 2. One states that any bounded
solution of (9) in |x| > R has a limit as |x| → ∞.
Using this, he proves an extension of “Bernstein’s
theorem” to higher dimensions—but with an 
additional hypothesis:

Theorem 3. Let u be a solution of the minimal 
surface equation in Rn,∑

i
∂i

 uxi√
1 + |∇u|2

 = 0,

and assume that

(15) |∇u| ≤ C.
Then u is an affine function.

Bernstein’s original theorem was for n = 2 and
did not assume (15). In fact, the result, without re-
quiring (15), has been proved to hold for n ≤ 7. In
a 1969 paper Bombieri, De Giorgi, and E. Giusti gave
examples showing that the strong statement, i.e.,
without assuming (15), is false for n ≥ 8. In a 1988
paper by L. Caffarelli, J. Spruck, and me, it was
proved that Theorem 3 holds even if (15) is replaced
by the weaker condition

|∇u(x)| = o(|x|1/2) near infinity.

The result also holds for a class of fully nonlinear
equations.

Returning to the more general equation (6), one
has to extend the results of Theorem 1 to more 
general linear equations of the form∑

i,j
∂i(aij (x)∂jv) +

∑
i
bi(v)∂iv + cv = 0.

This was done by G. Stampacchia (1958) using
De Giorgi’s kind of arguments. He also established
similar estimates up to the boundary for bound-
ary value problems.

Paper [M5] is the first of two extending the 
results of Theorem 1 to parabolic equations of the
form
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(16) vt = Lv =
∑
i,j
∂i(aij (t, x)vj )

with aij bounded measurable and satisfying (10).
Besides giving another proof of Nash’s result for
these equations, Moser in [M5] extends the Harnack
inequality (Theorem 2) to positive solutions of
(16). The extension takes the following form.

Theorem 2′. Let v be a positive weak solution of
(16) in a cylinder D = Ω× (0, T ) , Ω being a domain
in Rn, and suppose

sup
t∈(0,T )

∫
Ω
v2 dx +

∫ T
0

∫
Ω
|∇xv|2 <∞.

Let K be a subdomain of Ω, with K ⊂ Ω, and con-
sider two subintervals of (0, T ) :

I− : t1 < t < t2 and I+ : t3 < t < t4, with

0 < t1 < t2 < t3 < t4 < T.

Set
D− = I− ×K and D+ = I+ ×K.

Then
sup
D−

v ≤ exp[C(c0 + c−1
0 )] inf

D+
v,

where C > 0 depends only on D, D+ , and D− .

In his proof of Theorem 2′ in [M5] Moser ex-
tended the result for BMO by John and me to the
parabolic situation—no simple matter. However, in
a subsequent paper Moser carried over Bombieri’s
idea of [Bo] to give a simpler proof of Theorem 2′
without need of BMO. Both are lovely papers.

Excellent sources for all the material presented
here and further developments are the books
[G-T] and [Kr]. Nash’s methods in proving Theorem 2
were little exploited until a very interesting 1986
paper by E. Fabes and D. Stroock, which took up and
simplified his arguments.

More PDE, Geometry, and Complex
Analysis
There is a problem in global Riemannian geome-
try that is still not completely settled, though a
number of people have worked on it.

Problem. On the sphere S2 with standard metric
ds2

0, which functions Kmay be the Gauss curvature
of a metric ds2 conformal to ds2

0?

(The same has been asked on Sn or other man-
ifolds.) By the Gauss-Bonnet Theorem,∫

K dA = 4π ;

here dA is the element of area for the metric ds2.
Thus a necessary condition on K is that it is pos-
itive somewhere. The problem may be formulated
as a variational problem. In [M10] Moser proves that
if K is even on the sphere (i.e., symmetric) and
K > 0 somewhere, then the desired conformal 

metric ds2 exists. The proof is based on an in-
equality, a sharp form of one by N. Trudinger in
[M8]. As I have mentioned, estimates, or inequali-
ties, play a crucial role in differential equations—
indeed, in much of analysis. Paper [M8] is beauti-
ful. Here is an inequality of [M8] used in the
geometric problem above:

Theorem 4. On S2 in the standard metric let u be
a smooth function satisfying∫

S2
|∇u|2 ≤ 1,

∫
u = 0.

Then there is an absolute constant c such that∫
e4πu2 ≤ c.

The constant 4π is optimal.

Corollary.

log
∫
eu ≤ 1

16π

∫
|∇u|2 +

1
4π

∫
u + c′ ,

with c′ a different constant, for any u for which the
right-hand side is finite.

This inequality is used in the proof of the 
geometric result above. In [M8] the sharp form of
Trudinger’s inequality for a function u in a domain
D in Rn is

Theorem 5. For u with compact support in D and∫
|∇u|n ≤ 1,

there is a constant c depending only on n such that∫
eau

p ≤ cmeas(D),

for p = n/(n− 1) whenever a ≤ an = nω
1
n−1 , where

ω is the surface area of Sn−1. For a > an , however,
the integral on the left can be arbitrarily large.

Trudinger treated p < n/(n− 1).
Papers [M6] and [D-M], the latter with B. Da-

corogna, treat mappings preserving volume. In
[M6] Moser proved that if there is a diffeomorphism
between two compact Riemannian manifolds and
if the manifolds have equal total volume, then
there is a diffeomorphism preserving the volume
element. [D-M] treats more general problems. It
studies existence and regularity of a diffeomor-
phism u of the closure Ω of a bounded open set
Ω such that

det∇u(x) = f (x) in Ω
u(x) = x on ∂Ω.

Here f is a given positive function. As an applica-
tion they prove the existence of a volume-
preserving map u with given boundary data, i.e.,
u = ψ on ∂Ω with ψ ∈ Diff(Ω). This is carried out
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in the space Ck,α ,
with k ≥ 1 and
0 < α < 1, using el-
liptic theory and
Schauder estimates.
An interesting case
is that of Ck, k an in-
teger > 0. Here they
use the implicit
function theorem. In
a bounded domain
Ω in Rn, with ∂Ω in
Ck , suppose f and g
are functions > 0 in
Ck(Ω) such that∫

Ω
f =

∫
Ω
g.

They prove that there exists φ ∈ Diffk(Ω) with
φ(x) = x on ∂Ω such that for every open subset E
of Ω, ∫

E
f =

∫
φ(E)

g.

In the 1980s Moser derived very interesting 
results on foliations of codimension one on a torus
Tm whose leaves are minimals of a nonlinear 
variational problem (for example, minimizing area).
A foliation is called minimal if every leaf minimizes
the variational problem when viewed on the cover-
ing space Rm. He studied existence and stability of
leaves that are graphs. With any minimal foliation he
associated an asymptotic normal vector α, which
can be written as

α = (α1, . . . , αn,−1) = (α,−1);

α is called the slope. He proved that for any leaf
of the form xn+1 = u(x′) with x′ = (x1, . . . , xn), there
is a unique slope α ∈ Rn such that

sup
x
|u(x)− (α,x)| <∞.

Furthermore, α is the same for all leaves. To every
α in Rn one cannot always find a corresponding
foliation, but there exists a minimal “lamination”,
a foliation of a certain subset of Tm , which is a Can-
tor set if not all of Tm . The minimal foliation is de-
scribed by a nonlinear partial differential equation,
and a “lamination” corresponds to a weak solution
with discontinuities. The work is related to Aubry-
Mather Theory. Much of this work is presented in
the beautiful lectures [M15], where other refer-
ences may be found. Very recently, L. Caffarelli and
R. de la Llave devised a very different approach to
these foliation problems.

In a 1988 paper Moser extended KAM theory to
nonlinear partial differential equations to con-
struct quasi-periodic solutions. Three interesting
examples are presented in a 1989 paper.

One should add that Moser did work in sym-
plectic geometry (in particular, on finding

infinitely many periodic points near a fixed point
of a symplectic map, under suitable conditions),
on pseudo-holomorphic curves on an almost com-
plex torus, and on electrical network theory. Much
of his early work was concerned with spectra of
operators and perturbation theory.

We turn finally to complex analysis. In their fa-
mous paper [C-M], S. S. Chern and Moser deter-
mined local invariants of real hypersurfaces of
real codimension one in Cn under local biholo-
morphic maps of Cn. If p and p′ are points on
such hypersurfaces M and M′, one says that M
and M′ are equivalent if there is a biholomorphic
map φ near p in Cn taking p and M into p′ and M′.
They determine necessary and sufficient condi-
tions for equivalence. For n = 1 the problem is 
trivial if M and M′ are real analytic curves: they are
equivalent. For n ≥ 2, the signature of the Levi
form at p is invariant. But they find many more 
invariants. For n = 2 these were already found by
É. Cartan in the 1930s.

[C-M] presents two approaches: (i) extrinsic and
(ii) intrinsic. I will describe just (i): They approxi-
mate M near p by the image of a hyperquadric. In
terms of suitable local coordinates in Cn ,
(z1, . . . , zn−1, w ) = (z,w ) and w = u + iv (p is the
origin), M may be written as

v = F (z, z, u), ∇F (0) = 0,

with F real analytic in case M is real analytic. The
Levi form

〈z, z〉 =
n∑

α,β=1

Fzαzβ z
αzβ

is assumed to be nondegenerate. They choose a 
biholomorphic map φ near the origin, preserving
0, such that the image of M osculates the hyper-
quadric

v = 〈z, z〉
to a high degree. The osculation takes place along a
curve, and thus they are led to a holomorphically
invariant family of distinguished curves on M, called
“chains”; these satisfy second-order differential
equations. Quite remarkable! Furthermore, Chern
and Moser find a parallel transport of certain frames
on M ; these correspond to a connection found by
the approach (ii). There is a big difference when n
goes from 2 to n > 2. One result is the following: In
case M is real analytic and the Levi form 〈z, z〉 is
nondegenerate, there is a unique biholomorphic
map φ, satisfying some normalizing conditions,
such that the transformed hypersurface has the
form

v = 〈z, z〉 +N(z, z, u)

with N of higher order in z, z . In the expansion of
N in (z, z), certain specific low-order terms do not
appear. (The coefficients in the expansion of N are
not holomorphic invariants, however.) These and

At the telescope, 1979.
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other results are then extended to sufficiently
smooth M , not necessarily analytic.

In 1976 C. Feffermen gave a totally different de-
scription of the “chains” and showed that they are
governed by Hamiltonian systems of differential
equations.

For the case that M ⊂ Cn has codimension > 1,
not much is known. In 1983 Moser and S. M. Webster
treated the case M2 ⊂ C2 under a nondegeneracy
condition on the complex tangent.

A few personal remarks. Moser and I first met in
1952 in Göttingen, where he was a graduate stu-
dent, and we became friends when he came to
New York University in 1953 for a year. Later he
spent many years at the Courant Institute, and we
all greatly appreciated his unfailing good sense and
mature judgment. It was a privilege to have him
as a colleague and a friend.

Henry P. McKean

Complete integrability is an odd subject. One be-
gins with a Hamiltonian flow of 2d degrees of
freedom, regulated by dQ/dt = ∂H/∂P and
dP/dt = −∂H/∂Q , in which Q ∈ Rd represents the
“positions” and P ∈ Rd the “momenta” of d clas-
sical particles. The Hamiltonian H = H(Q,P ) is the
total energy; it is a constant of motion: dH/dt = 0.
Additional (independent) constants of motion
H2,H3, . . . ,Hm may exist over and above H1 = H .
They commute if the corresponding flows do so.
The original flow and all these new ones too are
said to be (completely) integrable if the number of
commuting constants of motion is as big as it
could be (m = d) . Then, in “action-angle variables”,
referred to by Mather, the typical invariant mani-
fold M obtained by fixing the values of H1, . . . ,Hd
(actions) appears as a product Tp ×Rq with
p + q = d , and the flow reduces there to straight-
line motion at constant speed in the natural co-
ordinates (angles).

And there for a long time the story stopped, apart
from a series of nice examples: the simple pendulum
for starters; then Kepler’s (2-body) problem of plan-
etary motion; Jacobi’s integration of the geodesic
flow on the surface of a 3-dimensional ellipsoid; 
Kovalevskya’s top (1889); C. Neumann’s harmonic
oscillators (1859), constrained by an external force
to move on the surface of a (d − 1)-dimensional
sphere; and, of course, the much simpler example of
(free or coupled) harmonic oscillators and their 
infinite-dimensional analogue, the string with tied
ends, regulated by the wave equation in the form•
Q = ∂H/∂P and 

•
P = −∂H/∂Q with Hamiltonian

H =
∫ 1
0 (P2 +Q′2)dx. Indeed, the subject came to a

sad end, lapsing into obscurity for some seventy-

five years with
the discovery of
Poincaré (1890)
that the 3-body
problem (and, in-
deed, most any
Hamiltonian sys-
tem) is not inte-
grable.

The most cu-
rious aspect of
the whole sub-
ject—and this
despite the last
twenty-five years’ spectacular discovery of a whole
series of infinite-dimensional instances of inte-
grability, summed up in the catchword “KdV and
all that”—has been (and still is) a lack of theo-
rems. Folklore aside, one has no means of testing
a particular Hamiltonian H for its integrability,
nor, should integrability obtain, of finding the
right action-angle variables. One has simply to 
integrate the flow by hand, with tears.

The rebirth of integrability began with the 
(numerical) discovery by Kruskal and Zabusky in
1965 of “solitons”4 for the Korteweg-de Vries 
equation (KdV)

∂Q/∂t + 6Q∂Q/∂x + ∂3Q/∂x3 = 0,

this being a leading-edge approximation to long
waves in shallow water. This was followed in 1974
by the integration of KdV by Gardiner, Greene,
Kruskal, and Miura via action-angle variables pro-
vided by the scattering theory of the 1-dimensional
Schrödinger operator L = −d2/dx2 +Q , following
ideas of P. Lax [La]. Later this idea served to inte-
grate sine-Gordon, cubic Schrödinger, and the other
infinite-dimensional examples cited above, but
now I leave these and come directly to Moser’s
contributions, which clarified and extended the
most classical aspects of the subject in a number
of ways.

Moser [M11] presented the new developments
in their most transparent form in connection with
Toda’s lattice,5 a linear assembly of particles cou-
pled by, not Hooke’s, but exponential restoring
forces:

••
x k = exk−1−xk − exk−xk+1 for k = 1, . . . , n,

subject to x0 = −∞ and xn+1 = +∞ . Flaschka in
1974 had already proved the integrability of this
system in the periodic case, x0 = xn , reducing it to
an isospectral motion of a tri-diagonal matrix L via
a clever substitution. The (simple) eigenvalues of
L are commuting constants of motion, and it is the
same for Moser’s (free) case, only now things are,

4Solitons are the subject of an article by C.-L. Terng and
K. Uhlenbeck in the January 2000 Notices.
5Toda introduced his lattice about 1967. See [To] for an
exposition.
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so to say, rational rather than algebraic-geometri-
cal and much simpler. In particular, the “scatter-
ing” (from time −∞ to time +∞) can be described
by explicit initial and final velocities and phase
shifts, suggestive of free motion at times ±∞, plus
the effects of simple pairwise interactions, as 
for hard balls. The actual integration employs 
the “Green’s function” R(λ) = (λI − L)−1 . The 
entry Rnn(λ) may be represented as a sum∑n
k=1 r

2
k (λ− λk)−1 and also as a continued fraction

from which L can be read off directly, as Stieltjes
already knew. The numbers r2 represent norming
constants for the associated eigenvectors; the 
continued fraction is the “inverse spectral map”,
from spectrum and norming, back to the

mechanical variables x and 
•
x via L. What is so

pretty is that the “angle” variables hidden in the
norming constants straighten out the flow; in fact,
the spectrum does not move, while (r2

k )• = −2λk r2
k

for k = 1, . . . n “projectively”, meaning that one
solves for r2

k (t) = r2
k (0) exp(−2λkt) and then

restores the necessary 
∑n
k=1 r

2
k = 1.

This is, in miniature, the method by which KdV,
sine-Gordon, cubic Schrödinger, and all the other
nonclassical examples have been solved. The anal-
ogous development for the periodic Toda lattice
(and for KdV, etc., too) had, at this date, not yet
been made. This development involves 2-sheeted
(hyperelliptic) projective curves, a linearizing (Abel)
map to a naturally associated torus (Jacobi variety)
where the angle variables live, and an inversion
from the latter back to the original mechanical
variables via Riemann’s theta function, but it is 
unnecessary to go into these matters here.6

The method extends, phase shift and all, to
Calogero’s lattice,

••
x = −grad

∑
i<j
U (|xi − xj |) with U (x) = x−2,

and to Sutherland’s lattice with U (x) = sin−2 x (or
sinh−2x ). This is the content of [M12]. Paper [M13]
deals with phase shifts for more general (nonin-
tegrable) repulsive forces. Here the pretty question
of recovering U from the phase shifts is raised and
solved; in particular, it is proved that the phase
shifts vanish only if U (x) = constant× x−2 .

The paper [M14] relates the Toda-Calogero-
Sutherland story to Jacobi’s geodesic flow on the
ellipsoid, to C. Neumann’s oscillators, and also to
KdV and its accompanying Hill’s equation in the
“finite-gap” case. These systems are all related
and yield to the same method, supplemented by
the apparatus of projective curves, Jacobi vari-
eties, and theta functions alluded to before. What
[M14] brings out—and this is fascinating—is a 

further relation of isospectral classes M of n× n
matrices to the classical (and not so classical)
geometry of confocal quadrics Q : The common
eigenvalues pick out n− 1 distinguished quadrics,
M is identified with the family of lines simulta-
neously tangent to each of these, and the eigen-
vectors of a member of M are interpreted as the
directions normal to the distinguished quadrics at
the points of contact of the associated line. More-
over, the identification of lines to points (plus
some reflections) puts M into one-to-one corre-
spondence with the Jacobi variety of a hyperellip-
tic curve, making contact thereby with Staude’s
1883 geometrical interpretation of the addition
theorem for hyperelliptic integrals. Fascinating in-
deed—and this is just a sample of the ramifications
of “KdV and all that”, ranging as they do from
solitary waves in shallow water to the purest of
pure mathematics, exemplified by projective
curves7 and even, as now seems not implausible,
the Riemann hypothesis!8

Another aspect of KdV is explained in [A-M]: to
wit, its surprising connection to Calogero’s lattice
with U (x) = x−2. The latter is completely integrable: 

if L is the n× n matrix with 
•
xk on the diagonal 

and 
√−1 (xi − xj )−1 off the diagonal, then the

eigenvalues of L are commuting constants of 
motion. More precisely, the traces Fm = TrLm are
commuting constants of motion. Now it is a stan-
dard fact of mechanics that, in such a case, the flow
with Hamiltonian Fk , say, restricts to the locus

gradF` = 0 . Here 1
2F2 = 1

2
•
x2 +

∑
i<j (xi − xj )−2 is 

Calogero’s Hamiltonian, and the F3 flow reduces,

on locus gradF2 = 0, to 
•
xi = 12

∑
j 6=i(xi − xj )−2 for

i = 1, . . . , n.
What is remarkable is the connection to KdV: If

a solution of the latter is of rational character in x ,
then it must be of the form Q(t, x) = 2

∑n
i=1(x− xi)−2

with time-dependent poles x1, . . . xn, and these move
according to the reduction of Calogero’s lattice. The
locus gradF2 = 0 is nontrivial only if the poles
x1, . . . , xn are permitted to be complex, and in this
case (gradF2 = 0) ' Cd provided only that n is

triangular number n = 1
2d(d + 1); moreover, the

whole locus is produced by flowing out from the
“origin” Q0(x) = d(d + 1)x−2 by means of the first 
d flows of the KdV hierarchy.

It may be remarked that such connections are
not in any way exceptional; in fact, they are the rule.
After all, any completely integrable flow reduces,

6For an exposition see H. P. McKean, Integrable systems
and algebraic curves, Global Analysis, Lecture Notes in
Math., vol. 755, Springer, Berlin, 1979, pp. 83–200.

7For references see E. Arbarello, Periods of abelian inte-
grals, theta functions, and differential equations of KdV
type, Proc. Internat. Congr. Math. (Berkeley, 1986), Amer.
Math. Soc., Providence, RI, 1987, pp. 623–627.
8See A. M. Odlyzko, On the distribution of spacings between
zeros of the zeta function, Math. Comp. 48 (1987),
273–308.
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in action-angle variables, to straight-line motion at
constant speed, and all such motions look alike.

Adler and Moser presented a remarkably sim-
ple, much more detailed description of rational
KdV. The general function Q produced by 
flowing out from Q0 is of the form Q(x) =
−2D2 `nΘ(x + t1, t2, . . . , td) , in which the time 
parameters refer to the first d of the KdV flows.
Here Θ =

∏n
i=1(x− xi) is a highly degenerate “theta

function” coming from a projective line with just
one singular point of degree d, and it is the chief
point of the Adler-Moser work that it can be built
up recursively, from Θ0 = 1 and Θ1 = x + t1, by
solving

Θ′n+1Θn−1 −Θn+1Θ′n−1 = (2n + 1)Θ2
n

from n = 2 up to n = d − 1,

each step producing a new constant of integration:
t2, t3, . . . , td .

Finally, I must say something about the work 
of Kolmogorov, Arnold, and Moser (KAM), which
overturned the perception of complete integrabil-
ity as it had been received for seventy-five years.
Moser’s work on KAM has been discussed by
Mather in the present article.

First, a bit of history. Poincaré had proven the
nonintegrability of the 3-body problem, as men-
tioned before; indeed, he discovered that a very 
general Hamiltonian system can have no constant
of motion besides the total energy itself. This strik-
ing fact came to be enshrined in the conventional
wisdom as the belief that most small perturba-
tions of such a system must produce “metric tran-
sitivity”. Fermi even “proved” this in 1923. The 
advent of fast computation changed the picture 
entirely. I refer to the discovery of Fermi-Pasta-
Ulam that a certain lattice of oscillators with cubic
coupling could exhibit almost periodic behavior. 
By hindsight, this is not so strange: The cubic 
lattice is a caricature of Boussinesq’s completely
integrable approximation to long waves in shallow
water, and it is the content of KAM that a “nearly
integrable” system preserves, perhaps not all, but
most of the character of its integrable parent. The
parent is assumed to have compact invariant man-
ifolds (tori). Then, under suitable technical condi-
tions, a small change of the parent may and often
will cause the breakup of some small proportion
of these, but the vast majority survive and almost
periodic motion is seen.

This fact has revolutionized the common per-
ception of integrability. After Poincaré it was
thought to be just too rare to be of any practical
importance, but it is not so: Integrable systems
are simple enough to be capable of (more or less)
explicit solution, and as they are (more or less)
stable in view of KAM and embody genuinely 
nonlinear behavior in a way that linear approxi-
mations could never do, they may help us to a

deeper understanding. G. Lamb’s beautiful 1971
work in optics provides a striking example.
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