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Honeycombs and Sums
of Hermitian Matrices

Allen Knutson and Terence Tao

I
n 1912 Hermann Weyl [W] posed the following
problem: given the eigenvalues of two n× n
Hermitian matrices A and B, how does one 
determine all the possible sets of eigenvalues
of the sum A + B? When n = 1, the eigenvalue

of A + B is of course just the sum of the eigenvalue 
of A and the eigenvalue of B, but the answer is more
complicated in higher dimensions. Weyl’s partial
answers to this problem have since had many di-
rect applications to perturbation theory, quantum
measurement theory, and the spectral theory of self-
adjoint operators. The purpose of this article is to
describe the complete resolution to this problem,
based on recent breakthroughs [Kl], [HR], [KT], [KTW].

To standardize the notation, we shall always
write the eigenvalues of an n× n Hermitian matrix
as a weakly decreasing n-tuple λ = (λ1 ≥ . . . ≥ λn)
of real numbers. Thus, for instance, the eigenval-
ues of diag(3,2,5,3) are (5,3,3,2).

To illustrate Weyl’s problem, suppose that n = 2
and that A , B have eigenvalues (3,0) and (5,0) re-
spectively. Then one can easily verify that A + B can
have eigenvalues (8,0) or (5,3) or, more generally,
(8− a,a) for any 0 ≤ a ≤ 3. This turns out to be
the complete set of possibilities; A + B cannot have
eigenvalues (9,−1) or (7,0) or (4,4), etc.

Let us denote the eigenvalues of A , B, and A + B
as λ, µ, and ν respectively; thus λ2 is the second
largest eigenvalue of A , etc. It is fairly easy to 
obtain necessary conditions on the triple λ, µ, ν.
For instance, from the simple observation that the
trace of A + B must equal the sum of the traces of
A and B, we obtain the condition

(1) ν1 + . . . + νn = λ1 + . . . + λn + µ1 + . . . + µn.

Another immediate constraint is that

(2) ν1 ≤ λ1 + µ1,

since the largest eigenvalue of A + B is at most the
sum of A ’s and B’s individual largest eigenvalues.
(Exercise for the reader: Show equality occurs 
exactly when the same vector is a principal 
eigenvector for both matrices.) Weyl found a 
number of similar necessary conditions, such 
as the statement νi+j+1 ≤ λi+1 + µj+1 whenever
0 ≤ i, j, i + j < n . When n = 1,2 these conditions
are both necessary and sufficient; for higher di-
mensions many other necessary conditions were
found by later authors. All of these conditions
took the form of homogeneous linear inequalities
(e.g., ν1 + ν2 ≤ λ1 + λ2 + µ1 + µ2). These inequali-
ties were generally proven by “minimax” methods,
but there did not appear to be a general scheme 
that would produce a systematic and complete list
of these inequalities.

This problem was studied extensively by 
Alfred Horn [Ho]. Among other things, he showed
that a complete set of necessary conditions could
be given by (1), together with a list of linear 
inequalities of the form

(3) νk1 + . . . + νkr ≤ λi1 + . . . + λir + µj1 + . . . + µjr
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for all 1 ≤ r < n and all triplets of indices 1 ≤ i1
< . . . < ir ≤ n , 1 ≤ j1 < . . . < jr ≤ n , and 1 ≤ k1
< . . . < kr ≤ n in a certain finite set Tr,n . The 
problem was then reduced to describing the 
sets Tr,n of triplets.

Horn computed this set for n ≤ 8 and for 
general dimensions was able to demonstrate that
the indices i1, . . . , kr in Tr,n satisfied the trace 
condition

(4) i1 + . . .+ ir +j1 + . . .+jr = k1 + . . .+kr +r (r +1)/2

as well as linear inequalities such as

i1 + j1 ≤ k1 + 1.

These relations were obviously similar to the 
relations (1), (2) in the original problem. This led
to the remarkable

Conjecture 1 (Horn conjecture). The set Tr,n
is equal to the set of all triplets of indices 
1 ≤ i1< . . . < ir ≤ n , 1 ≤ j1 < . . . < jr ≤ n , 1 ≤ k1
< . . . <kr ≤ n which obey (4) and

ia1 + . . . + ias + jb1 + . . . + jbs
≥ kc1 + . . . + kcs + s(s + 1)/2

for all 1 ≤ s < r and all triplets of indices 1 ≤ a1
< . . . < as ≤ r , 1 ≤ b1< . . . < bs≤r , 1 ≤c1 < . . . <
cs ≤ r in Ts,r.

This conjecture would give a highly recursive
(but impractical) algorithm to generate the sets Tr,n
in terms of the earlier generations Ts,r and thus to
give a complete solution to Weyl’s problem at each
dimension n. The conjecture turns out to be cor-
rect, though it waited thirty-six years for resolu-
tion.

We approached this problem by first observing
that Weyl’s problem could be rephrased using 
honeycombs, which we introduced (for this pur-
pose) in [KT]. These are a family of planar arrange-
ments of edges labeled with multiplicities (some

examples are in Figure 1). We give the precise 
definition in the next section.

The relevance of honeycombs to sums of 
Hermitian matrices is the following theorem, which
we explain in more detail later.

Theorem 1. Let λ, µ, ν be weakly decreasing n-
tuples of real numbers. Then there exist matrices
A , B, and A + B with respective eigenvalues λ, µ,
and ν if and only if there exists a honeycomb with
boundary values (λ,µ,−ν) .

Although the problem about sums of Hermit-
ian matrices is classical, a quantum analogue 
concerning U (n) representations turns out to be
crucial to the resolution of Horn’s conjecture. As
we shall see, there is also a quantum version of 
Theorem 1 linking this representation theory prob-
lem to (integer) honeycombs. One of the key steps
in the proof of Horn’s conjecture is the proof of
the saturation conjecture, which asserts that the
classical and quantum problems are in a certain
sense equivalent.

We shall give a rather ahistorical (and pro-
honeycomb) survey of this circle of ideas, starting
with honeycombs (which were actually the last
piece of the puzzle to be discovered), then dis-
cuss the connections between the classical and
quantum problems, followed by a sketch of the 
honeycomb-based proof of the saturation conjec-
ture. Then we restate Horn’s conjecture and sketch
the honeycomb-based proof of this from saturation.

There are many other closely related and in-
teresting mathematical questions that we will not
address, and we refer the reader to the excellent
survey article [F2].

Honeycombs
We now set up some notation needed to define 
honeycombs and their relation to Weyl’s problem.

2

Figure 1. Two honeycombs. The left one is more typical in having only Y vertices, as will be explained in Theorem 3.
All edges are multiplicity 1, except for the edge labeled 2 in the right-hand honeycomb.
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angle, and similarly for the other diagonal 
cardinal directions.)

Define a diagram to be a configuration of
(possibly half-infinite) line segments in R3∑

=0,

with each edge parallel to one of the cardinal 
directions (north-south, northeast-southwest,
northwest-southeast) and labeled with a positive
integer which we refer to as the “multiplicity” or
“tension”. To every diagram we can associate a
measure on R3∑

=0, defined as the sum of Lebesgue

measure on each line segment, weighted by the
multiplicity. We say that two diagrams d, d′ are
equivalent if their associated measures are equal.

If h is a diagram and v is a point in R3∑
=0, we

say that v is a zero-tension point of h if, in a
sufficiently small neighborhood of v , h is 
equivalent to a union of rays emanating from v
and the sum of the coordinate vectors of these 
rays, multiplied by their tensions, equals zero.

The two possibilities that will interest us most
are a point on a line segment, in which case the
zero-tension condition says that the two rays 
must have the same multiplicity, and a point at the
center of a Y with again three equal-multiplicity
rays. There are several more complicated possi-
bilities, as shown in Figure 2.

Define a honeycomb h as a diagram (or, more
precisely, an equivalence class of diagrams) such
that

1. every point in R3∑
=0 is a zero-tension point

2. there are only finitely many “vertices”, i.e.,
points with more than two rays emanating

3. the semi-infinite lines go only in the north-
east, northwest, and south directions (i.e., 
no southeast, southwest, or north rays)

The lines mentioned in number 3 are called the
boundary edges of the honeycomb. Two examples
of honeycombs appear in Figure 1.

It is a pleasant exercise to show that the num-
ber of boundary edges (with multiplicity) pointing
in one cardinal direction is the same as the 
number in each of the other two directions. (This
is basically because the net tension of the honey-
comb must be zero.) We will call a honeycomb
with n boundary edges in each direction an 
n-honeycomb and denote the space of such by
HONEYn.

Since every edge in a honeycomb is parallel 
to one of the cardinal directions, each of which has
one of its three coordinates equal to zero, every hon-
eycomb edge has a constant coordinate (common 

In the one-dimensional case n = 1, a necessary
and sufficient set of conditions on λ, µ, ν is given
of course by λ + µ = ν. Using the one-dimensional
case as an analogy, we then define the relation

(5) λ¢ µ ∼c ν
if there exist Hermitian matrices A , B, C with eigen-
values λ, µ, ν respectively such that A + B = C. The
“c” in ∼c stands for “classical”; we will define a
quantum analogue

(6) λ¢ µ ∼q ν
later on. Weyl’s problem is thus to determine the
solution set to (5).

It is convenient to rephrase Weyl’s problem in
a more symmetric form. We say that the relation

(7) λ¢ µ ¢ ν ∼c 0

holds if there exist Hermitian matrices A , B, C
with eigenvalues λ, µ, ν respectively such that
A + B + C = 0. Clearly we have

λ¢ µ ∼c ν ⇐⇒ λ¢ µ ¢ (−ν) ∼c 0

where −ν := (−νn, . . . ,−ν1) is the negation of ν.
Thus to solve Weyl’s problem, it suffices to deter-
mine the set of triples λ,µ, ν which obey (7). This
formulation has the advantage of S3 symmetry in
(λ,µ, ν) , as opposed to mere S2 symmetry in (λ,µ).

In one dimension n = 1, we of course have

λ¢ µ ¢ ν ∼c 0 ⇐⇒ λ + µ + ν = 0.

In more general dimensions we have the necessary
condition

(8) λ1 + . . . + λn + µ1 + . . . + µn + ν1 + . . . + νn = 0,

which is the analogue of (1). Similarly, (2) becomes

(9) λ1 + µ1 + νn ≥ 0.

Based on these relations, it is natural to introduce
the plane

R3∑
=0 := {(x, y, z) ∈ R3 : x + y + z = 0}.

We shall always depict this plane with the six 
“cardinal directions” (0,1,−1), (−1,1,0), (−1,0,1),
(0,−1,1), (1,−1,0), and (1,0,−1), drawn north-
west, north, northeast, southeast, south, and 
southwest respectively. (Of course, “northwest”
makes a 60◦ angle with north rather than a 45◦

a aa a
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b

ab b

a+b
a+c
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a+b
c+d

a+e

c+e
a+d

b+ca
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Figure 2. Zero-tension points, with the rays labeled by their multiplicities, which are positive integers. All but the
first type are called “vertices”.
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to every point along that edge). In particular, 
we can read off the constant coordinates of 
boundary edges and call them

(λ1, . . . , λn, µ1, . . . , µn, ν1, . . . , νn) = (λ,µ, ν)

as in Figure 3. (In our pictures of honeycombs we
use roman letters to denote multiplicities (which
are positive integers), and Greek letters to denote
constant coordinates (which are real numbers, but
are often integers as well).)

We can now phrase Theorem 1 in this sym-
metrized setting:

Theorem 2. The relationship λ¢ µ ¢ ν ∼c 0 holds
if and only if there exists a honeycomb with bound-
ary values (λ,µ, ν) .

Interestingly, almost all the proofs we know of
this theorem proceed by first proving a quantized
version, which we define in a later section. We
shall therefore not discuss the proof of this 
theorem here, and content ourselves instead with
producing evidence which strongly suggests that
the theorem is plausible.

We first consider the n = 1 case. In this case
λ = (λ1), µ = (µ1), ν = (ν1), and it is clear that (7)
holds if and only if λ1 + µ1 + ν1 = 0 . (In other
words, the trace condition is already necessary
and sufficient.) On the honeycomb side this claim
can be easily seen if one accepts the fact (which is
actually a little tricky to prove) that 1-honeycombs
must have the shape of a “Y”. See Figure 4.

More generally, it is a pleasant exercise to show
that the boundary values of any n-honeycomb
must satisfy (8), basically because the three coor-
dinates around every vertex sum to zero (by virtue
of lying in R3∑

=0).
Now consider the n = 2 case, so that λ = (λ1, λ2),

µ = (µ1, µ2), ν = (ν1, ν2) . In this case there can be
at most one 2-honeycomb with the specified bound-
ary values (Figure 5). The lengths of the three line
segments in the honeycomb can be computed as
λ2 + µ1 + ν1, λ1 + µ2 + ν1, λ1 + µ1 + ν2. Since these
line segments need to have nonnegative length, we
obtain the necessary conditions

λ2 + µ1 + ν1, λ1 + µ2 + ν1, λ1 + µ1 + ν2 ≥ 0.

These inequalities can be rephrased using (8) as the
statement that the quantities λ1 − λ2, µ1 − µ2,
ν1 − ν2 form the side-lengths of a triangle. The
reader may verify from some linear algebra that
these conditions are indeed necessary and suffi-
cient for (7).

In the n > 2 case things become more compli-
cated, because the boundary values no longer
uniquely determine the honeycomb. In fact, every
hexagon present in a honeycomb provides a degree
of freedom; the hexagon can be “breathed” inwards
or outwards (see Figure 6).

However, it is still possible to demonstrate 
that inequalities such as (9) must hold for 
n-honeycombs. Indeed, one can simply extend 
the µ1 ray southward until it intersects the λ1

Figure 3. The constant coordinates on the boundary edges of a
5-honeycomb. (The stars are the nonconstant coordinates.)

Figure 4. A 1-honeycomb can be formed if and only if the
boundary values sum to zero. The edges are labeled by their

constant coordinates.
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Figure 5. A 2-honeycomb is uniquely determined by its
boundary values. The boundary values must satisfy (8), and the

edge lengths must be nonnegative. The edges are labeled by
their constant coordinates. The edge lengths can be computed

(up to an irrelevant factor of 
√

2) by subtracting the constant
coordinates of two parallel adjacent edges; for instance, the

lower left edge has length λ1 − (−µ2 − ν1).
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ray. This intersection point must be northwest 
of the intersection of νn and λ1 , which gives 
(9). More generally, the Weyl inequalities
λi + µj + νk ≥ 0 for i + j + k = n + 2 can be demon-
strated by constructing a Y -shaped object 
embedded inside the n-honeycomb which is 
quite similar to a 1-honeycomb (see Figure 7).
Similarly, inequalities involving pairs of eigenval-
ues can be demonstrated by constructing an 
object similar to a 2-honeycomb; the reader may
be amused by locating the object needed to prove
λ1 + λ4 + µ1 + µ4 + νn−4 + νn−1 ≥ 0. A more care-
ful pursuit of this idea can be used to obtain 
half of Horn’s conjecture (that lower-order 
honeycombs generate inequalities for higher-
order honeycombs). The other half, that all 
inequalities for honeycombs are generated in 
this way, is proven by the machinery of transverse
clockwise overlays, which we discuss later.

Having given some examples of how necessary
conditions for (7) translate to the honeycomb setting,
we now look at sufficient conditions. It is easy to
see (by restricting A , B, C to diagonal matrices) that
(7) will hold if there exist permutations α,β ∈ Sn
such that λα(i) + µβ(i) + νi = 0 for all 1 ≤ i ≤ n . The
honeycomb analogue of this is depicted in Figure 8;
one can obtain a (rather degenerate) n-honeycomb
by overlaying n separate 1-honeycombs on top of
one another.

More generally, there is a notion of overlaying
an n-honeycomb h and an m-honeycomb h′ to
form an (n +m) -honeycomb h⊕ h′. To be precise,
h⊕ h′ is the honeycomb whose associated measure
is the sum of the measures associated to h and h′.
This operation corresponds to the direct sum 
operation on Hermitian matrices (which takes an
n× n matrix and an m×m matrix and forms an
(n +m)× (n +m) block-diagonal matrix) or the 
concatenation operation on spectra (which takes
a set of n eigenvalues and a set of m eigenvalues
and forms the (sorted) set of n +m eigenvalues).
Intuitively, an overlay can be demonstrated by
drawing two honeycombs on transparencies and
stacking both transparencies on the same projec-
tor; see Figure 9. We shall have more to say about
overlays later in this article.

The statement that (λ,µ, ν) admits a honeycomb
with these boundary values is clearly symmetric 
under cyclic permutations. However, the relation
(7) is symmetric under the larger group S3, thanks
to the commutativity of addition. The correspond-
ing S3 symmetry result for honeycombs is not 
trivial; an elegant proof of this based on scattering
arguments is given in [Wo]. The same argument also
gives the associativity property

(10) (∃ν : λ¢ µ ∼c ν;ν ¢ ρ ∼c σ )

⇐⇒ (∃ν′ : µ ¢ ρ ∼c ν′;λ¢ ν′ ∼c σ );

this property, combined with a “Pieri rule” to han-
dle the generating cases when λ or µ is equal to

Figure 6. A hexagon in a honeycomb, with a dotted line
indicating a place to which one might dilate it.

P

µ
j

k

λ
i

ν

Figure 7. A honeycomb proof of an inequality λi + µj + νk ≥ 0 .
The three coordinates of point P must sum to zero; however,
the first coordinate cannot exceed λi , the second cannot exceed
µj , and the third cannot exceed νk, hence the claim. Note the
resemblance between the shape drawn in bold and a
1-honeycomb.

Figure 8. An n-honeycomb can be obtained by overlaying n
1-honeycombs on top of one another. Here α and β map
1,2,3,4 to 4,3,1,2 and 4,3,2,1 respectively.
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given by the constant coordinates of the edges, and
linear constraints are imposed by saying that the
constant coordinates of three edges meeting at a
vertex add to zero and that every edge has strictly
positive length.

Theorem 3. [KT] The identification in the above
paragraph between nondegenerate n-honeycombs
and points in a certain polyhedral open cone 
extends to an identification of all HONEYn with the
closure of this cone. In particular, nondegenerate
n-honeycombs form a dense open set in HONEYn.

This theorem is surprisingly annoying to prove
and takes pp. 1067–1074 of [KT]. Its virtue is in 
enabling us to use the theory of such cones to 
define certain special honeycombs (the “largest
lift” honeycombs). The proof of the saturation con-
jecture hinges on the fact that every honeycomb
can be deformed to a largest lift honeycomb.

For a honeycomb h, let ∂h ∈ (Rn)3 denote the 
list (λ1, . . . , λn, µ1, . . . , µn, ν1, . . . , νn) of constant
coordinates on the boundary edges of h , and 
let BDRYn ⊂ (Rn)3 be the image of this map
∂ : HONEYn → (Rn)3. Then we can think of the 
main question as being to list the inequalities 
determining BDRYn.

It is not hard to show directly that this map 
is proper, so each fiber is a compact, convex 
polyhedron.

As one application of this formalism we 
can easily show that for any λ, µ, ν the truth or 
falsity of (7) or (5) can be determined in polynomial
time with respect to the dimension n ; this 
fact appears to be previously unknown. Indeed, the
problem is equivalent to determining whether the

(ε,0, . . . ,0) for some small ε, can be used to give 
an inductive proof of Theorem 1.

An interesting degenerate case occurs when ν is
kept fixed, while the spacings between eigenvalues
of λ and µ are allowed to become very large. In this
case the honeycomb degenerates into a pattern
known as a Gelfand-Cetlin pyramid, while Weyl’s
problem degenerates to Schur’s problem of deter-
mining which n-tuples can be the diagonal entries
of a Hermitian matrix with specified eigenvalues.
(In fact, we discovered honeycombs by extrapolat-
ing from this degenerate case.)

We encourage the reader to try out the honey-
comb Java applet at http://www.math.ucla.
edu/~tao/java/Honeycomb.html.

Organizing Honeycombs into a Polyhedral
Cone
The space HONEYn of all n-honeycombs has been
defined as an abstract set, but one can, in fact, give
this space the structure of a polyhedral cone in-
side some finite-dimensional vector space.

Call a honeycomb nondegenerate if
1. all its edges are multiplicity 1, and
2. all its vertices are either right-side-up or 

upside-down Ys.
It is straightforward to prove that all nonde-

generate n-honeycombs have the same topological
shape, namely that of Figure 10. In particular, there
is a natural one-to-one correspondence between the
edges in one nondegenerate n-honeycomb with
those in any other.

This gives us a way of making the space of non-
degenerate n-honeycombs into an open polyhedral
cone in a real vector space. The coordinates are

Figure 9. Two honeycombs overlaid to produce a third. The origin (0,0,0) is marked in each picture with a black dot.

Figure 10. Three nondegenerate 4-honeycombs. Note that there is a natural way to correspond the edges in one
with the edges in any other.
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polytope ∂−1(λ,µ, ν) is nonempty. Since the cone
HONEYn has about O(n2) faces, which can all be 
described explicitly, this problem can be decided in
polynomial time by standard algorithms (e.g., the
simplex method). [The authors thank Peter Shor for
pointing out this fact.] On the other hand, we do not
know how to enumerate all the determining 
inequalities for the relationship (7) in an efficient
manner; the recipe given by Horn’s conjecture 
requires worse-than-exponential time and memory
in n and in fact produces many redundant 
inequalities for (7).

One can also use this formalism to create a
more quantitative version of Theorems 1 and 2. Let
Oλ denote the manifold of Hermitian matrices with
eigenvalues λ, and let A be the random variable with
the uniform distribution on Oλ (where “uniform”
can be defined using induced Lebesgue measure,
or the U (n) action). In other words, A is a random
matrix with spectrum λ. Similarly, define B as a 
random matrix with spectrum µ. One can then 
define P (λ¢ µ ∼c ν) to be the probability density
of the spectrum of the sum A + B of two indepen-
dent random matrices evaluated at ν. Similarly,
define P (λ¢ µ ¢ ν ∼c 0) .

Theorem 4. Up to inessential factors (constants
and Vandermonde determinants), P (λ¢ µ ∼c −ν)
and P (λ¢ µ ¢ ν ∼c 0) are equal to the volume of
∂−1(λ,µ, ν).

Readers familiar with symplectic geometry will
recognize this type of theorem from the theory of
moment maps of compact Lie groups such as U (n).
Indeed, P (λ¢ µ ∼c −ν) is essentially the volume
of the symplectic reduction of the manifold
Oλ ×Oµ (with the diagonal U (n) action) at the
point −ν and similarly for P (λ¢ µ ¢ ν ∼c 0) . We
shall have more to say about this later on.

Quantum Analogues
We now describe the quantum analogue (6) of the
classical relation (5). Roughly speaking, (6) is to the
representation theory of U (n) as (5) is to the sym-
plectic geometry of U (n) (or, more precisely, of the
coadjoint orbits Oλ of U (n)).

Recall that the irreducible unitary representa-
tions of U (1) are all one-dimensional. In fact, for
each integer λ we can define the irreducible 
representation Vλ as a one-dimensional vector
space, with the action of eiθ given by multiplica-
tion by eiλθ on Vλ.

More generally, for any weakly decreasing 
sequence λ = (λ1 ≥ . . . ≥ λn) of integers we can 
define an irreducible unitary representation Vλ of
U (n) by standard constructions (see, e.g., [F]). The
n-tuple λ is referred to as the weight of Vλ. For 
instance, if λ consists of k ones and n− k zeroes,
then Vλ is the space of k-forms 

∧kCn with the 
standard U (n) action. More generally, if λn ≥ 0, 

we define Vλ to be the highest-weight irreducible
representation in

nO
i=1

Symλi−λi+1
∧i
Cn

with the convention λn+1 = 0, and the λn < 0 rep-
resentations can be defined via a dualization.

Given two irreducible representations Vλ, Vµ
of U (n) , the tensor product Vλ ⊗ Vµ is another 
representation of U (n). In the n = 1 case the ten-
sor product is again an irreducible representation:
Vλ ⊗ Vµ ≡ Vλ+µ . However, in general the tensor
product is not irreducible and splits up as a 
direct sum of many smaller irreducible represen-
tations Vν. We can now define the relation (6) as
the statement that a copy of Vν appears at least
once in the tensor product Vλ ⊗ Vµ. Note that the
quantum relation is only defined for integral λ, µ,
ν, whereas the classical relation (5) is defined for
real λ, µ, ν.

There is a close parallel between (5) and (6). For
instance, one can obtain the trace identity (1) as a
necessary condition for (6) by considering the 
action of the center U (1) of U (n). One can similarly
obtain the necessary condition (2) by considering
the highest weights of the action of a maximal
torus U (1)× . . .×U (1) in U (n). From a more phys-
ical viewpoint, one can view the classical problem
as a problem of describing how the moments of
inertia of bodies in Cn behave under superposition,
while the quantum problem is the problem of 
describing how the spin states of particles in Cn
behave under superposition. (The n = 2 case is 
especially interesting to physicists, since U (2) is
closely related to O(3) . In this case every repre-
sentation Vν appears at most once in Vλ ⊗ Vµ (this
corresponds to the fact that 2-honeycombs are
determined by their boundary values), and one
can parameterize the decomposition explicitly
using the Clebsch-Gordan coefficients.)

This connection between the classical and 
quantum problems seems to have been noted first
in [L] (and in a more general context in [He], both
in 1982) and appears in detail in [Kl]; the most 
natural framework for such results is exposed in
[Kn]. Explicitly, the connection is given by

Theorem 5. Let λ,µ, ν be weakly decreasing se-
quences of n integers.

1. (Quantum implies classical.) If (6) holds, then
(5) holds.

2. (Classical implies asymptotic quantum.) 
Conversely, if (5) holds, then there exists an
integer N > 0 such that Nλ +Nµ ∼q Nν .
(Here Nλ is the sequence (Nλ1, . . . ,Nλn) .)

From this theorem it is natural to phrase

Conjecture 2 (saturation conjecture). One can take
N = 1 in the above theorem. In other words, (5)
and (6) are equivalent for integer λ, µ, ν.

fea-knutson.qxp  1/3/01  11:19 AM  Page 181



182 NOTICES OF THE AMS VOLUME 48, NUMBER 2

This conjecture seems to be special to U (n) ;
the naïve analogue of this conjecture for other Lie
groups can be easily shown to be false. The 
saturation conjecture is so named because it is
equivalent to the set of triples (λ,µ, ν) obeying (6)
being a saturated submonoid of Z3n .

Using some formidable algebraic and geometric
machinery, Klyachko [Kl] was able to demonstrate
a further nontrivial recursive relationship between
the classical and quantum problems and noted
that this, combined with the saturation conjec-
ture, would imply Horn’s conjecture; we shall have
more to say about this later. In [KT] we used
Theorem 1 (and the quantum analogue of this 
theorem) to convert the saturation conjecture into
a statement about honeycombs and then proved
this statement by combinatorial methods, thus
proving the saturation and Horn conjectures.
(Recently it has been shown [KTW] that one can 
derive Horn’s conjecture directly from the satura-
tion conjecture by purely combinatorial techniques,
bypassing the machinery of [Kl]. Also, a very dif-
ferent proof of saturation, based on the represen-
tation theory of quivers, has since been given in
[DW]. Finally, a short rendition of [KT] can be found
in [Bu].)

To attack the saturation conjecture using 
honeycombs, we need a quantum analogue of 
Theorems 1 and 2. We first phrase a symmetric
form of (6). We say that

(11) λ¢ µ ¢ ν ∼q 0

holds if Vλ ⊗ Vµ ⊗ Vν contains a nontrivial U (n)-
invariant vector. It is easy to show that (11) is
equivalent to λ¢ µ ∼q −ν .

A honeycomb is said to be integral if its vertices
lie on Z3∑

=0 := R3∑
=0 ∩ Z3 . Note that the boundary

values of an integral honeycomb are necessarily 
integers.

Theorem 6. The relationship (11) holds if and only 
if there exists an integral honeycomb with boundary
values (λ,µ, ν) . As a corollary the relationship (6)
holds if and only if there exists an integer honeycomb
with boundary values (λ,µ,−ν) .

Note that Theorems 6 and 5 imply Theorems 1
and 2.

The problem of determining the solutions to
(6) has had a long history, and a solution is given
by the famous Littlewood-Richardson rule. This
rule has been formulated in many different ways,
most of which involve Young tableaux; a variant due
to Berenstein and Zelevinsky can be easily adapted
to give Theorem 6. (Fulton has also shown that
this theorem can be proven directly from the
Littlewood-Richardson rule.) Other proofs are
known; for instance, one can combine the quantum
version of (10) with Pieri’s rule for tensoring a U (n)
representation with the tautological Cn represen-
tation to give an inductive proof of Theorem 6.

A quantum analogue of Theorem 4 is also
known:

Theorem 7. The number of times Vν appears in the
tensor product of Vλ ⊗ Vµ is equal to the number
of integral honeycombs with boundary values
(λ,µ,−ν) . Equivalently, the dimension of the U (n)-
invariant subspace of Vλ ⊗ Vµ ⊗ Vν is equal to the
number of integral honeycombs with boundary
values (λ,µ, ν) .

All the proofs of Theorem 6 mentioned above
can also be used to prove Theorem 7. Theorem 4
can be viewed as a crude asymptotic version of 
Theorem 7. Variants of this theorem appear in [J],
[BZ], and particularly in [GP], though honeycombs
are not explicitly used in these papers. We remark
that the representation theoretic quantities in 
Theorem 7 can also be calculated by the Steinberg
product rule (for instance), though we do not know
a proof of this theorem that goes via this rule.

Readers who are familiar with the representation
theory of SL2 (or SU (2)) may verify that the honey-
comb rule given in Theorem 6 corresponds to the
usual triangle inequalities for the weights. The 
fact that 2-honeycombs are uniquely determined 
by their boundary values corresponds to the fact
that each irreducible representation of SL2 appears
exactly once in a tensor product of irreducibles.

As mentioned in the introduction, the satura-
tion conjecture gives a complete solution to the
(now equivalent) problems (5), (6), given by Horn’s
conjecture.

Proof of the Saturation Conjecture
In light of the theorems of the previous section,
the saturation conjecture can be reduced to the 
following purely honeycomb-theoretic problem:

Theorem 8. Let h be a (real-valued) honeycomb 
with integer boundary values. Then there exists 
an integer honeycomb h′ with the same boundary 
values as h.

Or in other words: if λ, µ, ν are integers and 
the polytope ∂−1(λ,µ, ν) is nonempty, then
∂−1(λ,µ, ν) must contain at least one integer point.

The most obvious thing to do is to look for a 
vertex of ∂−1(λ,µ, ν); however, one can give ex-
amples of vertices which are nonintegral even when
λ, µ, ν are integers. Thus we have to be a little more
careful as to how to locate our integer honeycomb.

We call a functional f : HONEYn → R superhar-
monic if it increases when we dilate a hexagon (which
one can do to any hexagon in any nondegenerate
honeycomb, as in Figure 6).

Fix a generic superharmonic functional f, and
define the largest lift of a triple (λ,µ, ν) as the 
honeycomb h that maximizes f (h) subject to
∂h = (λ,µ, ν). It is straightforward to prove that 
the largest-lift map BDRYn → HONEYn is uniquely 
defined (for a given generic f), continuous, and
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assumption already at the maximum value of the
functional, so there can be no loops.

From this lemma one can show that the coor-
dinates of regular largest lifts are integral linear
combinations of the boundary values. Those who
wish to see the details should go to [KT], but the 
argument is intuitively clear. Given a honeycomb
with some edges labeled by their constant coor-
dinates and some still mysterious, look for vertices
with two known constant coordinates. The re-
maining one is minus the sum of the other two.
Label it such and repeat. The reader is invited to
play this game on the honeycombs in Figure 11 to
see how in the left-hand honeycomb one gets stuck
exactly because of the loop.

In Figure 12 we have labeled the boundary edges
“A”, the edges whose constant coordinates can be
determined from those “B”, those at the next stage
of this recursive algorithm “C”, and so on.

Since every largest lift can be obtained as a limit
of regular largest lifts, we thus have that the

piecewise-linear. To show Theorem 8, it then 
suffices to show that the largest-lift map takes in-
teger boundary values to integer honeycombs.

We need some more notation. Say that a honey-
comb h has only simple degeneracies if all its edges
are multiplicity 1 and its vertices are either Ys (pos-
sibly upside-down) or crossings of two straight lines.
In this case define the underlying graph of h as the
graph whose vertices consist of the (possibly up-
side-down) Ys but not the crossings; the crossings
we instead interpret as two edges missing one an-
other. (In the examples in Figure 1, all vertices except
the bottom right vertex of the right-hand honey-
comb are only simple degeneracies.)

With this in mind, we can talk about loops in a sim-
ply degenerate honeycomb (meaning in the under-
lying graph) or call the honeycomb acyclic if there
are none. For example, in the left honeycomb in 
Figure 11 there is a loop, whereas the honeycomb on
the right is acyclic.

The importance of loops in simply degenerate
honeycombs is that they can be breathed in and
out, as in Figure 11, generalizing the case of dilating
a single hexagon.

Call a largest lift regular if the boundary spec-
tra λ, µ, ν each contain no repeated eigenvalues.

The main technical part of [KT] is to prove

Theorem 9. [KT] Regular largest lifts can only
have simple degeneracies.

In particular, regular largest lifts come with un-
derlying graphs. Roughly speaking, this theorem 
is proven by showing that every nonsimple degen-
eracy can be “blown up” in a way that increases the
superharmonic functional.

Lemma 1. The underlying graphs of regular largest
lifts are acyclic.

Sketch of proof. If a simply degenerate honeycomb
has a loop, we can breathe it in and out; one 
direction will increase the value of any (generic) 
superharmonic functional. A largest lift is by 

Figure 11. Two simply degenerate honeycombs, with black dots on the vertices of their underlying graphs. The left
one has a loop that can breathe in and out (to, say, the dotted-line position), but the right has none.
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Figure 12. A honeycomb integrally determined by its boundary,
in four stages: A, B, C, D.
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1. [HR], [K1] If (5) holds, then (12) holds when-
ever (i, j, k) are admissible triples obeying
i ¢ j ∼q k .

2. [Kl] Conversely, if (12) holds whenever (i, j, k)
are admissible triples obeying i ¢ j ∼q k, then
(5) holds.

So in a sense solvability of the “classical prob-
lem in dimension n” (about summing n× n
Hermitian matrices) is determined by the solv-
ability of the “quantum problem in dimension
m < n” (about tensoring representations of U (m) ).
Given the saturation theorem proven in the last 
section, which says that each such quantum 
problem is solvable exactly if the corresponding
classical problem (in the same dimension) is 
solvable, we have a recursive way to answer the
problem.

Theorem 10 connects the classical and quantum
problems in a way markedly different from the
standard classical/quantum analogy as codified 
by Theorem 5. The proofs of this theorem are
highly nontrivial and first proceed by showing (6)
is equivalent to a certain intersection problem in
the Schubert calculus of Grassmanians. We do not
discuss this further here, but refer the interested
reader to [F2]. More recently, a purely honeycomb-
theoretic proof of Theorem 10 has been obtained,
which we discuss briefly in the last section.

Other Consequences
We close with mention of a few other applications
of honeycombs and their properties proven above.

Horn’s proof that the solution set of (5) is deter-
mined by (1) and a finite number of inequalities 
of the form (12) is based on the following stronger
fact: if (12) holds with equality and λ,µ, ν are 
regular, then the associated triple of matrices
(A,B,A + B) is necessarily block diagonalizable. 
Put another way, the Hermitian triple is the direct
sum of two smaller Hermitian triples.

Given that we have already drawn an analogy 
between direct sums of matrices and overlaying of
honeycombs, there should be a corresponding
statement stating that the faces of BDRYn corre-
spond to honeycombs which are overlays.

co-ordinates of all largest lifts are integral linear 
combinations of their boundary values. In partic-
ular, if the boundary values are integral, then 
the largest lifts are also integral. This proves 
Theorem 8, which gives the saturation conjecture.

Klyachko’s Result and Horn’s Conjecture
In this section we restate Horn’s conjecture in a 
convenient form and state a version of Klyachko’s
result (one direction of which was also proven 
by Helmke and Rosenthal). (We give slightly 
revisionist versions in order to avoid introducing
Schubert calculus on Grassmannians, which is one
of the equivalent problems explained in [F2].)

Horn [Ho] showed that the solution set to (5)
must be given by (1) and a finite number of in-
equalities of the form

(12)
λi1+r + . . . + λir+1 + µj1+r + . . .

+ µjr+1 ≥ νk1+r + . . . + νkr+1

where 1 ≤ r < n , and i = (i1 ≥ . . . ≥ ir ) , j = ( j1
≥ . . .≥ jr ) ,  and k = (k1 ≥ . . . ≥ kr ) are weakly 
decreasing sequences of integers between 0 and
n− r inclusive. Let us call triples (i, j, k) of this
form admissible.

As an example, (2) is (12) for the admissible triple
((0), (0), (0)) , while Weyl’s inequalities correspond 
to admissible triples of the form ((i), (j), (i + j)) . The
inequality λ1 + λ2 + µ1 + µ2 ≥ ν1 + ν2 corresponds
to ((0,0), (0,0), (0,0)) and so forth.

Horn’s conjecture can be easily shown by in-
duction to be equivalent to

Conjecture 3. Let λ,µ, ν be weakly decreasing 
sequences of real numbers. Then (5) holds if and
only if (1) holds, and (12) holds whenever i, j, k are
admissible and i ¢ j ∼c k.

Helmke, Rosenthal, and Klyachko showed that
Horn’s conjecture was true provided that the ∼c
relation on (i, j, k) was replaced by the quantum
counterpart ∼q :

Theorem 10. Let λ,µ, ν be weakly decreasing 
sequences of real numbers obeying (1).

A

AB

B B

BA

A
Figure 13. In the left figure, A turns clockwise to B, whereas in the right the reverse is true. Any

transverse point of intersection of two overlaid honeycombs must look like exactly one of these.
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An Open Question
The present proof of Theorem 4 is very unsatisfy-
ing; it comes as an asymptotic limit of Theorem 7,
which itself is proved only indirectly.

Consider the horizontal projection of the 
2-sphere of height 1/(2π ) onto the diameter 
between the poles. Archimedes’ theorem states 
that the length of an interval in that diameter
equals the area of the preimage on the sphere.
Today we say that the horizontal projection 
is measure-preserving, which at first seems 
marvelous, since the interval has only half 
the dimension of the sphere. The question is: is 
there a corresponding map which would give a di-
rect proof of Theorem 4? In other words, is there
a canonical measure-preserving map from the set
{(A,B,C) ∈ Oλ ×Oµ ×Oν} to ∂−1(λ,µ, ν)? Such a
map is also likely to give a direct proof of Theo-
rem 7, especially if it is associated somehow with
a group action. 
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The cover illustrates one of the principal results
from the work of Allen Knutson and Terry Tao.
The figure itself is redrawn from one in a
preprint of theirs, The honeycomb model of
GLn(C). The theorem asserts a relationship
between the decomposition of tensor products
of representations and a certain collection of
what they call “honeycombs”. This particular
example is concerned with the decomposition
of the square of the representation of GL3
parametrized by the weight vector (2,1,0). (The
conventions about multiplicities are slightly
different in the illustration from what they are
in their article—multiplicities of edges are
indicated here graphically.) There are some
mysteries involved with this and similar
pictures—when asked, for example, if there
were any direct relationship between the com-
ponents of such a figure and the decomposition,
Knutson and Tao responded, “That's a very
good question. We would love to have an
interpretation of what the nodes and edge
lengths actually mean. For instance, each
honeycomb in the picture should correspond to
a concrete copy of the appropriate irreducible
representation in the tensor product of V2,1,0
with itself, with explicit bases and coefficients,
etc., but we have no idea how to construct such
a canonical decomposition. Nor do we have a
particularly good way to enumerate all the
honeycombs which are associated with a given
tensor product, other than applying off-the-
shelf algorithms to enumerate lattice points in
polytopes. There is a lot left to be understood
in this area.”

—Bill Casselman (covers@ams.org)
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