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Aspects of Statistical Learning
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Cynthia Rudin, New York University 
Miroslav Dudík, Princeton University

Statistical learning is a rapidly growing area of computer
science. Its goal is to design computer algorithms that gen-
eralize or “learn’’ from examples. Applications of statis-
tical learning have been extremely wide-ranging and include
tasks in pattern and speech recognition, text processing,
portfolio management, medical diagnosis, robotics, and
bioinformatics.

The goal of this course is to introduce the field of sta-
tistical learning to a wider mathematical audience. Possi-
ble areas of interest to mathematicians include the design
of algorithms and analysis of their convergence, proba-
bilistic guarantees of generalization performance, and
beating the “curse of dimensionality’’. The talks will span
a variety of problem domains, techniques, and algorithm
types, and touch upon many interesting applications. Each
talk will be tutorial-style and accessible to a broad math-
ematical audience.

It is planned that lecture notes will be available to those
who register for this course. Advance registration fees
are: member of the AMS—US$90; nonmember—US$120;
student, unemployed, emeritus—US$40. On-site fees are:
member of the AMS—US$120; nonmember—US$151; stu-
dent, unemployed, emeritus—US$60. Registration and
housing information can be found in this issue of the 
Notices; see the section “Registering in Advance and Hotel
Accommodations’’ in the announcement for meetings in
New Orleans. The registration form is at the back of this
issue.

A tentative list of speakers:
Robert E. Schapire (Princeton University)
Lisa Hellerstein (Polytechnic University, Brooklyn)
Adam Tauman Kalai (Weizmann Institute of Science

and Toyota Technological Institute)
Lawrence Saul (University of California San Diego)

Machine Learning Algorithms for Classification

Robert E. Schapire, Princeton University
Machine learning studies the design of computer algo-

rithms that automatically make predictions about the un-
known based on past observations. Often, the goal is to
learn to categorize objects into one of a relatively small
set of classes. This tutorial will introduce some of the
main state-of-the-art machine learning techniques for solv-
ing such classification problems, possibly including deci-
sion trees, boosting and support-vector machines. The tu-
torial will also discuss some of the key issues in classifier
design, including avoidance of overfitting.

Reading List
[1] VLADIMIR N. VAPNIK, Statistical Learning Theory, Wiley, (1998).
[2] LEO BREIMAN, JEROME H. FRIEDMAN, RICHARD A. OLSHEN, and CHARLES

J. STONE, Classification and Regression Trees, Wadsworth &
Brooks, (1984).

[3] ROBERT E. SCHAPIRE, The boosting approach to machine learn-
ing: An overview, Nonlinear Estimation and Classification,
Springer, (2003). http://www.cs.princeton.edu/
~schapire/boost.html.

[4] NELLO CRISTIANINI and JOHN SHAWE-TAYLOR, An Introduction to
Support Vector Machines and Other Kernel-based Learning
Methods, Cambridge University Press, (2000).

Exact Learning of Boolean Functions and Finite
Automata with Queries

Lisa Hellerstein, Polytechnic University, Brooklyn
Which Boolean functions can be efficiently learned?

The answer to this question clearly depends on the type
of information that is available to the learner. In query mod-
els of learning, we assume that the learner has access to
oracles that provide information about the function being
learned. Query models are meant to capture situations in
which the learner has access to a teacher who can answer
questions, or can interact with the environment through
experience or experiments. In this tutorial, we will define
the standard models of query learning, and discuss effi-
cient algorithms for learning particular types of Boolean
functions, functional representations, and automata. We
will also give an overview of techniques for proving lower
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bounds on the number of queries needed to learn, and com-
plexity-theoretic hardness results for learning.

Reading List
[1] N. LITTLESTONE, Learning quickly when irrelevant attributes

abound: A new linear-threshold algorithm, Machine
Learning 2, pp. 285–318, (1988).

[2] D. ANGLUIN, Learning regular sets from queries and coun-
terexamples, Information and Computation 75, pp. 87–106,
(1987).

[3] W. MAASS and G. TURAN, On the complexity of learning from
counterexamples and membership queries, Proc. 31st Annual
IEEE Symposium on Foundations of Computer Science, pp.
203–210, (1990).

[4] TIBOR HEGEDUS, Generalized teaching dimensions and the query
complexity of learning, Proc. 8th Annual Conference on Com-
putational Learning Theory, pp. 108–117, (1995).

[5] N. H. BSHOUTY, Exact learning of Boolean functions via the mo-
notone theory, Information and Computation 123, pp. 146–153,
(1995).

[6] R. E. SCHAPIRE and L. M. SELLIE, Learning sparse multivariate
polynomials over a field with queries and counterexamples, J.
Comput. Syst. Sci. 52(2), pp. 201–213, (1996).

[7] L. HELLERSTEIN, K. PILLAIPAKKAMNATT, V. RAGHAVAN, and D. WILKINS,
How many queries are needed to learn?, J. Association for
Computing Machinery 43(4–6), pp. 840–862, (1996). 

[8] A. BEIMEL, F. BERGADANO, N. H. BSHOUTY, E. KUSHILEVITZ, and S. VAR-
RICCHIO, Learning functions represented as multiplicity au-
tomata, J. ACM 47(3), pp. 506–530, (2000).

[9] A. KLIVANS and R. SERVEDIO, Learning DNF in time 2O(n1/3), J. Com-
puter and System Sciences 68(2), pp. 303–318, (2004).

Online Learning

Adam Tauman Kalai, Weizmann Institute of Science and
Toyota Technological Institute

In online learning, a learner makes sequential predic-
tions about data one at a time, online. After each predic-
tion is made, the learner is informed of the quality of its
prediction. Elegant learning algorithms come with sur-
prisingly strong guarantees for online learning of such se-
quential prediction problems. One striking aspect of these
guarantees is that they hold for arbitrary sequences of 
data—no distributional assumptions (such as indepen-
dence) are required. Nonetheless, online analysis is typi-
cally very simple and implies analogous results in more
standard learning settings that involve probabilistic as-
sumptions.

Related results in online learning span a number of
fields including learning theory, game theory, and infor-
mation theory.

Reading List
[1] NICOLO CESA-BIANCHI and GABOR LUGOSI, Prediction, Learning and

Games, Cambridge University Press, (2006).
[2] AVRIM BLUM, On-line algorithms in machine learning, Online Al-

gorithms: The State of the Art, Chapter 14, LNCS # 1442, Eds.
Fiat and Woeginger (1998). http://www.cs.cmu.edu/afs/
cs/usr/avrim/www/Papers/survey.ps.

[3] PETER AUER, NICOLO CESA-BIANCHI, YOAV FREUND, and ROBERT E.
SCHAPIRE, Gambling in a rigged casino: The adversarial multi-
armed bandit problem, Proc.36th Annual Symposium on Foun-
dations of Computer Science ,  pp. 322–331, (1995).

http://www.cs.ualberta.ca/~bowling/classes/
cmput608/AuerEtAl95.pdf.

[4] NICK LITTLESTONE, Learning quickly when irrelevant attributes
abound: A new linear-threshold algorithm, Machine
Learning 2, pp. 285–318, (1987). http://www.cse.ucsc.edu/
classes/cmps242/Fall02/paps/winnow.ps.

Spectral Methods for Visualization and Analysis
of High Dimensional Data

Lawrence Saul, University of California San Diego
How can we detect low-dimensional structure in high-

dimensional data? If the data is mainly confined to a low-
dimensional subspace, then simple linear methods can be
used to discover the subspace and estimate its dimen-
sionality. More generally, though, if the data lies on (or near)
a low-dimensional submanifold, then its structure may be
highly nonlinear, and linear methods are bound to fail.

Graph-based spectral methods have recently emerged
as a powerful tool for high-dimensional data analysis.
These methods are able to reveal low-dimensional struc-
ture in high-dimensional data from the top or bottom
eigenvectors of specially constructed matrices. The ma-
trices are constructed from sparse weighted graphs whose
vertices represent input patterns and whose edges indi-
cate neighborhood relations. The main computations in this
framework are based on highly tractable optimizations,
such as shortest path problems, least squares fits, semi-
definite programming, and matrix diagonalization. In this
talk, I will provide an overview of these methods.

Reading List
[1] C. J. C. BURGES, Geometric Methods for Feature Extraction and

Dimensional Reduction, Data Mining and Knowledge Discovery
Handbook: A Complete Guide for Researchers and Practition-
ers, O. Maimon and L. Rokach (eds.), Kluwer Academic Pub-
lishers, (2005).

[2] L. K. SAUL, K. Q. WEINBERGER, J. H. HAM, F. SHA, and D. D. LEE, Spec-
tral methods for dimensionality reduction, to appear in Semi-
supervised Learning, O. Chapelle, B. Schoelkopf, and A. Zien
(eds.), MIT Press, (2006).


