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I
n 1973 R. Penrose [13] made a physical argu-
ment that the total mass of a spacetime con-
taining black holes with event horizons of
total area A should be at least 

√
A/16π . An

important special case of this physical state-
ment translates into a very beautiful mathematical
inequality in Riemannian geometry known as the Rie-
mannian Penrose inequality. The Riemannian Pen-
rose inequality was first proved by G. Huisken and
T. Ilmanen in 1997 for a single black hole [8] and
then by the author in 1999 for any number of black
holes [1]. The two approaches use two different
geometric flow techniques. The most general ver-
sion of the Penrose inequality is still open.

A natural interpretation of the Penrose inequal-
ity is that the mass contributed by a collection of
black holes is (at least) 

√
A/16π . More generally, the

question, How much matter is in a given region of
a spacetime? is still very much an open problem [6].
In this paper we will discuss some of the qualita-
tive aspects of mass in general relativity, look at
some informative examples, and describe the two
very geometric proofs of the Riemannian Penrose
inequality.

Total Mass in General Relativity
Two notions of mass which are well understood in
general relativity are local energy density at a point
and the total mass of an asymptotically flat space-
time. However, defining the mass of a region larger
than a point but smaller than the entire universe
is not at all well understood.

Suppose (M3, g) is a Riemannian 3-manifold iso-
metrically embedded in a (3+1) dimensional
Lorentzian spacetime N4. Suppose that M3 has
zero second fundamental form in the spacetime.
This is a simplifying assumption which allows us
to think of (M3, g) as a “t = 0” slice of the space-
time. (The second fundamental form is a measure
of how much M3 curves inside N4; M3 is also
sometimes called “totally geodesic” since geodes-
ics of N4 which are tangent to M3 at a point stay
inside M3 forever.) The Penrose inequality (which
allows for M3 to have general second fundamen-
tal form) is known as the Riemannian Penrose in-
equality when the second fundamental form is set
to zero. 

We also want to consider only (M3, g) that are
asymptotically flat at infinity, which means that
for some compact set K, the “end” M3 \K is dif-
feomorphic to R3 \ B1(0), where the metric g is
asymptotically approaching (with certain decay
conditions) the standard flat metric δij on R3 at
infinity. The simplest example of an asymptotically
flat manifold is (R3, δij ) itself. Other good exam-
ples are the conformal metrics (R3, u(x)4δij ), where
u(x) approaches a constant sufficiently rapidly at
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infinity. (Also, sometimes it is convenient to allow
(M3, g) to have multiple asymptotically flat ends,
in which case each connected component of M3 \K
must have the property described above.) A qual-
itative picture of an asymptotically flat
3-manifold is shown in Figure 1.

The point of these assumptions on the asymp-
totic behavior of (M3, g) at infinity is that they
imply the existence of the limit

m =
1

16π
lim
σ→∞

∫
Sσ

∑
i,j

(gij,iνj − gii,jνj )dµ

where Sσ is the coordinate sphere of radius σ, ν
is the unit normal to Sσ, and dµ is the area element
of Sσ in the coordinate chart. The quantity m is
called the total mass (or ADM mass) of (M3, g) and
does not depend on the choice of an asymptotically
flat coordinate chart.

The above equation is where many people would
stop reading an article like this. But before you do,
we will promise not to use this definition of the total
mass in this paper. In fact, it turns out that total
mass can be quite well understood with an exam-
ple. Going back to the example (R3, u(x)4δij ), if we
suppose that u(x) > 0 has the asymptotics at in-
finity

(1) u(x) = a + b/|x| +O(1/|x|2)

(and derivatives of the O(1/|x|2) term are
O(1/|x|3) ), then the total mass of (M3, g) is

(2) m = 2ab.

Furthermore, suppose that (M3, g) is any metric
whose “end” is isometric to (R3 \K,u(x)4δij ) ,
where u(x) is harmonic in the coordinate chart of
the end (R3 \K,δij ) and goes to a constant at in-
finity. Then expanding u(x) in terms of spherical
harmonics demonstrates that u(x) satisfies condi-
tion (1). We will call such Riemannian manifolds
(M3, g) harmonically flat at infinity, and we note
that the total mass of these manifolds is also given
by equation (2).

A very nice lemma by Schoen and Yau states that,
given any ε > 0, it is always possible to perturb an
asymptotically flat manifold to become harmoni-
cally flat at infinity in such a way that the total mass
changes less than ε and the metric changes less
than ε pointwise, all while maintaining nonnega-
tive scalar curvature (discussed in a moment).
Hence, it happens that to prove the theorems in this
paper, we need to consider only harmonically flat
manifolds! Thus, we can use equation (2) as our de-
finition of total mass. As an example, note that
(R3, δij ) has zero total mass. Also, note that, qual-
itatively, the total mass of an asymptotically flat
or harmonically flat manifold is the 1/r rate at
which the metric becomes flat at infinity.

The Phenomenon of Gravitational Attraction
What do the above definitions of total mass have
to do with anything physical? That is, if the total
mass is the 1/r rate at which the metric becomes
flat at infinity, what does this have to do with our
real-world intuitive idea of mass?

The answer to this question is very nice. Given
a Schwarzschild spacetime metric
(

R4,
(

1 +
m

2|x|
)4

(dx2
1 + dx2

2 + dx2
3)

−
(

1−m/2|x|
1 +m/2|x|

)2

dt2
)
, |x| > m/2,

for example, the t = 0 slice (which has zero second
fundamental form) is the spacelike Schwarzschild
metric (R3 \ Bm/2(0), (1 + m

2|x| )
4δij ) (discussed more

later). According to equation (2), the parameter m
is in fact the total mass of this 3-manifold.

On the other hand, suppose we were to release
a small test particle, initially at rest, a large dis-
tance r from the center of the Schwarzschild space-
time. If this particle is not acted upon by external
forces, then it should follow a geodesic in the
spacetime. It turns out that with respect to the
asymptotically flat coordinate chart, these geo-
desics “accelerate” towards the middle of the
Schwarzschild metric at a rate proportional to
m/r2 (in the limit as r goes to infinity). Thus, our
Newtonian notion of mass also suggests that the
total mass of the spacetime is m.
Local Energy Density
Another well-understood quantification of mass is
local energy density. In fact, in our setting the local
energy density at each point is

µ =
1

16π
R,

where R is the scalar curvature of the 3-manifold
(which has zero second fundamental form in the
spacetime) at each point. Note that (R3, δij ) has
zero energy density at each point as well as zero

Figure 1.
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total mass. This is appropriate since (R3, δij ) is in
fact a “t = 0” slice of Minkowski spacetime, which
represents a vacuum. Classically, physicists con-
sider µ ≥ 0 to be a physical assumption. Hence,
from this point on, we will assume not only that
(M3, g) is asymptotically flat but also that it has
nonnegative scalar curvature,

R ≥ 0.

This notion of energy density also helps us un-
derstand total mass better. After all, we can take
any asymptotically flat manifold and then change
the metric to be perfectly flat outside a large com-
pact set, thereby giving the new metric zero total
mass. However, if we introduce the physical con-
dition that both metrics have nonnegative scalar
curvature, then it is a beautiful theorem that 
such a modification is not possible unless the 
original metric was already (R3, δij ) ! (This theorem
is actually a corollary to the positive mass theorem
discussed in a moment.) Thus, the curvature ob-
struction of having nonnegative scalar curvature 
at each point is a very interesting condition.

Also, notice the indirect connection between
the total mass and the local energy density. At this
point, there does not seem to be much of a con-
nection at all. Total mass is the 1/r rate at which
the metric becomes flat at infinity, and local energy
density is the scalar curvature at each point. Fur-
thermore, if a metric is changed in a compact set,
local energy density is changed, but the total 
mass is unaffected.

Indeed, the total mass is not the integral of the
local energy density over the manifold. In fact, this
integral fails to take into account either potential
energy (which would be expected to contribute a
negative energy) or gravitational energy (discussed
in a moment). Hence, it is not initially clear what
we should expect the relationship between total
mass and local energy density to be, so let us begin
with an example.
Example Using Superharmonic Functions in R3

Once again, let us return to the example of
(R3, u(x)4δij ). The formula for the scalar curvature
is

R = −8u(x)−5∆u(x).

Hence, since the physical assumption of nonneg-
ative energy density implies nonnegative scalar
curvature, we see that the positive function u(x)
must be superharmonic (that is, ∆u ≤ 0). For sim-
plicity, assume also that u(x) is harmonic outside
a bounded set, so that we can expand u(x) at in-
finity using spherical harmonics. Hence, u(x) has
the asymptotics of equation (1). By the maximum
principle, it follows that the minimum value for u(x)
must be a, referring to equation (1). Hence, b ≥ 0,
which implies that m ≥ 0! Thus we see that the as-
sumption of nonnegative energy density at each

point of (R3, u(x)4δij ) implies that the total mass
is also nonnegative, which is what one would hope.

The Positive Mass Theorem
Why would one hope this? What would be the dif-
ference if the total mass were negative? This would
mean that a gravitational system of positive energy
density could collectively act as a net negative total
mass. This phenomenon has not been observed ex-
perimentally, and so it is not a property that we would
expect to find in general relativity.

More generally, suppose that we have any as-
ymptotically flat manifold with nonnegative scalar
curvature. Is it true that the total mass is also non-
negative? The answer is yes, and this fact is known
as the positive mass theorem, proved first by Schoen
and Yau [14] in 1979 using minimal surface tech-
niques and then by Witten [17] in 1981 using spin-
ors. In the case of zero second fundamental form, the
positive mass theorem is known as the Riemannian
positive mass theorem and is stated below.

Theorem 1. [16] Let (M3, g) be any asymptotically
flat, complete Riemannian manifold with nonneg-
ative scalar curvature. Then the total mass m ≥ 0,
with equality if and only if (M3, g) is isometric to
(R3, δ) .

Gravitational Energy
The preceding example fails to illustrate all of the sub-
tleties of the positive mass theorem. For example, it
is easy to construct asymptotically flat manifolds
(M3, g) (not conformal to R3) that have zero scalar
curvature everywhere and yet have nonzero total
mass. By the positive mass theorem, the mass of
these manifolds is positive. Physically, this corre-
sponds to a spacetime that has zero energy density
everywhere and yet still has positive total mass. 
From where did this mass come? How can a vacuum
have positive total mass?

Physicists refer to this extra energy as gravita-
tional energy. There is no known local definition of
the energy density of a gravitational field, and
presumably such a definition does not exist. The
curious phenomenon then is that for some reason
gravitational energy always makes a nonnegative
contribution to the total mass of the system.

Black Holes
Another very interesting and natural phenomenon
in general relativity is the existence of black holes.
Instead of thinking of black holes as singularities
in a spacetime, we will think of black holes in terms
of their horizons. For example, suppose we are ex-
ploring the universe in a spacecraft capable of trav-
eling any speed less than the speed of light. If we
are investigating a black hole, we want to make sure
that we do not get too close and get trapped by the
“gravitational forces” of the black hole. We can
imagine a “sphere of no return” beyond which es-
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cape from the black hole is impossible. It is called
the event horizon of a black hole.

However, one limitation of the notion of an
event horizon is the difficulty of determining its
location. One way is to let daredevil spacecraft see
how close they can get to the black hole and still
escape from it eventually. The problem with this
approach (besides the cost in spacecraft) is that it
is hard to know when to stop waiting for a dare-
devil spacecraft to return. Even if it has been fifty
years, it could be that this particular daredevil was
not trapped by the black hole but got so close that
it will take one thousand or more years to return.
Thus, to define the location of an event horizon
even mathematically, we need to know the entire
evolution of the spacetime. Hence, event horizons
cannot be computed based only on the local geom-
etry of the spacetime.

This problem is solved (at least for the mathe-
matician) by the notion of apparent horizons of
black holes. Given a surface in a spacetime, sup-
pose that it emits an outward shell of light. If the
surface area of this shell of light is decreasing
everywhere on the surface, then this is called a
trapped surface. The outermost boundary of these
trapped surfaces is called the apparent horizon of
the black hole. Apparent horizons can be com-
puted based on their local geometry, and an ap-
parent horizon always implies the existence of an
event horizon outside of it [7].

Now let us return to the case we are consider-
ing in this paper where (M3, g) is a “t = 0” slice of
a spacetime with zero second fundamental form.
Then it is a very nice geometric fact that apparent
horizons of black holes intersected with M3 cor-
respond to the connected components of the out-
ermost minimal surface Σ0 of (M3, g) .

All of the surfaces we are considering in this
paper will be required to be smooth boundaries of
open bounded regions, so outermost is well defined
with respect to a chosen end of the manifold [1].
A minimal surface in (M3, g) is a surface which is
a critical point of the area function with respect to
any smooth variation of the surface. The first vari-
ational calculation implies that minimal surfaces
have zero mean curvature. The surface Σ0 of (M3, g)
is defined as the boundary of the union of the
open regions bounded by all of the minimal sur-
faces in (M3, g) . It turns out that Σ0 also has to be
a minimal surface, so we call Σ0 the outermost
minimal surface. A qualitative sketch of an outer-
most minimal surface of a 3-manifold is shown in
Figure 2.

We also define a surface to be (strictly) outer min-
imizing if every surface which encloses it has
(strictly) greater area. Note that outermost minimal
surfaces are strictly outer minimizing. Also, we
define a horizon in our context to be any minimal

surface which is the boundary of a bounded open
region.

It also follows from a stability argument (which
interestingly uses the Gauss-Bonnet theorem) that
each component of an outermost minimal surface
(in a 3-manifold with nonnegative scalar curvature)
must have the topology of a sphere. Furthermore,
there is a physical argument, based on [13], which
suggests that the mass contributed by the black
holes (thought of as the connected components
of Σ0) should be defined to be 

√
A0/16π , where A0

is the area of Σ0. Hence, the physical argument that
the total mass should be greater than or equal to
the mass contributed by the black holes yields the
following geometric statement.

The Riemannian Penrose Inequality. Let (M3, g)
be a complete, smooth 3-manifold with nonnegative
scalar curvature, harmonically flat at infinity, with
total mass m, and with an outermost minimal sur-
face Σ0 of area A0 . Then

(3) m ≥
√
A0

16π
,

and equality holds if and only if (M3, g) is isomet-
ric to the Schwarzschild metric (R3 \ {0},
(1 + m

2|x| )
4δij ) outside the respective outermost 

minimal surfaces.

The above statement has been proved by the au-
thor [1], and Huisken and Ilmanen [8] proved it
when A0 is defined instead to be the area of the
largest connected component of Σ0. In this article
we will discuss both approaches. They are very
different, although they both involve flowing sur-
faces and/or metrics.

We also clarify that the above statement is with
respect to a chosen end of (M3, g) , since both the
total mass and the definition of outermost refer to
a particular end. Nothing very important is gained
by considering manifolds with more than one end,
since extra ends can always be compactified by con-

Figure 2.
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nect summing them (around a neighborhood of in-
finity) with large spheres while still preserving
nonnegative scalar curvature. Hence, we will typi-
cally consider manifolds with just one end. In the
case that the manifold has multiple ends, we will
require every surface (which could have multiple
connected components) in this paper to enclose all
of the ends of the manifold except the chosen end.

The Schwarzschild Metric
The Schwarzschild metric (R3 \ {0}, (1 + m

2|x| )
4δij )

referred to in the above statement of the Rie-
mannian Penrose Inequality is a particularly 
important example to consider. It corresponds to
a zero second fundamental form, spacelike slice of
the usual (3+1)-dimensional Schwarzschild 
metric (which represents a spherically symmetric
static black hole in a vacuum). The 3-dimensional
Schwarzschild metrics have total mass m > 0 and
are characterized by being the only spherically
symmetric, geodesically complete, zero scalar 
curvature 3-metrics other than (R3, δij ) . They 
can also be embedded in 4-dimensional Euclidean
space (x, y, z,w ) as the set of points satisfying

|(x, y, z)| = w2

8m + 2m , which is a parabola rotated

around an S2. This last picture allows us to see that
the Schwarzschild metric, which has two ends, has
a Z2 symmetry fixing the sphere with w = 0 and
|(x, y, z)| = 2m , which is clearly minimal. Further-
more, the area of this sphere is 4π (2m)2, giving
equality in the Riemannian Penrose Inequality.

A Brief History of the Problem
The Riemannian Penrose Inequality has a rich his-
tory spanning nearly three decades and has moti-
vated much interesting mathematics and physics.
In 1973 R. Penrose in effect conjectured an even
more general version of inequality (3) using a very
clever physical argument [13], which we will not
have room to repeat here. His observation was that
a counterexample to inequality (3) would yield
Cauchy data for solving the Einstein equations, the
solution to which would likely violate the Cosmic
Censor Conjecture (which says that singularities
generically do not form in a spacetime unless they
are inside a black hole).

In 1977 Jang and Wald [11], extending ideas of
Geroch, gave a heuristic proof of inequality (3) by
defining a flow of 2-surfaces in (M3, g) in which the
surfaces flow in the outward normal direction at
a rate equal to the inverse of their mean curvatures
at each point. The Hawking mass of a surface
(which is supposed to estimate the total amount
of energy inside the surface) is defined to be

mHawking(Σ) =

√
|Σ|

16π

(
1− 1

16π

∫
Σ
H2
)

(where |Σ| is the area of Σ and H is the mean cur-
vature of Σ in (M3, g)), and amazingly it is nonde-
creasing under this “inverse mean curvature flow”.
Indeed, under inverse mean curvature flow it fol-
lows from the Gauss equation and the second vari-
ation formula that

d
dt
mHawking(Σ) =

√
|Σ|

16π

×
[

1
2

+
1

16π

∫
Σ

2
|∇ΣH|2
H2 + R − 2K +

1
2

(λ1 − λ2)2
]

when the flow is smooth, where R is the scalar cur-
vature of (M3, g) , K is the Gauss curvature of the
surface Σ , and λ1 and λ2 are the eigenvalues of the
second fundamental form of Σ , or principal cur-
vatures. Hence, since R ≥ 0, and

(4)
∫
Σ
K ≤ 4π

(true for any connected surface by the Gauss-
Bonnet Theorem), it follows that

(5)
d
dt
mHawking(Σ) ≥ 0.

Furthermore,

mHawking(Σ0) =

√
|Σ0|
16π

,

since Σ0 is a minimal surface and has zero mean cur-
vature. In addition, the Hawking mass of sufficiently
round spheres at infinity in the asymptotically flat
end of (M3, g) approaches the total mass m. Hence,
if inverse mean curvature flow beginning with Σ0
eventually flows to sufficiently round spheres at in-
finity, inequality (3) follows from inequality (5).

As noted by Jang and Wald, this argument works
only when inverse mean curvature flow exists and
is smooth, which is generally not expected to be
the case. In fact, it is not hard to construct mani-
folds which do not admit a smooth inverse mean
curvature flow. The problem is that if the mean cur-
vature of the evolving surface becomes zero or is
negative, it is not clear how to define the flow.

For twenty years this heuristic argument lay dor-
mant, until the work of Huisken and Ilmanen [8] in
1997. With a very clever new approach, Huisken and
Ilmanen discovered how to reformulate inverse
mean curvature flow using an energy minimization
principle in such a way that the new generalized in-
verse mean curvature flow always exists. The added
twist is that the surface sometimes jumps outward.
However, when the flow is smooth, it equals the orig-
inal inverse mean curvature flow, and the Hawking
mass is still monotone. Hence, as will be described
in the next section, their new flow produced the first
complete proof of inequality (3) for a single
black hole.
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Coincidentally, the author found another proof
of inequality (3), submitted in 1999, which works
for any number of black holes. The approach in-
volves flowing the original metric to a Schwarz-
schild metric (outside the horizon) in such a way
that the area of the outermost minimal surface
does not change and the total mass is nonin-
creasing. Then, since the Schwarzschild metric
gives equality in inequality (3), the inequality fol-
lows for the original metric. Fortunately, the flow
of metrics which is defined is relatively simple and
in fact stays inside the conformal class of the orig-
inal metric. The outermost minimal surface flows
outwards in this conformal flow of metrics and en-
closes any compact set (and hence all of the topol-
ogy of the original metric) in a finite amount of
time. Furthermore, this conformal flow of met-
rics preserves nonnegative scalar curvature. We will
describe this approach later in the paper.

Other contributions on the Penrose Conjecture
have been made by Herzlich using the Dirac oper-
ator, which Witten used to prove the positive 
mass theorem; by Gibbons in the special case of 
collapsing shells; by Tod; by Bartnik for quasi-
spherical metrics; and by the author using isoperi-
metric surfaces. There is also some interesting
work of Ludvigsen and Vickers using spinors and
of Bergqvist, both concerning the Penrose inequality
for null slices of a spacetime.

Inverse Mean Curvature Flow
Geometrically, Huisken and Ilmanen’s idea can be
described as follows. Let Σ(t) be the surface result-
ing from inverse mean curvature flow for time t be-
ginning with the minimal surface Σ0. Define Σ̄(t) to
be the outermost minimal area enclosure of Σ(t). Typ-
ically, Σ(t) = Σ̄(t) in the flow, but in the case that the
two surfaces are not equal, immediately replace Σ(t)
with ̄Σ(t) and then continue flowing by inverse mean
curvature.

An immediate consequence of this modified
flow is that the mean curvature of Σ̄(t) is always
nonnegative by the first variation formula, since
otherwise ̄Σ(t) would be enclosed by a surface with
less area. This is because if we flow a surface Σ in
the outward direction with speed η , the first vari-
ation of the area is 

∫
ΣHη , where H is the mean cur-

vature of Σ .
Furthermore, by stability, it follows that in the

regions where Σ̄(t) has zero mean curvature, it is
always possible to flow the surface out slightly to
have positive mean curvature, allowing inverse
mean curvature flow to be defined, at least heuris-
tically, at this point. Furthermore, the Hawking
mass is still monotone under this new modified
flow. Notice that when Σ(t) jumps outwards to ̄Σ(t),∫

Σ̄(t)
H2 ≤

∫
Σ(t)
H2,

since Σ̄(t) has zero mean curvature where the two
surfaces do not touch. Furthermore,

|Σ̄(t)| = |Σ(t)|
because (this is a neat argument) |Σ̄(t)| ≤ |Σ(t)|
(since Σ̄(t) is a minimal area enclosure of Σ(t)) and
we cannot have |Σ̄(t)| < |Σ(t)| (since Σ(t) would
have jumped outwards at some earlier time). This
is only a heuristic argument, but we can then see
by the preceding two equations that the Hawking
mass is nondecreasing during a jump.

This new flow can be rigorously defined, always
exists, and the Hawking mass is monotone. In [8]
Huisken and Ilmanen define Σ(t) to be the level sets
of a scalar-valued function u(x) defined on (M3, g)
such that u(x) = 0 on the original surface Σ0 and

(6) div
( ∇u
|∇u|

)
= |∇u|

in an appropriate weak sense. Since the left-hand
side of this equation is the mean curvature of the
level sets of u(x) and the right-hand side is the rec-
iprocal of the flow rate, the equation characterizes
inverse mean curvature flow for the level sets of
u(x) when |∇u(x)| �= 0.

Huisken and Ilmanen use an energy minimization
principle to define weak solutions to equation (6).
Equation (6) is said to be weakly satisfied in Ω by
the locally Lipschitz function u if for every locally
Lipschitz function v with {v �= u} ⊂⊂ Ω ,

Ju(u) ≤ Ju(v)

where
Ju(v) :=

∫
Ω
|∇v| + v|∇u|.

The Euler-Lagrange equation of the above energy
functional yields equation (6).

In order to prove that a solution u exists to the
preceding two equations, Huisken and Ilmanen
regularize the degenerate elliptic equation (6) to the
elliptic equation

div


 ∇u√

|∇u|2 + ε2


 =

√
|∇u|2 + ε2.

Solutions to this equation are shown to exist using
the existence of a subsolution; then taking the limit
as ε goes to zero yields a weak solution to equa-
tion (6). We are skipping many details here, but
these are the main ideas. 

As it turns out, weak solutions u(x) to equation (6)
often have flat regions where u(x) equals a constant.
The level sets Σ(t) of u(x) are discontinuous in t in
this case, which corresponds to the “jumping out”
phenomenon referred to earlier.

We also note that since the Hawking mass of the
level sets of u(x) is monotone, this inverse mean
curvature flow technique not only proves the
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Riemannian Penrose Inequality but also gives a new
proof of the Positive Mass Theorem in dimension
three. This is seen by letting the initial surface be a
very small, round sphere (which will have approxi-
mately zero Hawking mass) and then flowing by in-
verse mean curvature, thereby proving m ≥ 0.

The Huisken and Ilmanen inverse mean curva-
ture flow also seems ideally suited for proving
Penrose inequalities for asymptotically hyperbolic
3-manifolds having R ≥ −6. This situation occurs
if (M3, g) is chosen to be a constant mean curva-
ture slice of the spacetime or if the spacetime is
defined to solve the Einstein equation with nonzero
cosmological constant. In these cases there exists
a modified Hawking mass that is monotone under
inverse mean curvature flow—it is the usual Hawk-
ing mass plus 4(|Σ|/16π )3/2. However, because the
monotonicity of the Hawking mass relies on the
Gauss-Bonnet theorem, these arguments do not
work in higher dimensions, at least so far. Also, 
because of the need for equation (4), inverse mean
curvature flow proves the Riemannian Penrose 
Inequality only for a single black hole. In the next
section we present a technique which proves the
Riemannian Penrose Inequality for any number of
black holes and which can likely be generalized to
higher dimensions.

The Conformal Flow of Metrics
Given any initial Riemannian manifold (M3, g0)
which has nonnegative scalar curvature and which
is harmonically flat at infinity, we will define a
continuous, one-parameter family of metrics
(M3, gt ) for 0 ≤ t <∞ . This family of metrics will
converge to a 3-dimensional Schwarzschild metric
and will have other special properties which will
allow us to prove the Riemannian Penrose Inequality
for the original metric (M3, g0).

In particular, let Σ0 be the outermost minimal
surface of (M3, g0), with area A0. We will also de-
fine a family of surfaces Σ(t), with Σ(0) = Σ0, such
that Σ(t) is minimal in (M3, gt ). This is natural,
since as the metric gt changes, we expect that the
location of the horizon Σ(t) will also change. The
interesting quantities to keep track of in this flow
are A(t), the total area of the horizon Σ(t) in
(M3, gt ); and m(t), the total mass of (M3, gt ) in the
chosen end.

In addition to all of the metrics gt having non-
negative scalar curvature, we will also have the
very nice properties that

A′(t) = 0,
m′(t) ≤ 0

for all t ≥ 0. Since (M3, gt ) converges (in an ap-
propriate sense) to a Schwarzschild metric, which
as described in the introduction gives equality in
the Riemannian Penrose Inequality, we will have

(7) m(0) ≥m(∞) =

√
A(∞)
16π

=

√
A(0)
16π

,

which proves the Riemannian Penrose Inequality
for the original metric (M3, g0). The hard part, 
then, is to find a flow of metrics which preserves
nonnegative scalar curvature and the area of the
horizon, decreases total mass, and converges to a
Schwarzschild metric as t goes to infinity.
The Definition of the Flow
In fact, the metrics gt will all be conformal to g0.
This conformal flow of metrics can be thought of
as the solution to a first-order ordinary differen-
tial equation in t defined by equations (8), (9), (10),
and (11). Let

(8) gt = ut (x)4g0

and u0(x) ≡ 1. Given the metric gt, define

(9)
Σ(t) = the outermost minimal

area enclosure of Σ0 in (M3, gt ),

where Σ0 is the original outer minimizing horizon
in (M3, g0). In the cases in which we are interested,
Σ(t) will not touch Σ0, from which it follows that
Σ(t) is actually a strictly outer minimizing horizon
of (M3, gt ). Given the horizon Σ(t), define vt (x)
such that

(10)



∆g0vt (x) ≡ 0 outside Σ(t)
vt (x) = 0 on Σ(t)
lim
x→∞vt (x) = −e−t

and vt (x) ≡ 0 inside Σ(t). Finally, given vt (x), define

(11) ut (x) = 1 +
∫ t

0
vs (x)ds,

so that ut (x) is continuous in t and has u0(x) ≡ 1.
Now equation (11) implies that the first-order

rate of change of ut (x) is given by vt (x). Hence, the
first-order rate of change of gt is a function of it-
self, of g0, and of vt (x), which is a function of g0,
t , and Σ(t), which is in turn a function of gt and Σ0.
Thus, the first-order rate of change of gt is a func-
tion of t , gt, g0, and Σ0.

Theorem 2. Taken together, equations (8), (9), (10),
and (11) define a first-order ordinary differential
equation in t for ut (x) having a solution which is Lip-
schitz in the t variable, class C1 in the x variable
everywhere, and smooth in the x variable outside
Σ(t). Furthermore, Σ(t) is a smooth, strictly outer
minimizing horizon in (M3, gt ) for all t ≥ 0, and
Σ(t2) encloses but does not touch Σ(t1) for all
t2 > t1 ≥ 0.

Since vt (x) is a superharmonic function in
(M3, g0) (harmonic everywhere except on Σ(t),
where it is weakly superharmonic), it follows that
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ut (x) is superharmonic as well. Thus, from equa-
tion (11) we see that limx→∞ ut (x) = e−t and con-
sequently that ut (x) > 0 for all t by the maximum
principle. Then, since

R(gt ) = ut (x)−5(−8∆g0 + R(g0))ut (x),

it follows that (M3, gt ) is an asymptotically flat
manifold with nonnegative scalar curvature.

Even so, it still may not seem that gt is naturally
defined, since the rate of change of gt appears to
depend on both t and the original metric g0 in
equation (10). We would prefer a flow where the rate
of change of gt can be defined purely as a function
of gt (and Σ0 perhaps), and interestingly enough this
actually does turn out to be the case! In [1] we
prove this very important fact and define a new
equivalence class of metrics called the harmonic
conformal class. Once we decide to find a flow of
metrics which stays inside the harmonic conformal
class of the original metric (outside the horizon)
and keeps the area of the horizon Σ(t) constant, we
are basically forced to choose the particular con-
formal flow of metrics defined above.

Theorem 3. The function A(t) is constant in t , and
m(t) is nonincreasing in t , for all t ≥ 0.

That A′(t) = 0 follows because to first order the
metric is not changing on Σ(t) (since vt (x) = 0 there)
and to first order the area of Σ(t) does not change
as it moves outward (since Σ(t) is a critical point
for area in (M3, gt )). Hence, the interesting part of
Theorem 3 is proving that m′(t) ≤ 0. Curiously,
this follows from a nice trick using the Riemann-
ian positive mass theorem, which we describe later. 

Another important aspect of this conformal
flow of the metric is that outside the horizon Σ(t),
the manifold (M3, gt ) becomes more and more
spherically symmetric and “approaches” a Schwarz-
schild manifold (R3 \ {0}, s) in the limit as t goes
to ∞. More precisely:

Theorem 4. For sufficiently large t , there exists a
diffeomorphism φt between (M3, gt ) outside the
horizon Σ(t) and a fixed Schwarzschild manifold
(R3 \ {0}, s) outside its horizon. Furthermore, for all
ε > 0, there exists a T such that for all t > T, the met-
rics gt and φ∗t (s) (when determining the lengths of
unit vectors of (M3, gt )) are within ε of each other
and the total masses of the two manifolds are within
ε of each other. Hence,

lim
t→∞

m(t)√
A(t)

=

√
1

16π
.

Theorem 4 is not really surprising, although a
careful proof is rather long. However, if one is will-
ing to believe that the flow of metrics converges to
a spherically symmetric metric outside the horizon,
then Theorem 4 follows from two observations. The

first is that the scalar curvature of (M3, gt ) even-
tually becomes identically zero outside the horizon
Σ(t) (assuming (M3, g0) is harmonically flat). This
follows from the facts that Σ(t) encloses any com-
pact set in a finite amount of time, that harmoni-
cally flat manifolds have zero scalar curvature out-
side a compact set, that ut (x) is harmonic outside
Σ(t), and equation (12). The second observation is
that the Schwarzschild metrics are the only com-
plete, spherically symmetric 3-manifolds with zero
scalar curvature (except for the flat metric on R3).

The Riemannian Penrose inequality (3) then 
follows for harmonically flat manifolds [1] from
equation (7) using Theorems 2, 3, and 4. Since 
asymptotically flat manifolds can be approximated
arbitrarily well by harmonically flat manifolds while
changing the relevant quantities arbitrarily little,
the asymptotically flat case also follows. Finally, the
case of equality of the Penrose inequality follows
from a more careful analysis of these same argu-
ments.
Qualitative Discussion
The two diagrams below are meant to help illus-
trate some of the properties of the conformal flow
of the metric. Figure 3 is the original metric, which
has a strictly outer minimizing horizon Σ0. As t
increases, Σ(t) moves outwards but never inwards.
In Figure 4 we can observe one of the consequences
of the fact that A(t) = A0 is constant in t . Since the

Figure 3.

Figure 4.
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metric is not changing inside Σ(t), all of the hori-
zons Σ(s), 0 ≤ s ≤ t, have area A0 in (M3, gt ). Hence,
inside Σ(t), the manifold (M3, gt ) becomes cylinder-
like in the sense that it is laminated (meaning
foliated but with some gaps allowed) by all of the
previous horizons, which all have the same area A0
with respect to the metric gt.

Now suppose that the original horizon Σ0 of
(M3, g) had two components, for example. Then
each of the components of the horizon will move
outwards as t increases, and at some point before
they touch they will suddenly jump outwards to
form a horizon with a single component enclosing
the previous horizon with two components. Even
horizons with only one component will sometimes
jump outwards, but no more than a countable
number of times. It is interesting that this phe-
nomenon of surfaces jumping is also found in the
Huisken-Ilmanen approach to the Penrose conjec-
ture using the generalized 1/H flow.

Proof thatm′(t) ≤ 0. The most surprising aspect
of the conformal flow of metrics is that m′(t) ≤ 0.
As mentioned above, this important fact follows
from a nice trick using the Riemannian positive
mass theorem.

The first step is to realize that while the rate
of change of gt appears to depend on both t and
g0, this is in fact an illusion. As described in de-
tail in [1], the rate of change of gt can be de-
scribed purely in terms of gt (and Σ0). It is also
true that the rate of change of gt depends only on
gt and Σ(t). Hence, there is no distinguished value
of t , so proving m′(t) ≤ 0 is equivalent to proving
m′(0) ≤ 0. Thus, without loss of generality, we
take t = 0 for convenience.

Now expand the harmonic function v0(x) , de-
fined in equation (10), using spherical harmonics
at infinity to get

(13) v0(x) = −1 +
c
|x| +O

(
1
|x|2

)

for some constant c. Since the rate of change of the
metric gt at t = 0 is given by v0(x) and since the total
mass m(t) depends on the 1/r rate at which the
metric gt becomes flat at infinity (see equation (2)),
it is not surprising that direct calculation gives us

m′(0) = 2(c −m(0)).

Hence, to show that m′(0) ≤ 0, we need to show that

(14) c ≤m(0).

In fact, counterexamples to equation (14) can be
found if we remove either of the requirements that
Σ(0) (which is used in the definition of v0(x) ) be a
minimal surface or that (M3, g0) have nonnegative
scalar curvature. Hence, we quickly see that equa-
tion (14) is a fairly deep conjecture which says
something quite interesting about manifolds with

nonnegative scalar curvature. Now the Riemannian
positive mass theorem is also a deep conjecture
which says something quite interesting about
manifolds with nonnegative scalar curvature.
Hence, it is natural to try to use the Riemannian
positive mass theorem to prove equation (14).

Thus, we want to create a manifold whose total
mass depends on c from equation (13). The idea is
to use a reflection trick similar to one used by
Bunting and Masood-ul-Alam for another purpose
in [5]. First, remove the region of M3 inside Σ(0)
and then reflect the remainder of (M3, g0) through
Σ(0) . Define the resulting Riemannian manifold to
be (M̄3, ḡ0), which has two asymptotically flat ends,
since (M3, g0) has exactly one asymptotically flat
end not contained by Σ(0) . Note that (M̄3, ḡ0) has
nonnegative scalar curvature everywhere except
on Σ(0) , where the metric has corners. Moreover,
the fact that Σ(0) has zero mean curvature (since
it is a minimal surface) implies that (M̄3, ḡ0) has dis-
tributional nonnegative scalar curvature every-
where, even on Σ(0) . This notion is made rigorous
in [1]. Thus we have used the fact that Σ(0) is min-
imal in a crucial way.

Recall from equation (10) that v0(x) was defined
to be the harmonic function equal to zero on Σ(0)
which goes to −1 at infinity. We want to reflect
v0(x) to be defined on all of (M̄3, ḡ0). The trick
here is to define v0(x) on (M̄3, ḡ0) to be the har-
monic function which goes to −1 at infinity in the
original end and goes to 1 at infinity in the reflected
end. By symmetry, v0(x) equals 0 on Σ(0) and so
agrees with its original definition on (M3, g0).

The next step is to compactify one end of
(M̄3, ḡ0). By the maximum principle, we know that
v0(x) > −1 and c > 0, so the new Riemannian man-
ifold (M̄3, (v0(x) + 1)4ḡ0) does the job quite nicely
and compactifies the original end to a point. In fact,
the compactified point at infinity and the metric
there can be filled in smoothly (using the fact that
(M3, g0) is harmonically flat). It then follows from
equation (12) that this new compactified manifold
has nonnegative scalar curvature since v0(x) + 1 is
harmonic.

The last step is simply to apply the Riemannian
positive mass theorem to (M̄3, (v0(x) + 1)4ḡ0) . It is
not surprising that the total mass m̃(0) of this
manifold involves c, but it is quite lucky that di-
rect calculation yields

m̃(0) = −4(c −m(0)),

which must be positive by the Riemannian positive
mass theorem. Thus, we have that

m′(0) = 2(c −m(0)) = −1
2
m̃(0) ≤ 0.
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Open Questions and Applications
Now that the Riemannian Penrose conjecture has
been proved, what are the next interesting direc-
tions? What applications can be found? Is this sub-
ject only of physical interest, or are there possibly
broader applications to other problems in mathe-
matics?

Clearly the most natural open problem is to find
a way to prove the general Penrose inequality, in
which M3 is allowed to have any second fundamen-
tal form in the spacetime. There is good reason to
think that this may follow from the Riemannian 
Penrose inequality, although this is a bit delicate. On
the other hand, the general positive mass theorem
followed from the Riemannian positive mass theo-
rem as was originally shown by Schoen and Yau 
using an idea due to Jang. For physicists this prob-
lem is definitely a top priority since most spacetimes
do not even admit zero second fundamental form
spacelike slices.

Another interesting problem is to ask these
same questions in higher dimensions. The author
is currently working on a paper to prove the Rie-
mannian Penrose inequality in dimensions less
than 8. Dimensions 8 and higher are harder because
of the surprising fact that minimal hypersurfaces
(and hence apparent horizons of black holes) can
have codimension 7 singularities (points where the
hypersurface is not smooth). This curious techni-
cality is also the reason that the positive mass con-
jecture is still open in dimensions 8 and higher for
manifolds which are not spin manifolds.

Naturally it is harder to tell what the applications
of these techniques might be to other problems, but
already there have been some. One application is
to the famous Yamabe problem: Given a compact
3-manifold M3, define E(g) =

∫
M3 Rg dVg , where Rg

is the scalar curvature at each point, dVg is the vol-
ume form, and g is scaled so that the total volume
of (M3, g) is equal to 1. An idea due to Yamabe was
to try to construct canonical metrics on M3 by
finding critical points of this energy functional on
the space of metrics. Define C(g) to be the infimum
of E(ḡ) over all metrics ḡ conformal to g. Then 
the (topological) Yamabe invariant of M3, denoted
here as Y (M3), is defined to be the supremum 
of C(g) over all metrics g . It is known that
Y (S3) = 6 · (2π2)2/3 ≡ Y1 is the largest possible
value for the Yamabe invariant of a 3-manifold. It
is also known that Y (T3) = 0 and Y (S2 × S1) = Y1
= Y (S2×̃S1) , where S2×̃S1 is the nonorientable
S2-bundle over S1.

The author, working with Andre Neves on a
problem suggested by Richard Schoen, recently
was able to compute the Yamabe invariant of RP3

using inverse mean curvature flow techniques [3]
and found that Y (RP3) = Y1/22/3 ≡ Y2 . A corollary
is that Y (RP2 × S1) = Y2 as well. These techniques
also yield the surprisingly strong result that the only

prime 3-manifolds with Yamabe invariant larger
than RP3 are S3, S2 × S1, and S2×̃S1. The Poincaré
conjecture for 3-manifolds with Yamabe invariant
greater than RP3 is therefore a corollary. Further-
more, the problem of classifying 3-manifolds is
known to reduce to the problem of classifying
prime 3-manifolds. The Yamabe approach then
would be to make a list of prime 3-manifolds or-
dered by the invariant Y. The first five prime 3-
manifolds on this list are therefore S3, S2 × S1,
S2×̃S1, RP3, and RP2 × S1.
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