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I
n addition to this being the centenary of Kurt
Gödel’s birth, January marked 75 years since
the publication (1931) of his stunning in-
completeness theorems. Though widely
known in one form or another by practicing

mathematicians, and generally thought to say some-
thing fundamental about the limits and potential-
ities of mathematical knowledge, the actual im-
portance of these results for mathematics is little
understood. Nor is this an isolated example among
famous results. For example, not long ago, Philip
Davis wrote me about what he calls The Paradox
of Irrelevance: “There are many math problems
that have achieved the cachet of tremendous sig-
nificance, e.g., Fermat, four-color, Kepler’s packing,
Gödel, etc. Of Fermat, I have read: ‘the most famous
math problem of all time’. Of Gödel, I have read:
‘the most mathematically significant achievement
of the 20th century’. … Yet, these problems have
engaged the attention of relatively few research
mathematicians—even in pure math.” What ac-
counts for this disconnect between fame and rel-
evance? Before going into the question for Gödel’s
theorems, it should be distinguished in one re-
spect from the other examples mentioned, which
in any case form quite a mixed bag. Namely, each
of the Fermat, four-color, and Kepler’s packing
problems posed a stand-out challenge following ex-
tended efforts to settle them; meeting the challenge
in each case required new ideas or approaches and
intense work, obviously of different degrees. By con-
trast, Gödel’s theorems were simply unexpected,
and their proofs, though requiring novel tech-
niques, were not difficult on the scale of things. Set-

ting that aside, my view of Gödel’s incompleteness
theorems is that their relevance to mathematical
logic (and its offspring in the theory of computa-
tion) is paramount; further, their philosophical rel-
evance is significant, but in just what way is far from
settled; and finally, their mathematical relevance
outside of logic is very much unsubstantiated but
is the object of ongoing, tantalizing efforts. My
main purpose here is to elaborate this last assess-
ment.

Informal and Formal Axiom Systems
One big reason for the expressed disconnect is
that Gödel’s theorems are about formal axiom sys-
tems of a kind that play no role in daily mathe-
matical work. Informal axiom systems for various
kinds of structures are of course ubiquitous in
practice, viz. axioms for groups, rings, fields, vec-
tor spaces, topological spaces, Hilbert spaces, etc.,
etc.; these axioms and their basic consequences are
so familiar it is rarely necessary to appeal to them
explicitly, but they serve to define one’s subject mat-
ter. They are to be contrasted with foundational
axiom systems for the “mother” structures—the
natural numbers (Peano) and the real numbers
(Dedekind)—on the one hand, and for the general
concepts of set and function (Zermelo-Fraenkel)
used throughout mathematics, on the other. Math-
ematicians may make explicit appeal to the prin-
ciple of induction for the natural numbers or the
least upper bound principle for the real numbers
or the axiom of choice for sets, but reference to
foundational axiom systems in practice hardly goes
beyond that.

One informal statement of the basic Peano ax-
ioms for the natural numbers is that they concern
a structure (N,0, s) where 0 is in N, the successor
function s is a unary one-one map from N into N

Solomon Feferman is professor of mathematics and phi-
losophy, emeritus, at Stanford University. His email address
is sf@csli.stanford.edu.



APRIL 2006 NOTICES OF THE AMS 435

which does not have 0 in its range, and the Induc-
tion Principle is satisfied in the following form:

(IP) for any property P (x), if P (0) holds
and if for all x in N, P (x) implies P (s(x))

then for all x in N,P (x) holds.

But this is too indefinite to become the subject
of precise logical studies, and for that purpose
one needs to say exactly which properties P are ad-
missible in (IP), and to do that one needs to spec-
ify a formal language L within which we can sin-
gle out a class of well-formed formulas (wffs) A
which express the admitted properties. And to do
that we have to prescribe a list of basic symbols
and we have to say which finite sequences of basic
symbols constitute well-formed terms and which
constitute wffs. Finally, we have to specify which
wffs are axioms (both logical and non-logical), and
which relations between wffs are instances of rules
of inference. The wffs without free variables are
those that constitute definite statements and are
called the closed formulas or sentences of L. All
of this is what goes into specifying a formal axiom
system S .

In the case of a formal version of the Peano ax-
ioms, once its basic symbols are specified, and the
logical symbols are taken to be ¬ (“not”), ∧ (“and”),
∨ (“or”), =⇒ (“implies”), ∀ (“for all”), and ∃ (“there
exists”), one puts in place of the Induction Princi-
ple an Induction Axiom Scheme:

(IA) A(0)∧∀x(A(x) =⇒ A(s(x))) =⇒ ∀xA(x) ,
where A is an arbitrary wff of the

language L and A(t) indicates the result of
substituting the term t for all free
occurrences of the variable x in A .

N.B. (IA) is not a single axiom but an infinite col-
lection of axioms, each instance of which is given
by some wff A of our language.

But what about the basic vocabulary of L? Be-
sides zero and successor, nothing of number-
theoretical interest can be derived without ex-
panding it to include at least addition and multi-
plication. As shown by Dedekind, the existence of
those operations as given by their recursive defin-
ing conditions can be established using (IP) ap-
plied to predicates P involving quantification over
functions. But for a formal axiom system PA (“Peano
Arithmetic”) for elementary number theory, in
which one quantifies only over numbers, one needs
to posit those operations at the outset. The basic
vocabulary of PA is thus taken to consist of the con-
stant symbol 0 and the operation symbols s,+,
and × together with the relation symbol =. Then
the axioms indicated above for zero and successor
are supplemented by axioms giving the recursive
characterizations of addition and multiplication,
namely: x + 0 = x, x + s(y) = s(x + y), x× 0 = 0 , and
x× s(y) = (x× y) + x .

Consistency, Completeness, and
Incompleteness
All such formal details are irrelevant to the work-
ing mathematician’s use of arguments by induction
on the natural numbers, but for the logician, the
way a formal system S is specified can make the
difference between night and day. This is the case,
in particular, concerning the questions whether S
is consistent, i.e., no contradiction is provable from
S , and whether S is complete, i.e., every sentence
A is decided by S in the sense that either S proves
A or S proves ¬A . If neither A nor ¬A is provable
in S then A is said to be undecidable by S , and S
is said to be incomplete.

As an example of how matters of consistency and
completeness can change dramatically depending
on the formalization taken, consider the subsys-
tem of PA obtained by restricting throughout to
terms and formulas that do not contain the mul-
tiplication symbol × . That system, sometimes called
Presburger Arithmetic, was shown to be complete
by Moses Presburger in 1928, and his proof of
completeness also gives a finite combinatorial
proof of its consistency.1 Gödel’s discovery in 1931
was that we have a radical change when we move
to the full axiom system PA. What Gödel showed
was that PA is not complete and that, unlike Pres-
burger Arithmetic, its consistency cannot be es-
tablished by finite combinatorial means, at least not
those that can be formalized in PA. Before going
into the mathematical significance of these results,
let us take a closer look at how Gödel formulated
and established them not only for PA, but also for
a very wide class of its extensions S .2 To do this
he showed that the language of PA is much more
expressively complete than appears on the sur-
face. A primitive recursive (p.r.) function on N (in
any number of arguments) is a function generated
from zero and successor both by explicit definition
and definition by recursion along N. A p.r. relation
(which may be unary, i.e., a set) is a relation whose
characteristic function is p.r. Gödel showed that
every p.r. function is definable in the language of
PA, and its defining equations can be proved there.
For example, the operations of exponentiation xy,
the factorial x! , and the sequence of prime

1Presburger’s work was carried out as an “exercise” in a
seminar at the University of Warsaw run by Alfred Tarski.
His proof applies the method of elimination of quantifiers
to show that every formula is equivalent to a proposi-
tional combination of congruences. At its core it makes use
of the Chinese Remainder Theorem giving conditions for
the existence of solutions of simultaneous congruences.
2Gödel’s initial statement of his results was for extensions
of a variant P of the system of Principia Mathematica, but
a year later he announced his results more generally for
a system like PA in place of P; no new methods of proof
were required. Nowadays it is known that much weaker
systems than PA suffice for his results.
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numbers px , each of which is p.r., can all be rep-
resented in this way in PA, facts that are not at all
obvious.3 Each instance of a p.r. relation is decid-
able by PA; for example if R is a binary p.r. rela-
tion then for each n,m ∈ N , either PA proves
R(n,m) or it proves ¬R(n,m).

Gödel’s Incompleteness Theorems
To apply these notions to the language and de-
ductive structure of PA, Gödel assigned natural
numbers to the basic symbols. Then any finite se-
quence σ of symbols gets coded by a number #σ ,
say, using prime power representation; #σ is nowa-
days called the Gödel number (g.n.) of σ. A relation
R between syntactic objects (terms, formulas, etc.)
is said to be p.r. if the corresponding relation be-
tween g.n.’s is p.r. For example, with a basic finite
vocabulary, the sets of terms and wffs are both p.r.
Finally a formal system S for such a language is said
to be p.r. if its set of axioms and its rules of infer-
ence are both p.r. The formal system PA and its sub-
systems defined above are all p.r.

Throughout the following, S is assumed to be
any p.r. formal system that extends PA. Denote by
ProofS (x, y) the relation which holds just in case y
is the g.n. of a proof in S of a wff with g.n. x . Then
ProofS (x, y) is p.r. Using its definition in PA, the for-
mula ∃y ProofS (x, y) expresses that x is the g.n. of
a provable formula; this is denoted ProvS (x). Finally,
for each wff A , ProvS (#A) expresses in the language
of PA that A is provable. By a diagonal argument,
Gödel constructed a closed wff DS which is prov-
ably equivalent in PA to ¬ProvS (#DS ); more loosely,
“DS says of itself that it is not provable in S .” And,
indeed,

(1) if S is consistent, DS is not provable in S .

Hence, in ordinary informal terms, DS is true,
so S cannot establish all arithmetical truths. This
is one way that Gödel’s first incompleteness theo-
rem is often stated, but actually (1) is only the first
part of the way that he stated it. For that we need
a few more slightly technical notions. A sentence
A of the language of PA is said to be in ∃-form if,
up to equivalence, it is of the form ∃yR(y) where
R defines a p.r. set, and A is said to be in ∀-form
if, up to equivalence, ¬A is in ∃-form, or what
comes to the same, if A can be expressed in the
form ∀yR1(y) with R1 p.r.4 Thus DS is in ∀-form
and its negation is in ∃-form. S is said to be
1-consistent if every ∃-sentence provable in S is true.

Automatically, every 1-consistent system is con-
sistent, but the converse is not true: by (1), if S is
consistent it remains consistent when we add ¬DS
to it as a new axiom, and the resulting system is
not 1-consistent. The following is Gödel’s first in-
completeness theorem:5

(2) if S is 1-consistent then DS is
undecidable by S ; hence S is not complete.

It turns out that only the first part, (1), is needed
for his second incompleteness theorem. Let C be
the sentence ¬(0 = 0), so S is consistent if and only
if C is not provable in S ; this is expressed by the
∀-sentence ¬ProvS (#C) , which is denoted ConS. By
formalizing the proof of (1) it may be shown that
the formal implication ConS =⇒ ProvS (#DS ) is
provable in PA. But since ¬ProvS (#DS ) =⇒ DS in
PA by the diagonal construction, we have
ConS =⇒ DS too. Hence:

(3) if S is consistent then S does not prove ConS.

That is Gödel’s second incompleteness theo-
rem. Its impact on Hilbert’s consistency program
has been much discussed by logicians and histo-
rians and philosophers of mathematics and will not
be gone into here, except to say that it is generally
agreed that the program as originally conceived can-
not be carried out for PA or any of its extensions.
However, various modified forms of the program
have been and continue to be vigorously pursued
within the area of logic called proof theory, inau-
gurated by Hilbert as the tool to carry out his pro-
gram. I recommend Zach (2003) (readily accessible
online) for an excellent overview and introduction
to the literature on Hilbert’s program.

Gödel’s Theorems and Unsettled
Mathematical Problems
With this background in place we can now return
to the question of the impact of the incompleteness
theorems on mathematics; in that respect it is
mainly the first incompleteness theorem that is of
concern, and indeed only the first part of it, namely
(1). A common complaint about this result is that
it just uses the diagonal method to “cook up” an
example of an undecidable statement. What one
would really like to show undecidable by PA or
some other formal system is a natural number-
theoretical or combinatorial statement of prior in-
terest. The situation is analogous to Cantor’s use
of the diagonal method to infer the existence of tran-
scendental numbers from the denumerability of
the set of algebraic numbers; however, that did
not provide any natural example. The existence of
transcendentals had previously been established 
by an explicit but artificial example by Liouville.

3The way that is done might interest number theorists; see
Franzén (2004), Ch. 4, for an exposition.
4Standard logical terminology for ∃ -form and ∀ -form is
Σ0

1 -form and Π0
1 -form, respectively. It should be noted

that the formulas in ∃ -form are closed under existential
quantification and those in ∀ -form under universal quan-
tification. That is, like quantifiers can be collapsed to a sin-
gle one of that type.

5Gödel used a stronger, purely syntactic, assumption in
place of 1-consistency, that he called ω-consistency.
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Neither argument helped to show that e and π ,
among other reals, are transcendental, but they
did at least show that questions of transcendence
are non-vacuous. Similarly, Gödel’s first incom-
pleteness theorem shows that the question of 
undecidability of sentences by PA or any one of its
consistent extensions is non-vacuous. That sug-
gests looking for natural arithmetical statements
which have resisted attack so far to try to see
whether that is because they are not decided by sys-
tems that formalize a significant part of mathe-
matical practice, and in particular to look for such
statements in ∀-form. An obvious candidate for a
long time was the Fermat conjecture; now that we
know it is true, it would be interesting to see just
what principles are needed to establish it from a log-
ical point of view. Some logicians have speculated
that it has an elementary proof that can be for-
malized in PA, but we don’t have any evidence so
far to settle this one way or the other. Another ob-
vious candidate is the Goldbach conjecture; in-
deed, Gödel often referred to his independent state-
ments as being “of Goldbach type”, by which he
simply meant that they are both expressible in ∀-
form. A far less obvious candidate is the Riemann
Hypothesis; Georg Kreisel showed that this is equiv-
alent to a ∀-statement (see Davis, Matijasevič, and
Robinson (1976), p. 335, for an explicit presenta-
tion of such a sentence). No example like these has
been shown to be independent of PA or any of its
presumably consistent extensions.

Unsolvable Diophantine Problems
Consider any system S containing PA that is known
or assumed to be consistent and suppose that A
is a ∀-sentence conjectured to be undecidable by
S . It turns out that proving its undecidability would
automatically show A to be true, since ¬A is equiv-
alent to a ∃-sentence ∃yR(y); thus if ¬A were true
there would be an n such that R(n) is true, hence
provable in PA and thence in S . So, finally, ¬A
would be provable in S , contradicting the sup-
posed undecidability of A by S . The odd thing
about this is that if we want to show a ∀-sentence
undecidable by a given S , we better expect it to be
true. And if we can show it to be true by one means
or another, who cares (other than the logician who
is interested in exactly what depends on what)
whether it can or can’t be proved in S? Still, the first
incompleteness theorem is tantalizing for its
prospects in this direction. The closest that one has
come is due to the work of Martin Davis, Hilary 
Putnam, Julia Robinson, and Yuri Matiyasevich re-
sulting, finally, in the latter’s negative resolution
of Hilbert’s 10th Problem on the algorithmic solv-
ability of diophantine equations (cf. Matiyasevich
1993). It follows from their work that every ∃-
sentence is equivalent in PA to the existence of 
natural numbers x1, . . . , xn such that

p(x1, . . . , xn) = 0, where p is a suitable polynomial
with integer coefficients. So each ∀-sentence A is
equivalent to the non-solvability of a suitable dio-
phantine equation, in particular, sentences known
to be undecidable in particular systems such as the
Gödel sentences DS. The trouble with this result
compared to open questions in the literature about
the solvability of specific diophantine equations in
two or three variables or of low degree is that the
best value known for the above representation in
terms of number of variables is n = 9, and in terms
of degree d with a much larger number of variables
is d = 4 (cf. Jones 1982).

Combinatorial Independence Results
Things look more promising if we consider ∀∃-
sentences, i.e., those that can be brought to the form
∀x∃yR(x, y) with R p.r.6 The statement that there
are infinitely many y ’s satisfying a p.r. condition
P (y) is an example of a ∀∃-sentence, since it is ex-
pressed by ∀x∃y(y > x∧ P (y)) . In particular, the
twin prime conjecture has this form. Again, no
problems of prior mathematical interest that are
in ∀∃-form have been shown to be undecidable in
PA or one of its extensions. However, in 1977, Jeff
Paris and Leo Harrington published a proof of the
independence from PA of a modified form of the
Finite Ramsey Theorem. The latter says that for
each n, r and k there is an m such that for every
r -colored partition π of the n-element subsets of
M = {l,m} there is a subset H of M of cardinality
at least k such that H is homogeneous for π , i.e.,
all n-element subsets of H are assigned the same
color by π . The Paris-Harrington modification 
consists in adding the condition that card(H) ≥
min(H). It may be seen that this statement, call it
PH , is in ∀∃-form. Their result is that PH is not
provable in PA. But they also showed that PH is
true, since it is a consequence of the Infinite Ram-
sey Theorem. The way that PH was shown to be in-
dependent of PA was to prove that it implies ConPA;
in fact, it implies the formal statement of the
1-consistency of PA. That work gave rise to a num-
ber of similar independence results for stronger sys-
tems S , in each case yielding a ∀∃-sentence AS
which is a variant of a combinatorial result already
in the literature such that AS is true but unprovable
from S on the assumption that S is 1-consistent. The
proof consists in showing that AS implies (and is
in some cases equivalent to) the formal statement
of its 1-consistency. However, no example is known
of an unprovable ∀∃-sentence whose truth has
been a matter of prior conjecture.

6Standard logical terminology for these is Π0
2 sentences.
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Set Theory and Incompleteness
Gödel signaled a move into more speculative ter-
ritory in footnote 48a (evidently an afterthought)
of his 1931 paper:

As will be shown in Part II of this paper,
the true reason for the incompleteness
inherent in all formal systems of math-
ematics is that the formation of ever
higher types can be continued into the
transfinite… For it can be shown that the
undecidable propositions constructed
here become decidable whenever ap-
propriate higher types are added… An
analogous situation prevails for the ax-
iom system of set theory.7

The reason for this, roughly speaking, is that for
each system S the notion of truth for the language
of S can be developed in an axiomatic system S′
for the subsets of the domain of interpretation of
S ; then in S′ one can prove by induction that the
statements provable in S are all true, and hence that
S is consistent. Implicit in the quote is that S′
ought to be accepted if S is accepted. Later, in his
famous article on Cantor’s Continuum Problem
(1947), Gödel pointed to the need for new set-
theoretic axioms to settle specifically set-theoretic
problems, such as the Continuum Hypothesis (CH).

At that point, it was only known as a result of
his earlier work that AC (the Axiom of Choice) and
CH are consistent relative to Zermelo-Fraenkel ax-
iomatic set theory ZF.8 In Gödel’s 1947 article he
argued that CH is a definite mathematical problem,
and, in fact, he conjectured that it is false while all
the axioms of ZFC (= ZF + AC) are true. Hence CH
must be independent of ZFC; he thus concluded
that one will need new axioms to determine the car-
dinal number of the continuum. In particular, he
suggested for that purpose the possible use of ax-
ioms of infinity not provable in ZFC:

The simplest of these … assert the ex-
istence of inaccessible numbers… The

latter axiom, roughly speaking, means
nothing else but that the totality of sets
obtainable by exclusive use of the
processes of formation of sets ex-
pressed in the other axioms forms again
a set (and, therefore, a new basis for a
further application of these processes).
Other axioms of infinity have been for-
mulated by P. Mahlo. … These axioms
show clearly, not only that the axiomatic
system of set theory as known today is
incomplete, but also that it can be sup-
plemented without arbitrariness by new
axioms which are only the natural con-
tinuation of those set up so far. (Gödel
1947, as reprinted in 1990, p. 182).

Whether or not one agreed with Gödel about the
ontological underpinnings of set theory and in par-
ticular about the truth or falsity of CH, in the fol-
lowing years it was widely believed to be indepen-
dent of ZFC; that was finally demonstrated in 1963
by Paul Cohen using a new method of building
models of set theory. And, contrary to Gödel’s ex-
pectations, it has subsequently been shown by an
expansion of Cohen’s method that CH is undecid-
able in every plausible extension of ZFC that has
been considered so far, at least along the lines of
Gödel’s proposal (cf. Martin 1976 and Kanamori
2003). For the most recent work on CH, see the con-
clusion of Floyd and Kanamori (this issue).

But what about arithmetical problems? For a
number of years, Harvey Friedman has been work-
ing to produce mathematically perspicuous finite
combinatorial ∀∃-statements A whose proof re-
quires the use of many Mahlo cardinals and even
stronger axioms of infinity (such as the so-called
subtle cardinals) and has come up with a variety of
candidates; for a fairly recent report, including work
in progress, see Friedman (2000).9 The strategy for
establishing that such a statement A needs a sys-
tem S incorporating the strong axioms in question
is like that above: one shows that A is equivalent
to (or in certain cases is slightly stronger than) the
1-consistency of S . In my discussion of this in Fe-
ferman (2000), p. 407, I wrote: “In my view, it is beg-
ging the question to claim this shows we need ax-
ioms of large cardinals in order to demonstrate the
truth of such A , since this only shows that we
‘need’ their 1-consistency. However plausible we
might find the latter for one reason or another, it
doesn’t follow that we should accept those axioms

7Part II of Gödel (1931) never appeared. Also promised
for it was a full proof of the second incompleteness theo-
rem, the idea for which was only indicated in Part I. He
later explained that since the second incompleteness the-
orem had been readily accepted there was no need to
publish a complete proof. Actually, the impact of Gödel’s
work was not so rapid as this suggests; the only one who
immediately grasped the first incompleteness theorem
was John von Neumann, who then went on to see for him-
self that the second incompleteness theorem must hold.
Others were much slower to absorb the significance of
Gödel’s results (cf. Dawson 1997, pp. 72–75.) The first de-
tailed proof of the second incompleteness theorem for a
system Z equivalent to PA appeared in Hilbert and Bernays
(1939).
8See Floyd and Kanamori in this issue of the Notices.

9More recently, Friedman has announced the need for such
large cardinal axioms in order to prove a certain combi-
natorial statement A that can be expressed in ∀ -form; see
the final section of Davis (this issue). Here, A implies ConS
and is itself provable in S′ for S and S′ embodying suit-
able large cardinal axioms.
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themselves as first-class mathematical principles.”
(Cf. also op. cit. p. 412).

Prospects and Practice
As things stand today, these explorations of the set-
theoretical stratosphere are clearly irrelevant to
the concerns of most working mathematicians. A
reason for this was also given by Gödel near the 
outset of his 1951 Gibbs lecture (posthumously
published in 1995), where he said that the “phe-
nomenon of the inexhaustibility of mathematics”
follows from the fact that “the very formulation of
the axioms [of set theory over the natural numbers]
up to a certain stage gives rise to the next axiom.
It is true that in the mathematics of today the
higher levels of this hierarchy are practically never
used. It is safe to say that 99.9% of present-day
mathematics is contained in the first three levels
of this hierarchy.” In fact, modern logical studies
have shown that the system corresponding to the
second level of this hierarchy, called second-order
arithmetic or analysis and dealing with the theory
of sets of natural numbers, already accounts for the
bulk of present-day mathematics. Indeed, much
weaker systems suffice, as is demonstrated in
Simpson (1999). Even more, I have conjectured and
verified to a considerable extent that all of current
scientifically applicable mathematics can be for-
malized in a system that is proof-theoretically no
stronger than PA (cf. Feferman 1998, Ch. 14).

Whether or not the kind of inexhaustibility of
mathematics discovered by Gödel is relevant to
present-day pure and applied mathematics, there
is a different kind of inexhaustibility which is
clearly significant for practice: no matter which
axiomatic system S is taken to underlie one’s work
at any given stage in the development of our sub-
ject, there is a potential infinity of propositions that
can be demonstrated in S , and at any moment,
only a finite number of them have been estab-
lished. Experience shows that significant progress
at each such point depends to an enormous extent
on creative ingenuity in the exploitation of ac-
cepted principles rather than essentially new prin-
ciples. But Gödel’s theorems will always call us to
try to find out what lies beyond them.

Note to the reader: Gödel’s incompleteness pa-
per (1931) is a classic of its kind; elegantly organized
and clearly presented, it progresses steadily and ef-
ficiently from start to finish, with no wasted energy.
The reader can find it in the German original along
with a convenient facing English translation in
Vol. I of his Collected Works (1986). I recommend
it highly to all who are interested in this landmark
in the history of our subject.
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