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T
he fundamental theorem of algebra
(FTA) tells us that every complex
polynomial of degree n has precisely
n complex roots. The first published
proofs (including those of J. d’Alembert

in 1746 and C. F. Gauss in 1799) of this conjecture
from the seventeenth century had flaws, though
Gauss’s proof was generally accepted as correct
at the time. Gauss later published three correct
proofs of the FTA (two in 1816 and the last
presented in 1849). It has subsequently been
proved in a multitude of ways, using techniques
from analysis, topology, and algebra; see [Bur 07],
[FR 97], [Re 91], [KP 02], and the references
therein for discussions of the history of FTA
and various proofs. In the 1990s T. Sheil-Small
and A. Wilmshurst proposed to extend FTA to
a larger class of polynomials, namely, harmonic
polynomials. (A complex polynomial h(x, y) is
called harmonic if it satisfies the Laplace equation
△h = 0, where △ := ∂2/dx2 + ∂2/dy2.)

A simple complex-linear change of variables
z = x+ iy, z = x− iy allows us to write any com-
plex valued harmonic polynomial of two variables
in the complex form

h(z) := p(z)− q(z)
where p, q are analytic polynomials. While includ-
ing terms in z looks harmless, the combination of
these terms with terms inz can have drastic effects.
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Indeed, the harmonic polynomial h(z) = zn − z n
has an infinite number of zeros (the zero set

consists of n equally spaced lines through the

origin). In 1992 Sheil-Small conjectured that if

n := deg p > m := deg q, then h has at most n2

zeros. In 1994 Wilmshurst found a more general

sufficient condition for h to have a finite num-

ber of zeros and settled this conjecture using

Bézout’s theorem from algebraic geometry. While

Wilmshurst’s bound on the number of zeros is

sharp, he also conjectured a smaller bound when

the degrees of p and q differ by more than one.

In 2001 the first author and G. Świa̧tek [KS 03]

proved that the bound in Wilmshurst’s conjecture

held for the case of f (z) = p(z)− z. Because this

proof involves complex dynamics, it is natural to

wonder whether this approach can be extended to

find a bound on the number of zeros of the ration-

al harmonic function f (z) = p(z)/q(z) − z. The

authors explored this question in 2003 [KN 06].

After posting a preprint, we learned that this

bound settles a conjecture of S. H. Rhie concern-

ing gravitational lensing. More precisely, it gives

the maximal possible number of images of a light

source (such as a star or a galaxy) that may occur

due to the deflection of light rays by some massive

obstacles. Even more surprising, Rhie had already

shown that this bound is attained.

In this expository article we give a brief intro-

duction to gravitational lensing. We also describe

necessary background concerning harmonic poly-

nomials and Wilmshurst’s conjecture, as well as

related results. We then discuss the ideas behind

the proofs and also look at the question of sharp-

ness. We close with a discussion of several possible

directions for further study.
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Figure 1. Basics of gravitational lensing
(adapted from [Wa 98]).

Astrophysics: Gravitational Microlensing

Imagine that you are stargazing some clear, dark

night and looking for a star S (see Figure 1). Light

rays emanate from S in all directions and you

would expect to “see” S along the shortest path

between you and S. However, there is a massive

object L between you and S. Light rays traveling

past L are bent. Instead of seeing S, you “see”

images of S at S1 and S2. This is the basic idea

of gravitational lensing. Figure 2 is an example

of gravitational lensing observed using NASA’s

Hubble Space Telescope.

Let’s return to Figure 1. One can think of the

images at S1 and S2 in terms of the angle between

the original light ray from S and the “observed” ray

to the observed image and calculate this angle in

terms of a potential. J. Soldner is credited with the

first published (1804) calculation of the deflection

angle. Soldner’s calculations were based on New-

tonian mechanics. A. Einstein arrived at a similar

answer in 1911, but revisited his assumptions in

1915 using general relativity. This calculation pre-

dicted a deflection angle that was twice as large as

that predicted by Newtonian mechanics. Measure-

ments of the deflection angle of starlight during a

solar eclipse in 1919 provided early experimental

support for general relativity. Theoretical work

on gravitational lensing continued until the late

1930s. The discovery of quasars in the 1960s

reawakened interest in gravitational lensing and

it entered the mainstream in astrophysics after

the discovery of a gravitational lensing system in

1979. Nowadays, it is used to find distant objects

in the universe and determine the masses of these

objects. General references on gravitational lens-
ing, and its history include [SEF 92] (written for
physicists), [PLW 01] (written for both mathemati-
cians and physicists), [Wa 98] (an online survey
article), and the many references therein.

What does this have to do with counting zeros
of rational harmonic functions? It’s time for us to
discuss how the positions of the point masses in
our lens, our source, and the images are related.

Lens equation

Imagine n point masses (for example, condensed
galaxies or black holes) and imagine a light source
S (for example, a star or a quasar) farther away
from the observer than these point masses. Due
to deflection of light from S by these point mass-
es, multiple images S1, S2, ... of S can be formed.
This phenomenon is known as gravitational mi-
crolensing. The point masses are said to form a
gravitational lens L. We will look at the case where
the point masses are sufficiently close together
that they can be treated as co-planar (i.e., the
distance between the point masses in L is small
compared to the distance between the observer
and the point masses and also small as compared
to the distance between the source and the mass-
es). We construct a plane through the center of
mass of these point masses that is orthogonal to
the line of sight between the observer and the
center of mass of the point masses. This plane is
called the lens plane or deflector plane. We then
construct a plane through S that is parallel to the
lens plane (source plane). Note that the lens plane
lies between the observer and the light source.
Figure 1 illustrates this for n = 1.

Since we’re working with planes, we can rep-
resent the position of each item using complex
numbers. We will choose the origin of each plane to
lie on the line between the observer and the center
of mass of our point masses. Project each point
mass of our lens to the lens plane; for example,
the jth point mass of our lens L is projected to
position zj in the lens plane. The lens equation for
L is a mapping from the lens plane to the source
plane and is given by

w = z −
n∑
j=1

σj/(z − zj) ,

where σj is a nonzero real constant related to the
mass of the jth point mass in our lens. For further
details about this form of the lens equation, see
[Wit 90] and [St 97].

If z satisfies the lens equation for a given value
of w , our gravitational lens will map z to the posi-
tion w in the source plane. When we let w be the
position of S, each solution of the lens equation
corresponds to a lensed image of S. Note that the
right hand side of the equation is often called the
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Figure 2. The bluish bright spots towards the center are the lensed images of a quasar (a
QUASi-stellAR radio source), which has been lensed by the bright galaxy in the center. There are
actually five images (four are bright and one dim), but one cannot really see the dim image here.

(Photo credit: ESA, NASA, K. Sharon (Tel Aviv University) and E. Ofek (Caltech).)

lensing map. To model the effect caused by an
extra (“tidal”) gravitational pull by a distant object

(a galaxy “far, far away”), a shear term (linear

term in z) is added to the lensing map. Sticking

to the very basics, we shall omit this term in our

discussion.

Consequences of the lens equation

What can we say about the number of lensed im-

ages using the lens equation given above? We first

note that the number of lensed images depends

on the relative positions of the observer, lens,

and source. Notice that the observer, lens L, and
source S do not lie on a straight line in Figure 1.

If the source is directly behind the lens (from the

observer’s viewpoint), something very remarkable

occurs when n = 1. Putting w = 0 = z1 in the lens

equation, we see that the lens equation becomes
that of a circle centered about the lens. In other

words, instead of seeing S, the observer would see

a circle with center L. This effect was predicted

by O. Chwolson in 1924 and is usually called an

Einstein ring. Figure 3 shows some Einstein rings
observed using the Hubble Space Telescope.

What happens if n > 1? H. Witt [Wit 90] showed

by a direct calculation (not involving Bézout’s

theorem) that the maximum number of observed

images is at most n2 + 1. S. Mao, A. Petters,
H. Witt [MPW 97] showed that the maximum pos-
sible number of images produced by an n-lens is
at least 3n+ 1. S. H. Rhie [Rh 01] conjectured that
the upper bound for the number of lensed images
for an n-lens is 5n − 5. Moreover, she showed in
[Rh 03] that the conjectured bound is attained for
every n > 1. If we let

r(z) =
n∑
j=1

σj/(z − zj)+w,

finding the number of “lensed” images of the
source is identical to finding the number of zeros
of a rational harmonic function.

Counting Zeros
Let us return to the question of extending the
FTA. We begin with Wilmshurst’s approach to
the Sheil-Small conjecture concerning the number
of zeros of harmonic polynomials ([SS 02] and
[Wil 98]). By writing z = x + iy , finding the zeros

of a complex valued harmonic polynomial h is
equivalent to finding the zeros of a system of two
real polynomials

{
A(x, y) := Reh(z)
B(x, y) := Imh(z).
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Figure 3. Einstein rings produced by a galaxy behind the lensing galaxy. The sources are actually
extended and that is why one sometimes sees arcs rather than complete rings. (Photo credit:
NASA, ESA, and the SLACS Survey team: A. Bolton (Harvard/Smithsonian), S. Burles (MIT), L.
Koopmans (Kapteyn), T. Treu (UCSB), and L. Moustakas (JPL/Caltech).)

Recall that Bézout’s theorem essentially says that

if A and B are relatively prime with deg A =m and

deg B = n, then the number of common solutions

forA = 0 andB = 0 does not exceedmn. Moreover,
if deg h = n and if h(z) = p(z)− q(z) has a finite

number of zeros, then it has at most n2 zeros.

Further, if deg p ≠ deg q, then limz→∞ |h(z)| = ∞.

Wilmshurst showed that if a complex harmonic

function f (z) has a sequence of distinct zeros

converging to a point in the domain of f , then it

is constant on an analytic arc (notice that f is not

required to be a harmonic polynomial). Suppose

also that f is entire and has an infinite number of

zeros in a bounded set. Wilmshurst then showed

that f must be constant on a closed loop and

is therefore constant by the maximum principle.

He combined these ideas to prove Sheil-Small’s

conjecture and also constructed an example to

show that the n2 bound is sharp.

Theorem 1 ([Wil 98]). If h(z) = p(z) − q(z) is

a harmonic polynomial of degree n such that

limz→∞ |h(z)| = ∞, then h has at most n2 zeros.

Moreover, there exist complex polynomials p and

q where deg q = n − 1 such that the upper bound

n2 is attained.

When the degrees of p and q are different,

limz→∞ |h(z)| = ∞; thus, h can have only finitely

many zeros and Sheil-Small’s conjecture follows.

Note that this conjecture was also proven inde-

pendently by R. Peretz and J. Schmid [PS 98],

while the sharpness result was also obtained

independently by D. Bshouty, W. Hengartner, and
T. Suez [BHS 95].

We now discuss Wilmshurst’s elegant example
[Wil 98] that implies sharpness:

Example. Consider

h(z) := Im(e− iπ4 zn)+ iIm(e iπ4 (z − 1)n).

An elementary calculation shows that the zero set
of Reh(z) forms a set of n equally spaced lines
through the origin. Moreover, applying a rotation
and a translation to each of these lines gives the
zero set of Imh(z). Figure 4 shows the zero sets
of Reh(z) and Imh(z) for the case n = 2.

A moment’s thought shows that each line from
the zero set of Reh(z) intersects each line in the
zero set of Imh(z) at exactly one point. Thus, the
cardinality of the zero set of h(z) is given by the
total number of intersections of these lines and is
precisely n× n = n2. Let

k(z) := −2eiπ/4h(z) = zn+(z−1)n+izn−i(z−1)n.

k(z) has the same number of zeros ash(z). Writing

k(z) = p(z) − q(z), we see that deg q = n − 1 =
deg p − 1 as in Theorem 1. �

In contrast to this example where deg q = n − 1,
Wilmshurst noted that the upper bound of n2 dis-
tinct zeros is probably too large whendeg q < n−1
and proposed the following

Conjecture 1 ([Wil 98]). If n := deg p > m :=
deg q, then

♯{z : p(z)− q(z) = 0} ≤m(m− 1)+ 3n− 2.
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Figure 4. Wilmshurst’s example for n = 2 (the
zero set of Reh(z) = 0 is in black and the zero

set of Imh(z) is in red).

It can be found in Remark 2 of [Wil 98] and is
discussed in more detail in [SS 02, pages 50-55].
For m = n − 1, the example above shows that
Conjecture 1 holds and is sharp. The simplest of
the remaining cases of Conjecture 1 is the case
m = 1. Let us explicitly state this case as

Conjecture 2 ([Wil 98]).

♯{z : p(z)− z = 0, n > 1} ≤ 3n− 2.

In the late 1990s D. Sarason and B. Crofoot [Sa 99]
verified Conjecture 2 for n = 2,3 and for several
examples when n = 4. In 2001, using elementary
complex dynamics and the argument principle

for harmonic mappings, G. Świa̧tek and the first
author [KS 03] proved Conjecture 2 for all n > 1.

Theorem 2 ([KS 03]).

♯{z : p(z)− z = 0, n > 1} ≤ 3n− 2.

In a 2004 paper D. Bshouty and A. Lyzzaik [BL 04]
showed that the 3n − 2 bound in Conjecture 2
is sharp for n = 4,5,6,8. More recently, L. Geyer
[Ge 08] used complex dynamics to show that the
3n− 2 bound is sharp for all n.

What happens if we extend the class of functions
under consideration to include rational harmonic
functions and extend the methods in [KS 03] to
this case? Let

r(z) := p(z)

q(z)

be a rational function, where p(z) and q(z) are

relatively prime polynomials in z. The degree of r

is given by

deg r :=max{deg p, deg q}.
The authors studied this case.

Theorem 3 ([KN 06]). Let r(z) = p(z)/q(z), where

p and q are relatively prime polynomials in z, and

let n := deg r . If n > 1, then

♯{z : r(z)− z = 0} ≤ 5n− 5.

In contrast to the polynomial case, the question of

sharpness for rational functions had been resolved

previously by an example of S. H. Rhie [Rh 03],

an astrophysicist, in her work on gravitational

lensing.

Back to gravitational lensing

If we let r(z) =
n∑
j=1

σj/(z − zj) + w , finding the

number of “lensed” images of the source is iden-

tical to the situation described in Theorem 3. In

other words, Theorem 3 settles Rhie’s conjecture

and Rhie’s results settle the question of sharpness

of the bound in Theorem 3.

Surprisingly, when the lensing is done by a

smoothly-distributed mass, rather than point

masses, the following result (well known to

astronomers) of W. Burke [Bu 81] yields

Theorem 4 ([Bu 81]). If the number of lensed im-

ages produced by a smooth mass distribution is fi-

nite, it is always odd.

Rhie [Rh 01] extended this result to the case of

point masses and argued that the number of im-

ages will be even when n is odd and odd when

n is even. This also follows from the proof of

Theorem 3 ([KN 06], Corollary 2). Let’s summarize

our discussion of counting zeros with

Corollary 1 ([Rh 01], [Rh 03], [KN 06]). Let n > 1.

The number of lensed images by an n-mass planar

lens with zero shear cannot exceed 5n−5, and this

bound is sharp. Moreover, the number of images is

even when n is odd and odd when n is even.

Main Ideas Behind the Proofs
We shall sketch the proof of Theorem 2 for har-

monic polynomials [KS 03]. The proof of Theorem

3 for rational harmonic functions is similar, with

the added complication that finite poles must also

be considered.

Returning to Theorem 2 and the polynomial

case, we let

h(z) := z − p(z), where n := deg p > 1.

Treating h as a mapping of Ĉ, it is natural to con-

sider the domains in Ĉ in which h is respectively
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Figure 5. An example of Rhie’s construction of an (n+ 1)-point gravitational lens, producing
5(n+ 1)− 5 images. Start with an n-point lens having 3n+ 1 images; each point has mass 1/n.
The system is perturbed by removing a mass of ǫ/n from each of the n point masses and then
adding a small point mass of mass ǫ at the origin. In the graphs above, n = 4 and ǫ = 1/100. The
light source is located at the origin and is not shown in the graphs. Solutions to the lens equation
(images of the source) are shown in red. The graph on the left shows the unperturbed system,
with the four point masses in black. The graph on the right shows the perturbed system, with the
small additional point mass at the origin shown in blue.

sense-preserving and sense-reversing. These do-
mains are separated by the critical set of h defined

by

L := {z : Jacobian(h(z)) = 1− |p′(z)|2 = 0}.
We note that L is a lemniscate with at most n− 1

connected components. A moment’s thought indi-
cates that h is sense-preserving (Jacobian(h) > 0)

inside each component of L and sense-reversing
(Jacobian(h) < 0) outside of L.

Let n+ denote the number of sense-preserving
zeros of h and n− the number of sense-reversing

zeros. Outside of L, h is sense-reversing. Since
|h| → ∞ at ∞, all of the sense-reversing zeros

are finite. Moreover, we may choose R sufficiently
large such that C(0, R), the circle of radius R

centered at the origin, contains all of the zeros of
h and does not intersect the critical set. We now

consider the region Ω bounded by C(0, R) (in the
positive sense) and L (in the negative sense).

Provided that the boundary of a finitely connect-
ed region is sufficiently nice (piecewise smooth,

with no zeros on the boundary) and no zeros lie
in the critical set, the argument principle can be

used to count the isolated zeros of harmonic map-
pings in almost exactly the same way it applies

to analytic mappings; the only difference is that
sense-reversing zeros are counted with a minus

sign (see [Du 04] and [SS 02]). We note that near
infinity, h behaves like z n; hence for sufficiently

largeR, the argument increment of h along C(0, R)
modulo 2π is −n.

We now employ some wishful thinking by sup-
posing that (i) no zeros of h lie on the critical set

and (ii) h is univalent inside each component of

L. Hence, n+ ≤ n − 1 and the change in argument
on L modulo 2π is −n+ ≥ −(n − 1). Applying
the argument principle to Ω and noting that Ω
contains only sense-reversing zeros of h, we see
that

−n− = change in argument modulo 2π

≥ −n− (n− 1),

giving n− ≤ 2n − 1. The total number of zeros of

h is n+ + n−; therefore there are at most

(n− 1)+ (2n− 1) = 3n− 2

zeros of h. Modulo the wishful thinking, we are
done.

The following example inspires one to believe
that the above argument is right on the money:

Example. Consider

h(z) = z − 1

2
(3z − z3).

Here n = 3. Our function has 3n− 2 = 3× 3− 2 =
7 zeros:

0,±1,
1

2
(±
√

7± i),
where all combinations of plus and minus signs
are considered in the last term. There are 2n −
1 = 2 × 3 − 1 = 5 sense-reversing zeros, namely,

0,
1

2
(±
√

7±i) andn−1 = 3−1 = 2 sense-preserving

zeros, namely, ±1. �

Our assumption requiring that no zeros of h lie

on the critical set can be removed by showing that
the set of harmonic polynomials satisfying this
assumption is dense (see [KS 03]). Unfortunately
there are examples showing that the assumption
that h must be univalent in each component of
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Figure 6. Four images of a distant light source (larger blue dots) lensed by an elliptical galaxy
(red). This picture serves as an illustration only. Realistically, one cannot expect a galaxy to have

a uniform mass distribution. (Photo credit: Kavan Ratnatunga (Johns Hopkins University,
Baltimore, MD) and NASA.)

L does not hold in general [Wil 94]. Thus, the
above argument fails. However, it can be salvaged
by applying some elementary facts regarding it-
eration of polynomials (and iteration of rational
functions) that come from complex dynamics.

Help from dynamics

First, some minimal vocabulary. Complex dynam-
ics studies iterations; in other words, compositions
of an analytic function with itself. If F is analytic
and z0 a fixed point of F (F(z0) = z0), z0 is called
an attracting fixed point of F if |F ′(z0)| < 1.

As the previous discussion shows, the crux
of the matter is the following proposition which
shows that n+ ≤ n− 1:

Proposition 1. Let deg p = n. Then

♯{z : z − p(z) = 0, |p′(z)| < 1} ≤ n− 1.

Why is this so? First, we note thatQ(z) := p(p(z))
is an analytic polynomial of degree n2. Moreover,

every fixed point of p(z) with |p′(z)| < 1 is an
attracting fixed point ofQ, and by Fatou’s theorem
(see [CG 93], Theorem III.2.2, page 59), it “attracts”
at least one critical point of Q (z is a critical point
if Q′(z) = 0). In other words, at least one critical

point of Q “runs” to a fixed point of p(z) with
|p′(z)| < 1 under iteration of the map Q.

The following lemma is elementary and its proof
can be found in [KS 03]. It essentially says that
the limiting behavior under the iteration of the
map Q occurs in clusters of at least n + 1 points
exhibiting the same limiting behavior under the

iteration of the map p(z). This is natural since

p(z) covers the Riemann sphere n times and Q is

obtained by iterating p(z) twice.

Lemma 1. Each fixed point of p(z)with |p′(z)| < 1

attracts at least a group of n + 1 critical points of

Q.

With this lemma, it is not difficult to finish the

proof of the proposition. Q has n2 − 1 critical

points. Divided into groups of at least n+1 points

they “run” to at most
n2−1

n+1
= n− 1 fixed points of

p(z). The proposition follows and completes our

sketch of the proof of Theorem 2.

Sharpness Results

The following theorem of L. Geyer [Ge 08] rests

on fairly deep results in topological dynamics.

Yet, it was already conjectured by B. Crofoot and

D. Sarason [Sa 99]:

Theorem 5 ([Ge 08]). For every n > 1 there exists

a complex analytic polynomial p of degree n and

mutually distinct points z1, . . . , zn−1 with p′(zj) = 0

and p(zj) = zj .

Theorem 5 implies that for every n > 1, there are

polynomials with precisely n − 1 attracting fixed

points for p; hence, Proposition 1 is indeed sharp

for all n and so is the upper bound 3n − 2 in

Theorem 2.

The question of sharpness for rational functions

was settled by S. H. Rhie [Rh 03]:
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Theorem 6 ([Rh 03]). For every n > 1, there exists

a rational harmonic function with exactly 5n − 5

distinct zeros.

Rhie established Theorem 6 in the context of grav-

itational lensing with n point masses. For n ≥ 3,

she used a very elegant perturbation argument to

build an example with 5n − 5 distinct zeros, the

bound she had previously conjectured in [Rh 01].

She mentions that the case n = 2 is established by

other lensing examples; we also note that [KN 06]

includes a non-lensing example for this case.

In a nutshell, Rhie’s construction for n ≥ 3 is as

follows: Mao, Petters, and Witt [MPW 97] studied

a gravitational lens with n equal point masses

located at the vertices of a regular n-gon and a

light source at the center of the n-gon and showed

that 3n+1 distinct lensed images can be attained.

Rhie analyzed the case where these point masses

each have mass 1/n and are located at the vertices

of a regular n-gon inscribed in a circle of radius

a = (n−1)
1
2−

1
n /
√
n (one of the point masses lies on

the positive x-axis). This configuration produces

3n + 1 distinct images: one image at the origin,

another image on each ray with a point mass (even

multiples of π/n), and two additional images on

each ray with argument that is an odd multiple

of π/n. Now perturb this system by adding a

sufficiently small mass at the origin. In particular,

suppose that a mass of ǫ > 0 has been added at the

origin and the mass of each of the original n point

masses has been reduced by ǫ/n. One can then

show that an additional 2n−1 imagesare produced

for ǫ sufficiently small (the perturbed system does

not have an image at the origin, has two images on

each ray with argument that is an even multiple

of π/n, and has three images on each ray with

argument that is an odd multiple of π/n). Hence,

the perturbed system has (n+1) point lenses and

produces (3n+1)+(2n−1) = 5(n+1)−5 distinct

lensed images. Figure 5 illustrates this for n = 4

and ǫ = 1

100
.

Let us summarize the results concerning sharp-

ness:

Corollary 2. For every n > 1 there exists a complex

analytic polynomialp of degree n such that p(z)−z
has precisely 3n − 2 zeros. Similarly, there exists

a rational function r(z) with (finite) poles z1, ..., zn
such that the r(z)− z has precisely 5n− 5 zeros.

Where Might One Go from Here?
Extending the FTA further

Unfortunately, the techniques from complex dy-

namics used in the proofs of Theorems 2 and 3

do not seem to work as well for more general

harmonic polynomials or rational functions with

the conjugate degree greater than 1. In particu-

lar, Wilmshurst’s conjecture (Conjecture 1 above)

remains open for the cases 1 < m < n−1. The fol-

lowing question is a natural next step in extending
FTA further:

Question. Let p(z) be an analytic polynomial of
degree n. Let 1 < m < n − 1 be an integer. What

is a sharp upper bound on the number of zeros of
the harmonic polynomial h(z) := zm − p(z)?
For example, Wilmshurst’s conjecture predicts an
upper bound of 3n for the case m = 2; this is

smaller than the bound of n2 given by Bézout’s
theorem when n > 3. If the conjectured bound
holds, is it sharp?

Recently, W. Li and A. Wei [LW 08] proved a
probabilistic variant of Wilmshurst’s conjecture.

They assume that the coefficients are distribut-
ed as Gaussian independent variables. Let h(z) =
p(z)−q(z) and let deg q =m andn = deg p. When

m = n−awherea > 0, they show that the expected
number of zeros asymptotically approaches n3/2

when n is large. This falls between the minimum

number of possible zeros (there are at least n
zeros) and the maximum of n2 given by Bézout’s
theorem. Surprisingly, whenm/n < α < 1 for all n,

the expected number of zeros tends to n [LW 08].

Gravitational microlensing by a mass
distribution

Theorem 3 can be applied to the case of n “spher-
ically symmetric” mass distributions in the lens

plane, showing that there will be at most 5n − 5
lensed images outside the support of the mass

[KN 06]. In practice, however, other mass distribu-
tions are more natural.

Question. How many lensed images can an arbi-
trary mass distribution produce?

Consider, for example, an elliptic mass distribu-
tion. C. Fassnacht, Ch. Keeton, and the first author

[FKK 07] have shown that an elliptic uniform mass
distribution considered as a gravitational lens can

produce at most four visible images outside the
lens. Note that there are observations of four
lensed images (for example, Figure 6). Further-

more, the same upper bound holds for densities
that are constant on ellipses confocal with the
initial ellipse [FKK 07].

An even more realistic assumption would be
using a polynomial in place of the uniform den-

sity. A sharp upper estimate for the number of
images is unknown in this case. For most models
in astronomy, the densities are assumed to be con-

stant on ellipses homothetic to the initial ellipse.
One such density is called the isothermal density
and is especially important. It arises by taking a

three-dimensional mass density that is inversely
proportional to the square of the distance from
the origin and projecting it onto the lens plane.

(If a spherical galaxy is filled with gas with such
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density, it will remain at constant temperature.)

However, the right hand side of the lens equation

becomes a transcendental function; as far as we

know, there is no proof at the present time show-

ing that the number of images is even finite. This

situation has been studied extensively through

modeling (cf. [KMW 00]) with, or without, external

shear and there are models that produce up to 9

images [KMW 00], though there do not seem to be

any observations where this number of images is

actually seen.

Microlensing by nonplanar lenses

All along, we have been assuming that the masses

in a gravitational lens can be treated as if they

were coplanar.

Question. When an n-lens consists of point mass-

es that cannot be treated as coplanar, what is the

sharp upper bound on the number of possible im-

ages?

In this case, the problem of estimating the pre-

cise number of images is excruciatingly difficult.

Petters has used Morse theory to make some

preliminary estimates [PLW 01]. Sharper, better

focused estimates are still far out of reach. This

last question resembles the classical fundamen-

tal problem of Maxwell concerning the precise

number of points in space where the gradient of

the electrostatic potential produced by n point

charges vanishes; in other words, find the points

of equilibrium where no electrostatic force is in

fact present. Maxwell conjectured the maximal

number of such points may not exceed (n − 1)2;

see [GNS 07] and the references therein for the

starting point of another exciting tale.
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