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W
e shall use the mathematical tech-
niques of Gabor transforms and
continuous wavelet transforms to
analyze the rhythmic structure of
music and its interaction with melod-

ic structure. This analysis reveals the hierarchical
structure of rhythm. Hierarchical structure is com-
mon to rhythmic performances throughout the
world’s music. The work described here is interdis-
ciplinary and experimental. We use mathematics to
aid in the understanding of the structure of music,
and have developed mathematical tools that (while
not completely finished) have shown themselves
to be useful for this musical analysis. We aim to
explore ideas with this paper, to provoke thought,
not to present completely finished work.

The paper is organized as follows. We first
summarize the mathematical method of Gabor
transforms (also known as short-time Fourier trans-
forms, or spectrograms). Spectrograms provide a
tool for visualizing the patterns of time-frequency
structures within a musical passage. We then re-
view the method of percussion scalograms, a new
technique for analyzing rhythm introduced in [34].
After that, we show how percussion scalograms are
used to analyze percussion passages and rhythm.
We carry out four analyses of percussion passages
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from a variety of music styles (rock drumming,
African drumming, and jazz drumming). We also
explore three examples of the connection between
rhythm and melody (a jazz piano piece, a Bach pi-
ano transcription, and a jazz orchestration). These
examples provide empirical justification of our
method. Finally, we explain how the parameters
for percussion scalograms are chosen in order
to provide a satisfactory display of the pulse
trains that characterize a percussion passage (a
key component of our method). A brief concluding
section provides some ideas for future research.

Gabor Transforms and Music
We briefly review the widely employed method of
Gabor transforms [17], also known as short-time
Fourier transforms, or spectrograms, or sonograms.
The first comprehensive effort in employing spec-
trograms in musical analysis was Robert Cogan’s
masterpiece, New Images of Musical Sound [9]—a
book that still deserves close study. In [12, 13],
Dörfler describes the fundamental mathematical
aspects of using Gabor transforms for musical
analysis. Two other sources for applications of
short-time Fourier transforms are [31, 25]. There
is also considerable mathematical background
in [15, 16, 19], with musical applications in [14].
Using sonograms or spectrograms for analyzing
the music of bird song is described in [21, 30, 26].
The theory of Gabor transforms is discussed in
complete detail in [15, 16, 19], with focus on its
discrete aspects in [1, 34]. However, to fix our
notations for subsequent work, we briefly describe
this theory.

The sound signals that we analyze are all dig-
ital, hence discrete, so we assume that a sound
signal has the form {f (tk)}, for uniformly spaced

356 Notices of the AMS Volume 56, Number 3
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Figure 1. (a) Signal. (b) Succession of shifted window functions. (c) Signal multiplied by middle
window in (b); an FFT can now be applied to this windowed signal.

values tk = k∆t in a finite interval [0, T ]. A Gabor
transform of f , with window function w , is defined
as follows. First, multiply {f (tk)} by a sequence of
shifted window functions {w(tk − τ`)}M`=0, produc-
ing time localized subsignals, {f (tk)w(tk − τ`)}M`=0.
Uniformly spaced time values, {τ` = tj`}M`=0 are
used for the shifts (j being a positive integer
greater than 1). The windows {w(tk − τ`)}M`=0 are
all compactly supported and overlap each other.
See Figure 1. The value of M is determined by the
minimum number of windows needed to cover
[0, T ], as illustrated in Figure 1(b).

Second, because w is compactly supported, we
treat each subsignal {f (tk)w(tk − τ`)} as a finite
sequence and apply an FFT F to it. (A good, brief
explanation of how FFTs are used for frequency
analysis can be found in [1].) This yields the Gabor
transform of {f (tk)}:
(1) {F{f (tk)w(tk − τ`)}}M`=0.

Note that because the values tk belong to the finite
interval [0, T ], we always extend our signal values
beyond the interval’s endpoints by appending
zeroes, hence the full supports of all windows are
included.

The Gabor transform that we employ uses a
Blackman window defined by

w(t) =


0.42+ 0.5 cos(2πt/λ)+

0.08 cos(4πt/λ) for |t| ≤ λ/2
0 for |t| > λ/2

for a positive parameter λ equaling the width
of the window where the FFT is performed. The
Fourier transform of the Blackman window is very
nearly positive (negative values less than 10−4 in
size), thus providing an effective substitute for a
Gaussian function (which is well known to have
minimum time-frequency support). See Figure 2.
Further evidence of the advantages of Blackman-
windowing is provided in [3, Table II]. In Figure 2(b)
we illustrate that for each windowing byw(tk−τm)
we finely partition the frequency axis into thin
rectangular bands lying above the support of the
window. This provides a thin rectangular partition
of the (slightly smeared) spectrum of f over the

support of w(tk − τm) for each m. The efficacy of
these Gabor transforms is shown by how well they
produce time-frequency portraits that accord well
with our auditory perception, which is described
in the vast literature on Gabor transforms that we
briefly summarized above.
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Figure 2. (a) Blackman window, λ = 1λ = 1λ = 1. Notice
that it closely resembles the classic Gabor
window—a bell curve described by a Gaussian
exponential—but it has the advantage of
compact support. (b) Time-frequency
representation—the units along the horizontal
are in seconds, along the vertical are in Hz—of
three Blackman windows multiplied by the real
part of the kernel ei2πnk/Nei2πnk/Nei2πnk/N of the FFT used in a
Gabor transform, for three different frequency
values nnn. Each horizontal bar accounts for
99.99% of the energy of the cosine-modulated
Blackman window (Gabor atom) graphed
below it.

It is interesting to listen to the sound created
by the three Gabor atoms in Figure 2(b). You
can watch a video of the spectrogram being
traced out while the sound is played by going
to the following webpage:

(2) http://www.uwec.edu/walkerjs/TFAMRVideos/

and selecting the video for Gabor Atoms. The
sound of the atoms is of three successive pure
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(a) Drum Clip (b) Piano scale notes (c) Bach melody

Figure 3. Three spectrograms. (a) Spectrogram of a drum solo from a rock song. (b) Notes along a
piano scale. (c) Spectrogram of a piano solo from a Bach melody.

tones, on an ascending scale. The sound occurs
precisely when the cursor crosses the thin dark
bands in the spectrogram, and our aural perception
of a constant pitch matches perfectly with the
constant darkness of the thin bands. These Gabor
atoms are, in fact, good examples of individual
notes. Much better examples of notes, in fact, than
the infinitely extending (both in past and future)
sines and cosines used in classical Fourier analysis.
Because they are good examples of pure tone notes,
these Gabor atoms are excellent building blocks
for music.

We shall provide some new examples that fur-
ther illustrate the effectiveness of these Gabor
transforms. For all of our examples, we used 1024
point FFTs, based on windows of supportÜ 1/8 sec
with a shift of ∆τ ≈ 0.008 sec. These time-values
are usually short enough to capture the essential
features of musical frequency change.

In Figure 3 we show three basic examples of
spectrograms of music. Part (a) of the figure shows
a spectrogram of a clip from a rock drum solo.
Notice that the spectrogram consists of dark ver-
tical swatches; these swatches correspond to the
striking of the drum, which can be verified by
watching a video of the spectrogram (go to the
website in (2) and select the video Rock Drum Solo).
As the cursor traces over the spectrogram in the
video, you will hear the sound of the drum strikes
during the times when the cursor is crossing a
vertical swatch. The reason why the spectrogram
consists of these vertical swatches will be explained
in the next section.

Part (b) of Figure 3 shows a spectrogram of a
recording of four notes played on a piano scale.
Here the spectrogram shows two features. Its main
feature is a set of four sections consisting of
groups of horizontal line segments placed verti-
cally above each other. These vertical series of

short horizontal segments are the fundamentals
and overtones of the piano notes. There are also
thin vertical swatches located at the beginning of
each note. They are the percussive attacks of the
notes (the piano is, in fact, classed as a percussive
instrument).

Part (c) of Figure 3 shows a spectrogram of
a clip from a piano version of a famous Bach
melody. This spectrogram is much more complex,
rhythmically and melodically, than the first two
passages. Its melodic complexity consists in its
polyphonic nature: the vertical series of horizontal
segments are due to three-note chords being played
on the treble scale and also individual notes played
as counterpoint on the bass scale.1 (This contrasts
with the single notes in the monophonic passage
in (b).) We will analyze the rhythm of this Bach
melody in Example 5 below.

Scalograms, Percussion Scalograms, and
Rhythm
In this section we briefly review the method of
scalograms (continuous wavelet transforms) and
then discuss the method of percussion scalograms.

Scalograms

The theory of continuous wavelet transforms is
well-established [10, 8, 27]. A CWT differs from a
spectrogram in that it does not use translations
of a window of fixed width; instead it uses trans-
lations of differently sized dilations of a window.
These dilations induce a logarithmic division of the
frequency axis. The discrete calculation of a CWT
that we use is described in [1, Section 4]. We shall
only briefly review the definition of the CWT in

1The chord structure and counterpoint can be determined
either by careful listening or by examining the score [2].
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order to fix our notation. We then use it to analyze
percussion.

Given a function Ψ , called the wavelet, the
continuous wavelet transform WΨ[f ] of a sound
signal f is defined as

(3) WΨ[f ](τ, s) = 1√
s

∫∞
−∞
f (t)Ψ ( t − τ

s

)
dt

for scale s > 0 and time-translation τ. For the
function Ψ in the integrand of (3), the variable s
produces a dilation and the variable τ produces a
translation.

We omit various technicalities concerning the
types of functions Ψ that are suitable as wavelets;
see [8, 10, 27]. In [8, 11], Equation (3) is derived
from a simple analogy with the logarithmically
structured response of our ear’s basilar membrane
to a sound stimulus f .

We now discretize Equation (3). First, we assume
that the sound signal f (t) is non-zero only over
the time interval [0, T ]. Hence (3) becomes

WΨ[f ](τ, s) = 1√
s

∫ T
0
f (t)Ψ ( t − τ

s

)
dt.

We then make a Riemann sum approximation to
this last integral using tm = m∆t , with uniform
spacing ∆t = T/N, and discretize the time variable
τ , using τk = k∆t . This yields
(4)

WΨ[f ](τk, s) ≈ TN
1√
s

N−1∑
m=0

f (tm)Ψ ([tm − τk]s−1).

The sum in (4) is a correlation of two discrete
sequences. Given two N-point discrete sequences
{fk} and {Ψk}, their correlation {(f : Ψ)k} is defined
by

(5) (f : Ψ)k = N−1∑
m=0

fmΨm−k .
(Note: For the sum in (5) to make sense, the sequence
{Ψk} is periodically extended, via Ψ−k := ΨN−k.)

Thus, Equations (4) and (5) show that the
CWT, at each scale s, is approximated by a mul-
tiple of a discrete correlation of {fk = f (tk)} and
{Ψ sk = s−1/2Ψ(tks−1)}. These discrete correlations
are computed over a range of discrete values of s,
typically

(6) s = 2−r/J , r = 0,1,2, . . . , I · J,
where the positive integer I is called the number of
octaves and the positive integer J is called the num-
ber of voices per octave. For example, the choice
of 6 octaves and 12 voices corresponds—based on
the relationship between scales and frequencies
described below—to the equal-tempered scale used
for pianos.

The CWTs that we use are based on Gabor
wavelets. A Gabor wavelet, with width parameterω
and frequency parameter ν , is defined as follows:

(7) Ψ(t) =ω−1/2e−π(t/ω)2ei2πνt/ω.

Notice that the complex exponential ei2πνt/ω has
frequency ν/ω. We call ν/ω the base frequency.
It corresponds to the largest scale s = 1. The bell-
shaped factor ω−1/2e−π(t/ω)2 in (7) damps down
the oscillations of Ψ , so that their amplitude is
significant only within a finite region centered
at t = 0. See Figures 13 and 14. Since the scale
parameter s is used in a reciprocal fashion in
Equation (3), it follows that the reciprocal scale
1/s will control the frequency of oscillations of the
function s−1/2Ψ(t/s) used in Equation (3). Thus,
frequency is described in terms of the parameter
1/s, which Equation (6) shows is logarithmically
scaled. This point is carefully discussed in [1] and
[34, Chap. 6], where Gabor scalograms are shown
to provide a method of zooming in on selected
regions of a spectrogram.

Pulse Trains and Percussion Scalograms

The method of using Gabor scalograms for analyz-
ing percussion sequences was introduced by Smith
in [32] and described empirically in considerable
detail in [33]. The method described by Smith
involved pulse trains generated from the sound
signal itself. Our method is based on the spectro-
gram of the signal, which reduces the number of
samples and hence speeds up the computation,
making it fast enough for real-time applications.
(An alternative method based on an FFT of the
whole signal, the phase vocoder, is described in
[31].)

Our discussion will focus on a particular per-
cussion sequence. This sequence is a passage from
the song, Dance Around. Go to the URL in (2) and
select the video, Dance Around percussion, to hear
this passage. Listening to this passage you will hear
several groups of drum beats, along with some
shifts in tempo. This passage illustrates the basic
principles underlying our approach.

In Figure 4(a) we show the spectrogram of the
Dance Around clip. This spectrogram is composed
of a sequence of thick vertical segments, which
we will call vertical swatches. Each vertical swatch
corresponds to a percussive strike on a drum.
These sharp strikes on drum heads excite a con-
tinuum of frequencies rather than a discrete tonal
sequence of fundamentals and overtones. Because
the rapid onset and decay of these sharp strikes
produce approximate delta function pulses—and a
delta function pulse has an FFT that consists of a
constant value for all frequencies—it follows that
these strike sounds produce vertical swatches in
the time-frequency plane.

Our percussion scalogram method has the
following two parts:

I. Pulse train generation. We generate a
“pulse train”, a sequence of subintervals
of 1-values and 0-values (see the graph at
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s−1 = 20 ∼ 0.56

s−1 = 22 ∼ 2.23 strikes
sec

s−1 = 24 ∼ 8.93

Figure 4. Calculating a percussion scalogram for the Dance Around sound clip. (a) Spectrogram of
sound waveform with its pulse train graphed below it. (b) Percussion scalogram and the pulse

train graphed above it. The dark region labeled by G corresponds to a collection of drum strikes
that we hear as a group, and within that group are other subgroups over shorter time scales that

are indicated by the splitting of group G into smaller dark blobs as one goes upwards in the
percussion scalogram (those subgroups are also aurally perceptible). See Figure 5 for a better

view of G.

the bottom of Figure 4(a)). The rectangular-
shaped pulses in this pulse train correspond
to sharp onset and decay of transient bursts
in the percussion signal graphed just above
the pulse train. The widths of these pulses
are approximately equal to the widths of the
vertical swatches shown in the spectrogram.
Most importantly, the location and duration
of the intervals of 1-values corresponds to
our hearing of the drum strikes, while the
location and duration of the intervals of
0-values corresponds to the silences between
the strikes. In Step 1 of the method below we
describe how this pulse train is generated.
II. Gabor CWT. We use a Gabor CWT to an-
alyze the pulse train. This CWT calculation
is performed in Step 2 of the method. The
rationale for performing a CWT is that the
pulse train is a step function analog of a
sinusoidal of varying frequency. Because of
this analogy between tempo of the pulses and
frequency in sinusoidal curves, we employ
a Gabor CWT for analysis. As an example,
see the scalogram plotted in Figure 4(b). The

thick vertical line segments at the top half
of the scalogram correspond to the drum
strikes, and these segments flow downward
and connect together. Within the middle of
the time-interval for the scalogram, these
drum strike groups join together over four
levels of hierarchy (see Figure 5). Listening to
this passage, you can perceive each level of
this hierarchy.

Now that we have outlined the basis for the per-
cussion scalogram method, we can list it in detail.
The percussion scalogram method for analyzing
percussive rhythm consists of the following two
steps.

Percussion Scalogram Method
Step 1. Let {g(τm, yk)} be the spectrogram image,

like in Figure 4(a). Calculate the average ḡ over all
frequencies at each time-value τm:

(8) ḡ(τm) =
1
P

P−1∑
k=0

g(τm, yk),

(where P is the total number of frequencies yk),
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and denote the average of ḡ by A:

(9) A = 1
M + 1

M∑
m=0

ḡ(τm).

Then the pulse train {P(τm)} is defined by

(10) P(τm) = 1{τk : ḡ(τk)>A}(τm).

where 1 is the indicator function.2 The values
{P(τm)} describe a pulse train whose intervals of
1-values mark off the position and duration of the
vertical swatches (hence of the drum strikes). See
Figure 6.

Step 2. Compute a Gabor CWT of the pulse train
signal {P(τm)} from Step 1. This Gabor CWT pro-
vides an objective picture of the varying rhythms
within a percussion performance.
Remarks. (a) For the time intervals corresponding
to vertical swatches, equations (8) and (9) produce
values of ḡ that lie above the average A (because
A is pulled down by the intervals of silence). See
Figure 6(a). For some signals, where the volume
level is not relatively constant (louder passages
interspersed with quieter passages) the total av-
erage A will be too high (the quieter passages
will not contribute to the pulse train). We should
instead be computing local averages over several
(but not all) time-values. We leave this as a goal
for subsequent research. In a large number of
cases, such as those discussed in this article, we
have found that the method described above is
adequate. (b) For the Dance Around passage, the
entire frequency range was used, as it consists
entirely of vertical swatches corresponding to the
percussive strikes. When analyzing other percus-
sive passages, we may have to isolate a particular
frequency range that contains just the vertical
swatches of the drum strikes. We illustrate this
later in the musical examples we describe (see the
next section, “Examples of Rhythmic Analysis”).
(c) We leave it as an exercise for the reader to
show that the calculation of ḡ(τm) can actually
be done in the time-domain using the data from
the windowed signal values. (Hint: Use Parseval’s
theorem.) We chose to use the spectrogram values
because of their ease of interpretation—especially
when processing needs to be done, such as using
only a particular frequency range. The spectro-
gram provides a lot of information to aid in the
processing. (d) Some readers may wonder why we
have computed a Gabor CWT in Step 2. Why not
compute, say, a Haar CWT (which is based on a
step function as wavelet)? We have found that
a Haar CWT does provide essentially the same
information as the magnitudes of the Gabor CWT
(which is all we use in this article; using the phases
of the complex-valued Gabor CWT is left for future

2The indicator function 1S for a set S is defined by 1S(t) =
1 when t ∈ S and 1S(t) = 0 when t ∉ S.

Level 4

Level 3

Level 2

Level 1

Level 3

Level 2

Level 1

α β

Figure 5. A rhythm hierarchy, obtained from
the region corresponding to G in Figure 4. The
hierarchy has two parts, labeled ααα and βββ. In
each part the top level, Level 1, comprises the
individual strikes. These strikes merge at
Level 2 into regions which correspond to
double strikes and which are aurally
perceptible as groupings of double strikes.
Notice that the Level 2 regions for βββ lie at
positions of slightly increasing then
decreasing strike-frequency as time proceeds;
this is aurally perceptible when listening to
the passage. There is also a Level 3 region for
ααα that merges with the Level 2 regions for βββ to
comprise the largest group G.

research). However, the Haar CWT is more difficult
to interpret, as shown in Figure 7.

We have already discussed the percussion
scalogram in Figure 4(b). We shall continue this
discussion and provide several more examples
of our method in the next section. In each case,
we find that a percussion scalogram allows us to
finely analyze the rhythmic structure of percussion
sequences.

Examples of Rhythmic Analysis
As discussed in the previous section, a percussion
scalogram allows us to perceive a hierarchal orga-
nization of the strikes in a percussion sequence.
Hierarchical structures within music, especially
within rhythmic passages and melodic contours,
is a well-known phenomenon. For example, in an
entertaining and thought-provoking book [24] with
an excellent bibliography, This Is Your Brain On
Music, Daniel Levitin says in regard to musical
production (p. 154):
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Figure 6. Creation of a pulse train. On the left we show the graph of ḡ̄ḡg from equation (8) for the
spectrogram of the Dance Around sound clip [see Figure 4(a)], which we have normalized to have

an average of A = 1A = 1A = 1. The horizontal line is the graph of the constant function 111. The pulse train,
shown on the right, is then created by assigning the value 111 when the graph of ḡ̄ḡg is larger than AAA,

and 000 otherwise.

Our memory for music involves hierarchical
encoding—not all words are equally salient,
and not all parts of a musical piece hold equal
status. We have certain entry points and exit
points that correspond to specific phrases
in the music…Experiments with musicians
have confirmed this notion of hierarchical
encoding in other ways. Most musicians can-
not start playing a piece of music they know
at any arbitrary location; musicians learn
music according to a hierarchical phrase
structure. Groups of notes form units of
practice, these smaller units are combined
into larger units, and ultimately into phrases;
phrases are combined into structures such
as verses and choruses of movements, and
ultimately everything is strung together as a
musical piece.

In a similar vein, related to musical theory, Steven
Pinker summarizes the famous hierarchical theory
of Jackendoff and Lerdahl [23, 22] in his fascinating
book, How The Mind Works [28, pp. 532–533]:

Jackendoff and Lerdahl show how melodies
are formed by sequences of pitches that
are organized in three different ways, all
at the same time…The first representation
is a grouping structure. The listener feels
that groups of notes hang together in mo-
tifs, which in turn are grouped into lines
or sections, which are grouped into stanzas,
movements, and pieces. This hierarchical tree
is similar to a phrase structure of a sentence,
and when the music has lyrics the two part-
ly line up...The second representation is a
metrical structure, the repeating sequence of

strong and weak beats that we count off as
“ONE-two-THREE-four.” The overall pattern
is summed up in musical notation as the
time signature…The third representation is a
reductional structure. It dissects the melody
into essential parts and ornaments. The orna-
ments are stripped off and the essential parts
further dissected into even more essential
parts and ornaments on them…we sense it
when we recognize variations of a piece in
classical music or jazz. The skeleton of the
melody is conserved while the ornaments
differ from variation to variation.

In regard to the strong and weak beats referred
to by Pinker, we observe that these are reflected by
the relative thickness and darkness of the vertical
segments in a percussion scalogram. For exam-
ple, when listening to the Dance Around passage,
the darker groups of strikes in the percussion
scalograms seem to correlate with loudness of
the striking. This seems counterintuitive, since
the pulse train consists only of 0’s and 1’s, which
would not seem to reflect varying loudness. This
phenomenon can be explained as follows. When a
pulse is very long, that requires a more energetic
striking of the drum, and this more energetic
playing translates into a louder sound. The longer
pulses correspond to darker spots lower down on
the scalogram, and we hear these as louder sounds.
(The other way that darker spots appear lower
down is in grouping of several strikes. We do not
hear them necessarily as louder individual sounds,
but taken together they account for more energy
than single, narrow pulses individually.)
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(a) (b)

Figure 7. (a) Magnitudes of Gabor CWT of a pulse sequence. (b) Haar CWT of the same pulse
sequence.

With these descriptions of the hierarchical
structure of music in mind, we now turn to repre-
sentations of them within four different percussion
sequences.

Example 1: Rock Drumming

In Figure 8 we show a percussion scalogram for a
clip from a rock drum solo, which we have partially
analyzed in the previous section. Here we complete
our analysis by describing the hierarchy shown in
the scalogram in a more formal, mathematical way,
and then introducing the notion of production rules
for the performance of the percussion sequence.

We can see that there are five separate groupings
of drum strikes in the scalogram in Figure 8:

A
(1-level)

B
(2-levels)

C
(4-levels)

B′
(2-levels)

C′
(4-levels)

The separate hierarchies within these groupings
can be symbolized in the following way. We use
the notation ∗| to symbolize a “whole note”, a
longer duration, more emphasized strike. And the
notation ∗| to symbolize a “half note”, a shorter
duration, less emphasized strike. This allows us to
symbolize the different emphases in the rhythm.
Furthermore, the underscore symbol will be
used to denote a rest between strikes (notes). For
example, ∗| ∗| symbolizes a half note followed by
a rest followed by a whole note. Using this notation,
the strikes in Figure 8 are symbolized by

∗| ∗| ∗| ∗| ∗|∗|∗| ∗|∗| ∗|∗|∗|∗| ∗| ∗| ∗|∗| ∗|∗|∗| ∗|∗|

This notation is essentially equivalent to the
standard notation for drumming used in musical
scores (for examples of this notation, see [29]
and [5]). We have thus shown that percussion

scalograms can be used to read off a musical score
for the drumming from its recorded sound. This
is important because percussion playing is often
extemporaneous, hence there is a need for notating
particularly important extemporaneous passages
as an aid to their repetition by other performers.

There is, however, much more information in a
percussion scalogram. We can also use parentheses
to mark off the groupings of the notes into their
hierarchies, as follows:

∗| (∗| ∗| ∗|) ((∗|(∗|∗| ))(∗|∗| )(∗|∗|)(∗|∗|))

(∗| ∗|) ((∗|(∗| ∗|)(∗|∗| ))(∗|∗|))

The advantage of this notation over the previous
one is that the hierarchical groupings of notes is
indicated. We believe this enhanced notation, along
with the videos that we create of sound with per-
cussion scalograms, provide an important tool for
analyzing the performance of percussion sequences.
For example, they may be useful in teaching per-
formance technique (recall Levitin’s discussion of
how musicians learn to play musical passages) by
adding two adjuncts, notation plus video, to aid the
ear in perceiving subtle differences in performance
technique.

In addition to this symbolic notation for per-
cussion passages, there is an even deeper (and
somewhat controversial) notion of production rules
for the generation of these percussion sequences
(analogous to Chomsky’s notion of “deep structure”
in linguistics that generates, via production rules,
the syntactical hierarchy of sentences: [22, Sec-
tion 11.4] and [7, Sections 5.2, 5.3]). Examples of
these rules in music are described in [22, pp. 283–
285, and p. 280]. Rather than giving a complete
mathematical description at this time, we will
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A B C B′ C′

Figure 8. Percussion scalogram for rock
drumming. The labels are explained in

Example 1. To view a video of the percussion
scalogram being traced out along with the
drumming sound, go to the URL in (2) and

select the video for Dance Around percussion.

simply give a couple of examples. For instance, the
grouping B′ in the passage is produced from the
grouping B, by clipping two strikes off the end:

B′ ← End(B)
As another example, if we look at the starting notes
in the groups C and C′ defined by

Start(C) := ∗|(∗|∗| ) and Start(C′) := ∗|(∗| ∗|)
then Start(C′) is produced from Start(C) by a
modulation of emphases:

Start(C′)← Modulation(Start(C))
In this paper we are only giving these two examples
of production rules, in order to give a flavor of the
idea. A more complete discussion is a topic for a
future paper.

Example 2: African Drumming

Our second example is a passage of African drum-
ming, clipped from the beginning of the song
Welela from an album by Miriam Makeba. In this
case, the spectrogram of the passage, shown in
Figure 9(a), has some horizontal banding at lower
frequencies that adversely affect the percussion
scalogram by raising the mean value of the spectro-
gram averages. Consequently, we used only values
from the spectrogram that are above 1000 Hz
to compute the percussion scalogram shown in
Figure 9(b). By listening to the video referenced in
the caption of Figure 9, you should find that this
percussion scalogram does accurately capture the
timing and grouping of the drum strikes in the
passage.

This passage is quite interesting in that it is
comprised of only 20 drum strikes, yet we shall
see that it contains a wealth of complexity. First,
we can see that there are seven separate groupings
of drum strikes in the scalogram in Figure 9:

A
(1-level)

B
(3-level)

C
(3-level)

A
(1-level)

B
(3-level)

C
(3-level)

D
(2-level)

Notice the interweaving of different numbers of
levels within this sequence of groups. Second,
the drum strikes can be notated with hierarchical
grouping as follows:

∗| ((∗|∗|) (∗| ∗| )) ((∗|∗|)(∗| )(∗|))
∗| ((∗|∗|) (∗| ∗| )) ((∗|∗|)(∗| )(∗|)) (∗|∗|)

This passage is interesting not only in terms of the
complex hierarchical grouping of notes, but also
because of the arrangement of the time intervals
between notes. It is a well-known fact among
musicians that the silences between notes are
at least as important as the notes themselves.
In this passage we have the following sequence
of time-intervals between notes (1 representing
a short rest, 2 representing a long rest, and 0
representing no rest):

2 0 1 1 1 0 0 0 2 2 0 1 1 1 0 0 0 1 0

which quantitatively describes the “staggered”
sound of the drum passage. (The reader might find
it interesting to compute the sequence of rests for
Example 1, and verify that it is less staggered, with
longer sequences of either 1’s or 0’s.)

Example 3: Jazz Drumming

In this example we consider a couple of cases of
jazz drumming. In Figure 10(a) we show a percus-
sion scalogram created from the drum solo at the
beginning of the jazz classic, Sing Sing Sing. The
tempo of this drumming is very fast. Our notation
for this sequence was obtained from examining
the percussion scalogram both as a picture and as
the video sequence (referred to in the caption of
the figure) is played. Here is the notated sequence:

Very fast

∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗|

∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗|
Our notation differs considerably from the notation
given for this beginning drum solo in the original
score [29], the first several notes being:

Jungle Drum Swing

∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗|

Setting aside its racist overtones, we observe that
this tempo instruction is not terribly precise. We
can see from comparing these two scores, that
the drummer (Gene Krupa) is improvising the
percussion (as is typical with jazz). Our percussion
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(a)

0

1000

(b)

A B C A B C D

BCDBC

Figure 9. (a) Spectrogram for African drumming. Between 000 and 100010001000 Hz, as marked on the right
side of (a), there are a considerable number of horizontal line segments. Those segments
adversely affect the percussion scalogram. Consequently only frequencies above 100010001000 Hz are
used to create the percussion scalogram. (b) Percussion scalogram for African drumming, using
frequencies above 100010001000 Hz. The labels are explained in Example 2. To view a video of the
percussion scalogram being traced out along with the drumming sound, go to the URL in (2) and
select the video for Welela percussion.

scalogram method allows us to derive a precise
notation for Krupa’s improvisation. We leave it as
an exercise for the reader to notate the hierarchical
structure of this drum passage, based on the
percussion scalogram. From our notation above,
we find that the pattern of rests in Krupa’s playing
has this structure:

2 0 1 1 1 0 1 2 2 1 1 2 1 2 1 1 0 0 0 1 2 0 1

Here, as with the African drumming, we see a
staggered pattern of rests.

Our second example of jazz drumming is a clip
of the beginning percussive passage from another
jazz classic, Unsquare Dance. In the score for the
piece [5], the following pattern of strikes (indicated
as hand clapping)

∗| ∗| ∗| ∗|

is repeated in each measure (consistent with the
7/4 time signature). Listening to the passage as
the video is played, we can hear this repeated
series of “strikes” as groups of very fast individual
strikings of drumsticks. The drummer (Joe Morello)
is improvising on the notated score by replacing
individual hand claps by these very rapid strikings
of his drumsticks. It is noteworthy that, in many
instances, the percussion scalogram is sensitive
enough to record the timings of the individual
drumstick strikings. The scalogram is thus able
to reveal, in a visual representation, the double
aspect to the rhythm: individual drum strikings

within the larger groupings notated as hand claps
in the original score.

These examples are meant to illustrate that the
percussion scalogram method can provide useful
musical analyses of drumming rhythms. Several
more examples are given at the Pictures of Music
website [6]. We now provide some examples of
using both spectrograms and percussion scalo-
grams to analyze both the melodic and rhythmic
aspects of music. Because they are based on an
assumption of intense pulsing in the musical signal
due to percussion, which is only satisfied for some
tonal instruments, percussion scalograms do not
always provide accurate results for tonal instru-
ments. However, when they do provide accurate
results (a precise description of the timings of the
notes), they reveal the rhythmic structure of the
music (which is our goal). We now provide three
examples of successful analyses of melody and
rhythm.

Example 4: A Jazz Piano Melody

In Figure 11(a) we show a percussion scalogram
of a recording of a jazz piano improvisation by
Erroll Garner. It was captured from a live recording
[18]. Since this is an improvisation, there is no
musical score for the passage. Several aspects
of the scalogram are clearly evident. First, we can
see a staggered spacing of rests as in the African
drumming in Example 2 and the jazz drumming
in the Sing Sing Sing passage in Example 3. There
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(a) (b)

Figure 10. (a) Percussion scalogram for drum solo in Sing Sing Sing using frequencies above 100010001000
Hz. (b) Percussion scalogram for complex drum stick percussion in Unsquare Dance using

frequencies above 200020002000 Hz. To view videos of these percussion scalograms being traced out
along with the drumming sound, go to the URL in (2) and select the videos for Sing Sing Sing

percussion or Unsquare Dance percussion.

S

(a) (b)

Figure 11. (a) Percussion scalogram of a clip from an Erroll Garner jazz piano passage (using
frequencies above 180018001800 Hz). To view a video of the percussion scalogram being traced out along

with the piano playing, go to the URL in (2) and select the video for Erroll Garner piano recording.
The label S indicates a syncopation in the melody. (b) Percussion scalogram from a clip of a piano

interpretation of a Bach melody (using frequencies above 300030003000 Hz). To view a video of the
percussion scalogram being traced out along with the piano sound, go to the URL in (2) and select

the video for Bach piano piece (scalogram).

is also a syncopation in the melody, indicated by
the interval marked S in Figure 11(a). By syncopa-
tion we mean an altered rhythm, “ONE-two-three-
FOUR,” rather than the more common “ONE-two-
THREE-four.” The percussion scalogram provides
us with a visual representation of these effects,
which is an aid to our listening comprehension.
Although the percussion scalogram does not

perform perfectly here (for example the last note
in the sequence marked S is split in two at the
top; the scalogram has detected the attack and the
decay of the note), when viewed as a video the
percussion scalogram does enable us to quickly
identify the timing and hierarchical grouping of
the notes (which would be much more difficult
using only our ears).
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Example 5: A Bach Piano Transcription

As a simple contrast to the previous example, we
briefly discuss the percussion scalogram shown in
Figure 11(b), obtained from a piano interpretation
of a Bach melody, Jesu, Joy of Man’s Desiring. The
sound recording used was created from a MIDI
sequence. In contrast to the previous jazz piece,
this classical piece shows no staggering of rests,
and no syncopation. The hierarchy of groupings of
notes is also more symmetrical than for the jazz
piece. This hierarchy of notes, the rhythm of the
passage, is easily discernable from this percussion
scalogram, while it is not clearly evident from the
score [2] (at least to untrained musicians).

Example 6: A Jazz Orchestral Passage

For our final example, we analyze the spectrogram
and percussion scalogram shown in Figure 12. They
were obtained from a passage from a recording of
the jazz orchestral classic, Harlem Air Shaft, by
Duke Ellington. This passage is quite interesting in
that it is comprised of only about 15 notes, yet we
shall see that it contains a wealth of complexity.
(We saw this in the African drum passage as well;
perhaps we have an aspect of aesthetic theory here.)
We now describe some of the elements comprising
the rhythm and melody within this passage. It
should be noted that, although there is a score for
Harlem Air Shaft, that score is a complex orches-
tration that requires a large amount of musical
expertise to interpret. Our spectrogram/percussion
scalogram approach provides a more easily studied
description of the melody and rhythm, including
visual depictions of length and intensity of notes
from several instruments playing simultaneous-
ly. Most importantly, the spectrogram provides an
objective description of recorded performances. It
can be used to compare different performances in
an objective way. Our percussion scalograms facili-
tate the same kind of objective comparison of the
rhythm in performances.

(1) Reflection of Notes. The passage con-
tains a sequence of high pitched notes played
by a slide trombone (wielded by the legendary
“Tricky Sam” Nanton). This sequence divides
into two groups of three, enclosed in the rect-
angles labeled T and RT in the spectrogram
shown at the top of Figure 12. The three
notes within T are located at frequencies of
approximately 855, 855, and 845 Hz. They
are then reflected about the frequency 850,
indicated by the line segmentM between the
two rectangles, to produce the three notes
within RT at frequencies of approximately
845, 845, and 855 Hz. The operation of
reflection R about a specific pitch is a com-
mon, group-theoretical, operation employed
in classical music [20].

T RT

M

H

0

500 Hz

850

1000

B

S S

Figure 12. Top: Spectrogram of a passage from
a recording of Harlem Air Shaft. Bottom:
Percussion scalogram of the same passage
(using all frequencies). The boxed regions and
labels are explained in the text. To view videos
of this spectrogram and scalogram, go to the
URL in (2) and select the links indicated by
Harlem Air Shaft.

(2) Micro-Tones. The pitch interval de-
scribed by going down in frequency from 855
to 845 Hz is

log2(855/845) = 0.017 ≈ 1/48,

which is about 1/4 of the (logarithmic) half-
tone change of 1/12 of an octave (on the
12-tone chromatic scale). Thus within T the
pitch descends by an eighth-tone. Similarly, in
RT the pitch ascends at the end by an eighth-
tone. These are micro-tone intervals, intervals
that are not representable on the standard
12-tone scoring used in Western classical
music. They are, in fact, half the interval of
the quarter-tones that are a characteristic
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of jazz music (based on its roots in African
tonal scales [4]). Here Ellington synthesizes
a melodic characteristic of jazz (micro-tones)
with one of classical music (reflection about a
pitch level).

(3) Staggered Syncopation. Viewing the
video of the percussion scalogram shown in
Figure 12, we note that there is a staggering
of rests between notes, and we also observe a
syncopation. This syncopation occurs when
the slide trombone slides into and between
the emphasized notes in the structures T and
RT. The pattern lying above the segments
marked S in the figure is

one – TWO – three – FOUR – (rest) – FIVE

an unusual, staggered syncopation, of rhythm.
(One thing we observe when viewing the video
is that the percussion scalogram does cap-
ture the timings of most of the note attacks,
although it does not perfectly reflect some
muted horn notes—because the attacks of
those notes are obscured by the higher
volume trombone notes. Nevertheless, the
scalogram provides an adequate description
of the driving rhythm of the trombone notes,
and the muted trumpet notes at the end of
the passage.)

(4) Hierarchies of Melody. Within the pas-
sage there are several different types of
melody, over different length time-scales.
First, we note that there is the hierarchy
of T and RT at one level along with their
combination into one long passage, linked
melodically by a sequence of muted horn
notes H. Notice that the pitch levels in H
exhibit, over a shorter time-scale, the pitch
pattern shown in the notes within T togeth-
er with RT. That is a type of hierarchical
organization of melodic contour. There is
a further hierarchical level (in terms of a
longer time-scale) exhibited by the melodic
contour of the bass notes (shown as a long
sinusoidal arc within the region marked by B).
Here the bassist, Jimmy Blanton, is using the
bass as a plucked melodic instrument as well
as providing a regular tempo for the other
players. This is one of his major innovations
for the bass violin in jazz instrumentation.

We can see from this analysis that this passage
within just 6 seconds reveals a wealth of structure,
including many features that are unique to jazz.
Such mastery illustrates why Duke Ellington was
one of the greatest composers of the twentieth
century.

Justification of the Percussion Scalogram
Method
Choosing the Width and Frequency Parameters

In this section we discuss how the parameters
are chosen to provide a satisfactory display of a
scalogram for a pulse train, which is the second
step of the percussion scalogram method. The term
satisfactory means that both the average number
of pulses/sec (beats/sec) are displayed and the
individual beats are resolved.

To state our result we need to define several
parameters. The number T will stand for the time
duration of the signal, while B will denote the total
number of pulses in the pulse train signal. We will
use the positive parameter p to scale the width ω
and frequency ν defined by

(11) ω = pT
2B
, ν = B

pT
.

Notice thatω and ν are in a reciprocal relationship;
this is in line with the reciprocal relation between
time-scale and frequency that is used in wavelet
analysis. Notice also that the quantity B/T in ν is
equal to the average number of pulses/sec. The
best choice for the parameter p in these formulas
will be described below. Two further parameters
are the number of octaves I and voices M used in
the percussion scalogram. We shall see that these
two parameters will depend on the value of δ, the
minimum length of a 0-interval (minimum space
between two successive pulses).

Now that we have defined our parameters, we
can state our main result:

Given the constraints of using positive integers for
the octaves I and voices M and using 256 total cor-
relations, satisfactory choices for the parameters of
a percussion scalogram are:

ω = pT
B
, ν = B

pT
, p = 4

√
π

I =
⌊

log2

(
p2T 2

δB2

)
− 3

2

⌋
, M =

⌊
256
I

⌋
.

(12)

The remainder of this section provides the rationale
for this result (notice that the value of ω in (12)
is twice the value given in (11); we shall explain
why below). While this rationale may not be a
completely rigorous proof, it does provide useful
insights into how a Gabor CWT works with pulse
trains, and it does provide us with the method
used to produce the scalograms for the pulse
trains shown in the section “Examples of Rhythmic
Analysis” (and for the other examples given at
the Pictures of Music website [6]). In fact, we have
found that in every case, the method provides a
satisfactory display of the scalogram for a pulse
train from a musical passage (whether the pulse
train is accurate is a separate question; we are still
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working on extending its capabilities as described
previously).

We shall denote a given pulse train by {P(tm)}.
(Here we use {tm = τm} as the time-values; this
notational change is clarified by looking at equa-
tion (16).) This signal satisfies P(tm) = 1 during
the duration of a beat and P(tm) = 0 when there is
no beat. We use the Gabor wavelet in (7) to analyze
the pulse signal. Since we are using the complex
Gabor wavelet, we have both a real and imaginary
part:

Ψ<(t) =ω− 1
2 e−π(t/ω)2 cos

2πνt
ω

(13)

Ψ=(t) =ω− 1
2 e−π(t/ω)2 sin

2πνt
ω

.(14)

These real and imaginary parts have the same
envelope function:

(15) ΨE(t) =ω− 1
2 e−π(t/ω)2 .

The width parameter ω controls how quicklyΨE is dampened. For smaller values of ω the func-
tion dampens more quickly. Also, ω controls the
magnitude of the wavelet function at t = 0. In fact,
we have Ψ(0) =ω−1/2. The width parameter also
affects the frequency of oscillations of the wavelet.
As ω is increased, the frequency of oscillations of
the wavelet is decreased. See Figure 13.

The frequency parameter ν is used to control
the frequency of the wavelet within the envelope
function. This parameter has no effect on the
envelope function, as shown in Equation (15). As
ν is increased, the Gabor wavelet oscillates much
more quickly. See Figure 14.

When using the Gabor wavelet to analyze mu-
sic, correlations are computed using the Gabor
wavelet with a scaling parameter s. For our pulse
train P these correlations are denoted (P : Ψs) for
s = 2−r/M , r = 0,1, ..., IM , and are defined by
(16)

(P : Ψs)(τk) = M∑
m=0

P(tm)s−1/2Ψ ([tm − τk]s−1).

Since {P(tm)} is a binary signal, the terms of this
sum will equal s−1/2Ψ ([tm − τk]s−1) if P(tm) = 1,
and 0 if P(tm) = 0. The values of τk represent
the center of the Gabor wavelet being translated
along the time axis. So for values of tm closer to τk,
s−1/2Ψ ([tm − τk]s−1) will be larger in magnitude.
Then, at values for tm where P(tm) = 1 and tm = τk,
the corresponding term in the correlation sum will
be

P(tm)s−1/2Ψ ([tm − τk]s−1) = s−1/2Ψ(0)
= 1√

s

√
2B
pT

which will represent the striking of an instrument.
So as s reaches its smallest values, near s = 2−I ,
the correlations will have large magnitude values
only near τk, and where P(tm) = 1, i.e., at the beat

of the instrument. This happens because small
values of s result in the function

s−1/2Ψ ([tm − τk]s−1)

being dampened very quickly, so very little other
than the actual beats are detected by the Gabor
CWT.

Detection of the rhythm and grouping of the per-
cussion signal is accomplished by the larger values
of s that result in a slowly dampened Gabor wavelet.
As the correlation sum moves to values such
that tm ≠ τk, the function s−1/2Ψ ([tm − τk]s−1)
is being dampened. But with the wavelet be-
ing dampened more slowly now, the values of
s−1/2Ψ ([tm − τk]s−1) are larger near tm = τk than
they were before. Hence the tm values where
P(tm) = 1 will result in summing more values of
the wavelet that are significantly large. Therefore,
any beat that is close to another beat will result
in larger correlation values for larger values of s.
Notice also that those values of tm where P(tm) = 0
that are close to tm values where P(tm) = 1 will
result in summing across the lesser dampened
Gabor wavelet values—our scalogram will thus be
registering the grouping of closely spaced beats.

Now we need to choose the parameters ω and
ν based on {P(tm)} to obtain the desired shape
for the Gabor wavelet. To choose these parameters
for a specific percussion signal we will use B/T as
our measure of the average beats per second. The
average time between beats will then be the recip-
rocal of the average beats per second: T/B. Then
we let the width parameter ω and the frequency
parameter ν be defined by (11), with parameter
p > 0 used as a scaling factor. With these width
and frequency parameters, the Gabor wavelet is

(17) Ψ(t) =√ 2B
pT
e−π(2Bt/pT)2ei4πB2/(p2T2).

We want to detect beats that are within T/B,
the average time between beats, of each other.
Likewise, we want separation of the beats that are
not within T/B of each other. We accomplish this
by inspecting the envelope function evaluated at
t = T/B,

(18) ΨE (TB
)
=
√

2B
pT
e−4π/p2 .

The value of the enveloping function ΨE(T/B) can
be written as a function of the parameter p, call it
M(p):

(19) M(p) =
√

2B
pT
e−4π/p2 .

Remembering that T and B are constants de-
termined by the percussion sound signal, the
maximization of the magnitude of the wavelet
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(a) ω = 0.5 (b) ω = 1 (c) ω = 2

Figure 13. Real parts of Gabor wavelet with frequency parameter ν = 1ν = 1ν = 1 and width parameter
ω = 0.5ω = 0.5ω = 0.5, 111, and 222. For each graph, the horizontal range is [−5,5][−5,5][−5,5] and the vertical range is [−2,2][−2,2][−2,2].

(a) ν = 0.5 (b) ν = 1 (c) ν = 2

Figure 14. Real parts of Gabor wavelet with width parameterω = 1ω = 1ω = 1 and frequency parameter
ν = 0.5ν = 0.5ν = 0.5, 111, and 222. For each graph, the horizontal range is [−5,5][−5,5][−5,5] and the vertical range is [−2,2][−2,2][−2,2].

at t = T/B becomes a simple one variable opti-
mization problem. The first derivative of M(p)
is

M ′(p) = 16π − p2

2p3e4π/p2
√
pT/2B

.

Hence p = 4
√
π maximizes the value of the en-

velope function of the wavelet at t = T/B, thus
allowing us to detect beats within T/B of each
other.

With the wavelet function dampened sufficiently
slowly, we know that the envelope function is
sufficiently wide. But the correlations are comput-
ed by taking the magnitude of the sum of the
complex Gabor wavelet samples. Since the real and
imaginary parts involve products with sines and
cosines, there are intervals where the functions
are negative. It is these adjacent negative regions,
on each side of the main lobe of Ψ<, that allow for
the separation of beats that are greater than T/B
apart but less than 2T/B apart (if they are more
than 2T/B apart, the dampening of ΨE produces
low-magnitude correlations).

Width and Frequency for Better Display

There is one wrinkle to the analysis above. If the
width and frequency parameters are set according
to Equation (11), then at the lowest reciprocal-scale
value 1/s = 1 the display of the percussion scalo-
gram cuts off at the bottom, and it is difficult to
perceive the scalogram’s features at this scale. To

remedy that defect, when we display a percussion
scalogram we double the width in order to push
down the lowest reciprocal-scale by one octave.
Hence we use the following formulas

(20) ω = pT
B
, ν = B

pT
, p = 4

√
π

for displaying our percussion scalograms.

Choosing Octaves and Voices

The variable 1/s along the vertical axis of a per-
cussion scalogram (see Figure 4(b), for example)
is related to frequency, but on a logarithmic scale.
To find the actual frequency at any point along
the vertical axis we compute the base frequency
ν/ω multiplied by the value of 1/s. The value of
I determines the range of the vertical axis in a
scalogram, i.e., how large 1/s is, and the value of
M determines how many correlations per octave
we are computing for our scalogram.

In order to have a satisfactory percussion scalo-
gram, we need the maximum wavelet frequency
equal to the maximum pulse frequency. The scale
variable s satisfies s = 2−k/M , where k = 0,1, . . . , IM .
Hence the maximum 1/s we can use is calculated
as follows:

1
s
= 2IM/M = 2I .

Now let δ be the minimum distances between
pulses on a pulse train. By analogy of our pulse
trains with sinusoidal curves, we postulate that the
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(a) I = 3 (b) I = 4 (c) I = 5

Figure 15. Examples of percussion scalograms using different values of III, the number of octaves,
for the Dance Around percussion passage. Graph (b) uses the value of I = 4I = 4I = 4 calculated from
Equation (23).

maximum pulse frequency should be one-half of
1/δ. Setting this maximum pulse frequency equal
to the maximum wavelet frequency, we have

(21)
1

2δ
= ν
ω

2I .

Notice that both sides of (21) have units of
beats/sec.

Using the equations for ν and ω in (20), we
rewrite Equation (21) as

1
2δ
= ν
ω

2I

=
(
B
pT

)2

2I .

Solving for I yields

(22) I = log2

(
p2T 2

δB2

)
− 1.

Because I is required to be a positive integer, we
shall round down this exact value for I. Thus we
set

(23) I =
⌊

log2

(
p2T 2

δB2

)
− 3

2

⌋
.

To illustrate the value of selecting I per Equa-
tion (23), in Figure 15 we show three different
scalograms for the Dance Around percussion se-
quence. For this example, Equation (23) yields the
value I = 4. Using this value, we find that the
scalogram plotted in Figure 15(b) is able to detect
the individual drum strikes and their groupings. If,
however, we set I too low, say I = 3 in Figure 15(a),
then the scalogram does not display the timings of

the individual drum beats very well. On the other
hand, if I is set too high, say I = 5 in Figure 15(c),
then the scalogram is too finely resolved. In partic-
ular, at the top of the scalogram, for 1/s = 25, we
find that the scalogram is detecting the beginning
and ending of each drum strike as separate events,
which overestimates by a factor of 2 the number
of strikes.

Having set the value of I, the value for M can
then be expressed as a simple inverse proportion,
depending on the program’s capacity. For example,
with Fawav [35] the number of correlations used
in a scalogram is constrained to be no more than
256, in which case we set

(24) M =
⌊

256
I

⌋
and that concludes our rationale for satisfac-
torily choosing the parameters for percussion
scalograms.

Conclusion
In this paper we have described the way in which
spectrograms and percussion scalograms can be
used for analyzing musical rhythm and melody.
While percussion scalograms work fairly effectively
on brief percussion passages, more research is
needed to improve their performance on a wider
variety of music (especially when the volume is
highly variable). We only briefly introduced the
use of spectrograms for analyzing melody and
its hierarchical structure; more examples are dis-
cussed in [34] and at the website [6]. Our discussion
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showed how percussion scalograms could be used
to distinguish some styles of drumming, but much
more work remains to be done. Further research
is also needed on using local averages, instead of
the global average A that we employed, and on
determining what additional information can be
gleaned from the phases of the Gabor CWTs.
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