
The Brave New World of
Bodacious Assumptions

in Cryptography
Neal Koblitz and Alfred Menezes

T
here is a lot at stake in public-key
cryptography. It is, after all, a crucial
component in efforts to reduce identity
theft, online fraud, and other forms of
cybercrime. Traditionally, the security

of a public-key system rests upon the assumed
difficulty of a certain mathematical problem. Hence,
newcomers to the field would logically expect that
the problems that are used in security proofs come
from a small set of extensively studied, natural
problems. But they are in for an unpleasant surprise.
What they encounter instead is a menagerie of
ornate and bizarre mathematical problems whose
presumed intractability is a basic assumption in
the theorems about the security of many of the
cryptographic protocols that have been proposed
in the literature.

What Does Security Mean?
Suppose that someone is using public-key cryptog-
raphy to encrypt credit card numbers during online
purchases, sign a message digitally, or verify the
route that a set of data followed in going from the
source to her computer. How can she be sure that
the system is secure? What type of evidence would
convince her that a malicious adversary could not
somehow compromise the security of the system?

At first glance it seems that this question has
a straightforward answer. At the heart of any
public-key cryptosystem is a one-way function—a
function y = f (x) that is easy to evaluate but
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for which it is computationally infeasible (one
hopes) to find the inverse x = f−1(y). The two
most important examples of such functions are
the following:
• The Rivest-Shamir-Adleman (RSA) type of cryptog-
raphy [28] is based on the assumed intractability
of inverting the function (p, q) , N = pq, where
(p, q) is a pair of randomly generated primes of
roughly the same magnitude. The task of inverting
this function is the famous integer factorization
problem (the most difficult cases of which are
believed to have the form N = pq of an RSA
modulus).
• Elliptic curve cryptography (ECC) is based on
the assumed difficulty of inverting the function
x, xP , where P is a point of large prime order p
on an elliptic curve E defined over the field Fq of q
elements and x is an integer mod p. The task of
inverting this function is the Elliptic Curve Discrete
Logarithm Problem (ECDLP).

Indeed, a large proportion of all of the math-
ematical research in public-key cryptography is
concerned with algorithms for inverting the most
important one-way functions. Hundreds of papers
in mathematics as well as cryptography journals
have been devoted to index calculus methods
for factoring integers, to improved Pollard-ρ al-
gorithms [33] and Weil descent methods [18] for
finding discrete logarithms on elliptic curves, and
to searches for weak parameters, i.e., RSA moduli
N that are a little easier to factor than most,
finite fields over which the ECDLP is slightly easier
to solve, and so on. Traditionally, many mathe-
maticians working in cryptography have tended
to regard the question of security of a type of
public-key system as equivalent to hardness of
inverting the underlying one-way function.
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However, this answer to the security question
is woefully inadequate. In the first place, the
implication goes only one way: if the underlying
problem is efficiently solvable, then the system is
insecure; but if it is intractable, the system is not
necessarily secure. In other words, intractability is
a necessary but not sufficient condition.

In the case of RSA, for example, the encryption
function is exponentiation modulo N: C = P e
mod N, where e is a fixed integer prime to
φ(N) = (p − 1)(q − 1), P is a block of plaintext
(regarded as an integer less than N), and C is the
scrambled text, called ciphertext. The decryption
function P = Cd mod N (where d is an inverse of
the exponent e modulo φ(N)) can be computed if
one knows the factorization of N. But it has never
been proved that knowledge of that factorization
is necessary in order to decrypt. In fact, in a
paper titled “Breaking RSA may not be equivalent
to factoring” [12], Boneh and Venkatesan gave
evidence that the above e-th root problem modulo
N might be strictly easier than factoring N.

Moreover, there might be indirect ways to exploit
the particular implementation of RSA that in certain
cases would allow someone (Cynthia) other than
the intended recipient (Alice) to learn the secret
plaintext. For example,
• Suppose that Alice is receiving messages that
have been encrypted using RSA; her public key is
(N, e). Cynthia, after intercepting the ciphertext
C that her competitor Bob sent to Alice, wants to
know the plaintext P (let’s say it was his bid on
a job). If Cynthia asks Alice for P directly, Alice
won’t tell her Bob’s bid, because it’s against Alice’s
interests for Cynthia to know that. But suppose
that awhile back, before Bob muscled in on her
territory, Cynthia had extensive correspondence
with Alice, and she now sends a message to Alice
saying (falsely) that she lost one of her messages
to Alice, she needs it for her records, and all she
has is the ciphertext C′. Alice’s computer willingly
decryptsC′ for Cynthia and sends her P ′ = C′d mod
N. But in reality Cynthia formed C′ by choosing
a random R and setting C′ = CRe mod N. After
Alice is tricked into sending her P ′, all Cynthia has
to do is divide it by R modulo N in order to learn
P . This is called a chosen-ciphertext attack.

More precisely, in such an attack the adversary
is assumed to be able to get Alice to decipher
any ciphertext C′ she wants other than the target
ciphertext C. The system is said to have chosen-
ciphertext security if knowledge of all those other
plaintexts P ′ will not enable Cynthia to decrypt C.

In RSA the simplest way to prevent a chosen-
ciphertext attack is to “pad” a message with a block
of random bits before encryption (see, for example,
[3]); then when Alice reveals only the subset of bits
of P ′ that are in the message part of C′d , Cynthia
is stymied.

• Again suppose that Alice is receiving messages
that have been encrypted using RSA. The plaintext
messages have to adhere to a certain format,
and if a decrypted message is not in that form,
Alice’s computer transmits an error message to the
sender. This seems innocuous enough. However,
Bleichenbacher [5] showed that the error messages
sometimes might compromise security.

Bleichenbacher’s idea can be illustrated if we
consider a simplified version of the form of RSA
that he attacked in [5]. Suppose that we are using
RSA with a 1024-bit modulus N to send a 128-bit
secret keym (for use in symmetric encryption). We
decide to pad m by putting a random number r
in front of it, but since this doesn’t take up the
full 1024 bits, we just fill in zero-bits to the left of
r and m. When Alice receives our ciphertext, she
decrypts it, checks that it has the right form with
zero-bits at the left end—if not, she informs us
that there was an error and asks us to resend—and
then deletes the zero-bits and r to obtain m. In
that case Bleichenbacher can break the system—in
the sense of finding the plaintext message—by
sending a series of carefully chosen ciphertexts
(certain “perturbations” of the ciphertext he wants
to decipher) and keeping a record of which ones
are rejected because their e-th root modulo N is
not of the proper form; that is, does not have the
prescribed number of zero-bits.

Notice that the particular way that RSA is being
used plays a crucial role. Thus, when discussing
security, one must specify not only the type of
cryptography and choice of parameters but also the
instructions that will be followed. The sequence of
steps the users of the system go through is called
a protocol. A protocol description might take the
form, “First Alice sends Bob the elements…; then
Bob responds with…; then Alice answers with…;
and so on.”

Also notice that both of the above types of
attacks can be avoided if a protocol is used
that has chosen-ciphertext security, that is, if it
can withstand a chosen-ciphertext attack. Ideally,
what this means is that there is an efficient
reduction from P to Q, where Q is the problem
of making a successful chosen-ciphertext attack
and P is a mathematical problem (such as integer
factorization) that is widely believed to be very
difficult (provided that one chooses the parameters
suitably). Such a reduction implies that Q is at
least as hard as P. What a “security proof”—
or, as we prefer to say, a reductionist security
argument [23]—does is show that an adversary
cannot succeed in mounting a certain category of
attack unless a certain underlying mathematical
problem is tractable.
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Rabin-Williams
In 1979 Rabin [27] proposed an encryption function
that could be proved to be invertible only by
someone who could factor N. His system is similar
to RSA, except that the exponent is 2 rather than
an integer e prime to ϕ(N). For N a product of
two primes the squaring map is 4-to-1 rather than
1-to-1 on the residues modulo N, so Rabin finds
all four square roots of a ciphertext C (and in
practice chooses the plaintext that makes sense to
the message recipient).

Reductionist Security Claim. Someone who can
find messages P from the ciphertext C must also
be able to factor N.

Argument. Informally, the reason is that finding
P means being able to find all four square roots
of C, because any one of them could be the true
plaintext P . Those square roots are ±P and ±εP ,
where ε is a residue mod N that is ≡ 1 (mod p) and
≡ −1 (mod q). That means that someone who can
find messages must know the value of ε, in which
case N can be factored quickly using the Euclidean
algorithm, since gcd(N, ε− 1) = p.

A more formal reduction would go as follows.
We suppose that there exists an adversary that
takes N and C as input and produces one of the
square roots of C modulo N. We think of the
adversary as a computer program, and we show
how someone (Cynthia) who has that program
could use it to quickly factor N.

What Cynthia does is the following. She chooses
a random residue x, sets C = x2 mod N, and
inputs that value of C to the adversary. The
adversary outputs a square root P of C mod N.
With probability 1/2 the root P is ±εx, and in that
case Cynthia can immediately compute ε = ±x/P
and then factor N. If, on the other hand, P = ±x,
then the value of P won’t help her factorN, and she
tries again, starting with a new value of x. There is
only a 1/2k chance that she will fail to factor N in
k or fewer tries. We say that this argument reduces
factoring N to breaking Rabin encryption mod
N (where “breaking” means recovering plaintext
messages). Rabin’s scheme was the first public-key
system to be proposed that was accompanied
with a reductionist security argument. Users of
Rabin encryption could be certain that no one
could recover plaintexts unless they knew the
factorization of N.

Soon after Rabin proposed his encryption
scheme, Rivest pointed out that, ironically, the
very feature that gives it an extra measure of
security would also lead to total collapse if it
were confronted with a chosen-ciphertext attacker.
Namely, suppose that the adversary could some-
how fool Alice into decrypting a ciphertext of its
own choosing. The adversary could then follow the
same procedure that Cynthia used in the previous
paragraph to factor N. An adversary who could

trick Alice into deciphering k chosen ciphertexts
would have a 1− 2−k probability of factoring N.

However, at about the same time that Rivest
made this observation, Williams [34] developed
a variant in which the mapping is 1-to-1 that is
especially useful for digital signatures. The result-
ing Rabin-Williams signature scheme appears to
have significant efficiency and security advantages
over traditional RSA. Recently, Bernstein [4] was
able to show that even without random padding of
messages, Rabin-Williams signatures are safe from
chosen-message attack unless the adversary can
factor N.1 Unlike many proofs of security in the
literature, Bernstein’s paper is well written, logical,
and lucid. In fact, after reading it, the obvious
reaction is to ask: Why doesn’t everyone switch to
Rabin-Williams signatures?

In the real world, however, it is too late for that.
Because of progress in factoring, for the highest
security it is now recommended that 15360-bit N
be used for any factorization-based cryptosystem.
Meanwhile, the very highest security level with ECC
requires q of 571 bits. Thus, users of RSA who are
willing to change their software to accommodate a
different system are going to switch to ECC, not to
Rabin-Williams. If [4] had been published twenty
years earlier, the history of digital signatures might
have been very different.

The neglect of exponent 2 in RSA is a typical
example of how historical happenstance and
sociological factors, rather than intrinsic technical
merit, can often determine what technology is
widely used (see [22] for more discussion of this
phenomenon).

The One-More-Discrete-Log Problem
Just as integer factorization is not exactly the
problem one has to solve to invert the RSA
encryption function, similarly, in systems using
elliptic curves and other algebraic groups, the
discrete log problem (DLP) is not the problem that
is most immediately related to the task of the
adversary Cynthia. Take, for example, the simplest
ECC protocol, namely, the basic Diffie-Hellman key
exchange [17] between two users, Alice and Bob.
Let G be the group that is generated by a point
P ∈ E(Fq) of prime order p. Suppose that Alice’s
public key is QA = xP and her secret key is the
integer x mod p; and Bob’s public key is QB = yP
and his secret key is y . Then the shared key is
simply xyP , which Alice computes as xQB and Bob
as yQA.

1Resistance to chosen-message attacks, in which the ad-
versary can obtain signatures of messages of her choice
and then has to sign a different message, is the com-
monly accepted standard of security of digital signatures;
it is closely analogous to chosen-ciphertext security for
encryption.
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The task of Cynthia, who knows P , xP , and yP ,
but neither of the secret keys, is to determine
xyP from that triple of points. This is called
the Diffie-Hellman Problem (DHP) in the group
G. Someone who can find discrete logs in G can
obviously solve the DHP. The converse is a much
more difficult question. However, in contrast to the
situation with RSA, where there is doubt about the
equivalence of the e-th root problem mod N and
integer factorization, in ECC there is considerable
evidence that the DHP and the DLP are of equivalent
difficulty. The results showing this equivalence in
many cases are surveyed in [25].

Because of the nature of chosen-ciphertext
(or chosen-message) security and because many
cryptographers want to have formal reduction
arguments, they have had to greatly enlarge the
types of mathematical problems that are used
in their security analyses. Often the problems
whose intractability is linked to the security of
the protocols have lengthy, elaborate input or are
interactive. In an interactive problem the solver
is permitted to request additional information by
making a bounded number of queries to an oracle,
that is, a black box whose only function is to give
correct answers to a certain type of question. On
occasion, an interactive problem or one with input
and output that appear unnatural might be used
carefully and to good effect (see, for example, [15]).
But in other cases the use of this type of problem
raises more questions than it answers about the
true security of the protocol.

Here are some examples of such problems that
arose in connection with protocols that use elliptic
curves or other algebraic groups:
• The One-More-Discrete-Log Problem (1MDLP) as
first formulated in [1] and [2]. The solver is supplied
with a challenge oracle that produces a random
group element Yi ∈ G when queried and a discrete
log oracle. After ` queries to the challenge oracle
(where ` is chosen by the solver) and at most `− 1
queries to the discrete log oracle, the solver must
find the discrete logs of all ` elements Yi .
• The One-More-Diffie-Hellman Problem (1MDHP)
as first formulated (in a slightly different version)
in [6]. The solver is given an element X ∈ G, an
oracle that can solve the Diffie-Hellman problem for
the given X and arbitrary Y ∈ G, and a challenge
oracle that produces random group elements Yi .
After ` queries to the challenge oracle (where ` is
chosen by the solver) and at most ` − 1 queries to
the Diffie-Hellman oracle, the solver must find all `
solutions Zi = xyiP (where X = xP and Yi = yiP ).

At first it might seem that these problems
should be equivalent in difficulty to the problem
of finding the discrete log of a single random
element or finding the Diffie-Hellman element Z
for fixed X and a single random Y . However, it
turns out that this depends very much on what
groups are used. In [24] we studied these problems

and several others in the setting of the jacobian
group of a genus-g curve. Assuming that one uses
current state-of-the-art algorithms, we found that
1MDLP is harder than 1MDHP for g = 1,2, whereas
it is strictly easier than 1MDHP for g ≥ 4; the two
problems are of roughly equal difficulty for g = 3;
and it is only for nonhyperelliptic curves of genus
3 that the two problems are no easier than the
DLP and DHP. Our conclusion is that it is often
unclear how to gauge the true level of difficulty
of an interactive problem or one with complicated
input.

Reduction Theorems That Do Not Say
Much
Suppose that the designers of a cryptographic
protocol claim to have proved its security by
constructing a reduction from P to Q, where Q
is the problem of mounting a successful attack
(of a prescribed type) on the protocol and P
is a mathematical problem that they believe to
be intractable. Often a close examination of the
two problems P and Q will show that they are
trivially equivalent, in which case the theorem that
supposedly establishes security is really assuming
what one wants to prove. In that case the problem
P has been tailored to make the proof work, and, in
fact, the main difference betweenP andQ is simply
that in the former the extraneous elements and
cryptographic terminology have been removed.

For example, in most signature schemes the
actual messages being signed are extraneous to
an analysis of the scheme, because the first
thing one does to a message is to compute its
hash-function value (fingerprint), which is used
instead of the message itself in all subsequent
steps. If the security theorem is assuming that the
hash-values are indistinguishable from random
numbers—in which case one says that the proof
is in the random-oracle model—then the set of
messages can be replaced by a set of random
numbers. If P has been constructed by removing
this sort of irrelevant feature from Q, then the
equivalence of the two problems will be a tautology,
and the reduction theorem does not provide any
meaningful assurance that the protocol is secure.

Even if the reduction from P to Q is not trivial,
one has to wonder about the value of the theorem
whenever P is complicated and contrived. One
should be especially skeptical if the protocol
designers refer to P as a “standard” problem,
because there is a long history of misleading
uses of the word “standard” in cryptography. For
example, a proof of security that uses weaker
assumptions about the hash function than the
random-oracle assumption (see above) is commonly
said to be a proof in the standard model. The
reader might not notice that, in order to work in the
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standard rather than the random-oracle model, the
authors had to invent a new nonstandard problem.

There is another questionable use of the word
“standard” that is frequently encountered in the
literature. After a complicated interactive problem
P has been used in a couple of papers, subsequent
papers refer to it as a standard problem. The casual
reader is likely to think that something that is
standard has withstood the test of time and that
there’s a consensus among researchers that the
assumption or problem is a reasonable one to rely
upon—although neither conclusion is warranted
in such cases. The terminology obfuscates the fact
that the new problem is highly nonstandard.

Pairing-Based Cryptography
Starting in 2001, pairing-based cryptosystems were
proposed by Dan Boneh, Matt Franklin, and others.
Although some of the ideas had been around for a
couple of years (see, for example, [21, 29]), their
tremendous potential had not been realized before.

The basic idea is that the Weil or Tate pairing
on elliptic curves allows certain cryptographic
goals to be achieved that no one knows how to
achieve with conventional techniques. In some other
cases, pairings give more efficient or conceptually
simpler solutions.

Let
e : G×G -→ µp ⊂ Fqk

be a nondegenerate bilinear pairing on the group
G ⊂ E(Fq) generated by a point P of prime order p
with values in the p-th roots of unity of the degree-k
extension of Fq , where k (called the embedding
degree) is the smallest positive integer such that
p|qk − 1. The feasibility of computing pairings
depends on how big k is. For example, if Fq is a
prime field and E has q + 1 points (such a curve
is called supersingular), then since p|q + 1 and
q + 1|q2 − 1, the embedding degree is k = 2, and
pairings can be computed quickly.

One of the first uses of pairing-based cryp-
tography was the elegant solution by Boneh and
Franklin [10] to an old question of Shamir [30], who
had asked whether an efficient encryption scheme
could be devised in which a user’s public key would
be just her identity (e.g., her email address). Such a
system is called identity-based encryption. Another
early application (see [11]) was to obtain short
signatures.

By the time pairing-based cryptography arose, it
had become de rigueur when proposing a crypto-
graphic protocol always to give a “proof of security”,
that is, a reduction from a supposedly intractable
mathematical problem P to a successful attack (of
a specified type) on the protocol. A peculiar feature
of many pairing-based cryptosystems is that P has
often been very contrived—the sort of problem
that hardly any mathematician would recognize
as natural, let alone want to study. Nevertheless,

it has become customary to regard a conditional
result of the form “if P is hard, then my protocol
is safe from chosen-ciphertext attacks” as a type
of guarantee of security.

The Strong Diffie-Hellman Problem
In [8, 9], Boneh and Boyen proposed a new digital
signature that works as follows. As before, let G be
the group generated by a point P ∈ E(Fq) of prime
order p, and let e : G×G -→ µp be a nondegenerate
bilinear pairing with values in the p-th roots of
unity in a (not too big) field extension of Fq .

In the Boneh-Boyen protocol, to sign a message
m, which is regarded as an integer mod p, Alice
uses her secret key (x, y), which is a pair of integers
mod p. Her public key, which the recipient (Bob)
will use to verify her signature, consists of the two
points X = xP and Y = yP . Alice picks a random r
mod p and sets Q = (x+ yr +m)−1P (where the
reciprocal of x+ yr +m is computed mod p). Her
signature consists of the pair (Q, r).

After receiving m and (Q, r), Bob verifies her
signature by checking that

e(Q,X + rY +mP) = e(P, P);
if equality holds, as it should because of the
bilinearity of e, he is confident that Alice was truly
the signer — that is, only someone who knows the
discrete logs of X and Y could have computed the
point Q that makes the above equality hold.

Boneh and Boyen give a reductionist security
argument that basically shows that a chosen-
message attacker cannot forge a signature provided
that the following Strong Diffie-Hellman (SDH)
problem is hard. This problem is parameterized by
an integer ` (which is a bound on the number of
signature queries the attacker is allowed to make)
and is denoted `-SDH:
• The `-SDH problem in the group G ⊂ E(Fq)
generated by a point P of prime order p is the
problem, given points P, xP, x2P, . . . , x`P (where x
is an unknown integer mod p), of constructing a
pair (c,H) such that (x+ c)H = P (where c is an
integer mod p and H ∈ G).

The difficulty of this problem can be shown to
be less than or equal to that of the classical Diffie-
Hellman problem (which requires the construction
of xyP given P , xP , and yP ). But the problem is an
odd one—the “S” in SDH should really have stood
for “strange”—that had never been studied before.
It was because of nervousness about the `-SDH
assumption that the authors of [8] felt the need
to give evidence that it really is hard. What they
did was derive an exponential-time lower bound
for the amount of time it takes to solve `-SDH in
the generic group model.

The notion of a generic group in cryptography
was first formalized by Nechaev [26] and Shoup [31].
The generic group assumption essentially means
that the group has no special properties that could
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be exploited to help solve the problem. Rather,
the only things that a solver can do with group
elements are performing the group operation,
checking whether two elements are equal, and (in
the case of pairing-based cryptography) computing
the pairing value for two elements. A lower bound
on solving P in the generic group model means
that, in order to solve P in a specific group such
as E(Fq) in time less than that bound, one would
have to somehow exploit special features of the
elliptic curve. In [31] Shoup proved that neither the
discrete log problem (DLP) nor the Diffie-Hellman
problem (DHP) can be solved in fewer than

√p
steps in a generic group of prime order p.

In §5 of [8] Boneh and Boyen proved that `-SDH
in a generic group with a pairing cannot be solved

in fewer than (roughly)
√
p/` operations.

Note that this lower bound
√
p/` for the difficulty

of `-SDH is weaker by a factor of
√
` than the

lower bound
√p for the difficulty of the DLP or

the DHP in the generic group model. At first it
seemed that the factor

√
` was an artifact of the

proof and not a cause for concern and that the
true difficulty of the `-SDH problem was probably√p as in the case of the DLP and DHP. However,
at Eurocrypt 2006 Cheon [16], using the same
attack that had been described earlier in a different
setting by Brown and Gallant [14], showed that
`-SDH can be solved—and in fact the discrete
logarithm x can be found—in

√
p/`0 operations if

`0 ≤ ` divides p − 1 and `0 < p1/3. Thus in some
cases `-SDH can be solved in p1/3 operations. This
means that, to get the same security guarantee (if
one can call it that) that signatures based on the
DHP have with group order of a certain bitlength,
Boneh-Boyen signatures should use a group whose
order has 50% greater bitlength. It should also be
noted that, even though solving `-SDH does not
immediately imply the ability to forge Boneh-Boyen
signatures, recently Jao and Yoshida [20] showed
how, using the solution to `-SDH in [16], one
can forge signatures in roughly p2/5 operations
(with roughly p1/5 signature queries) under certain
conditions.

Some of the other supposedly intractable
problems that arise in security reductions for
pairing-based protocols are even more ornate and
contrived than the `-SDH. Several such problems,
such as the following Hidden Strong Diffie-Hellman
(HSDH), are listed in [13]:
• In `-HSDH one is given P, xP, yP ∈ G and ` − 1
triples

(wjP, (x+wj)−1P, ywjP), j = 1, . . . , ` − 1,

and is required to find one more triple of the form
(wP, (x+w)−1P, ywP) that is distinct from any of
the ` − 1 triples in the problem’s input.

When readers encounter the bewildering array of
problems whose presumed difficulty is linked to the
security of important cryptographic protocols, a
common reaction is dismay. However, some people
who work in pairing-based cryptography prefer to
put a positive spin on the unusual assortment of
intractability assumptions. In a paper presented at
the Pairing 2008 conference [13], Boyen said:

The newcomer to this particular branch of
cryptography will therefore most likely be as-
tonished by the sheer number, and sometimes
creativity, of those assumptions. The contrast
with the more traditional branches of alge-
braic cryptography is quite stark indeed… the
much younger “Pairing” branch…is already
teeming with dozens of plausible assump-
tions, whose distinctive features make them
uniquely and narrowly suited to specific types
of constructions and security reductions.

Far from being a collective whim, this
haphazard state of affair [sic] stems from the
very power of the bilinear pairing…in compar-
ison to the admittedly quite simpler algebraic
structures of twentieth-century public-key
cryptography…[T]he new “bilinear” groups of-
fer a much richer palette of cryptographically
useful trapdoors than their “unidimensional”
counterparts.
Boyen eloquently expresses a youthful opti-

mism about the advantages of twenty-first-century
cryptography—with its “rich palette” of exotic
intractability assumptions—over the “unidimen-
sional” RSA and ECC that were invented in the
1970s and 1980s. However, some recent experi-
ences with these “plausible assumptions” suggest
a need to temper this exuberance.

In the next section we describe a particularly
dramatic example of how things can go wrong.

Sequential Aggregate Signatures
In 2007, Boldyreva, Gentry, O’Neill, and Yum [7]
constructed a new type of digital signature called an
Ordered Multi-Signature (OMS). This means a single
compact signature produced by several people
acting in sequence. It has fixed length independent
of the number of signers—even though the different
signers may be attesting to different messages.
The main application discussed in [7] is to secure
routing of messages through a network.

The authors of [7] describe the advantages
of their OMS. In the first place, it is identity-
based, i.e., there are no public keys other than
the signers’ email addresses; this “permits savings
on bandwidth and storage…Our OMS construction
substantially improves computational efficiency
and scalability over any existing scheme with
suitable functionality.” Moreover, the authors
write,
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In contrast to the only prior scheme
to provide this functionality, ours
offers improved security that does
not rely on synchronized clocks
or a trusted first signer. We pro-
vide formal security definitions and
support the proposed scheme with
security proofs under appropriate
computational assumptions.

That is, the OMS in [7] is not only more efficient
but also has “improved security”.

The construction in [7] used groups G with
bilinear pairings, and the proof of security assumed
that the following Modified Lysyanskaya-Rivest-
Sahai-Wolf (M-LRSW) problem is intractable:
• Given a group G of prime order p, a non-
degenerate bilinear pairing e : G×G -→ µp, fixed
nonidentity elements P,U,V ∈ G that are known
to the solver, and fixed exponents a, b mod p with
aP and bP but not a or b known to the solver, the
M-LRSW problem assumes that the solver is given
an oracle that, when queried with an integer m
mod p, chooses a random r mod p and gives the
solver the triple (X, Y ,Z) of elements of G such
that

X =mrU + abP, Y = rV + abP, Z = rP.
The solver must then produce some m′ not equal
to any of the m that were queried and one more
triple (X′, Y ′, Z′) such that for some integer x

X′ =m′xU+abP, Y ′ = xV+abP, Z′ = xP.
Just as Boneh and Boyen did in [8], the authors

of [7] argue that this problem is truly hard by
giving an exponential lower bound for the time
needed to solve M-LRSW in a generic group. They
emphasize that:

This has become a standard way of building
confidence in the hardness of computational
problems in groups equipped with bilinear
maps.

Just about a year after [7] appeared, Hwang,
Lee, and Yung [19] made a startling discovery: the
“provably secure” protocol in [7] can very easily be
broken, and the supposedly intractable M-LRSW
problem can very easily be solved! Here is the fast
and simple solution to M-LRSW that they found.
Choose any m1, m2, and m′ that are distinct and
nonzero modulo p. Choose β1, β2 to be solutions
in Fp to the two relations β2 = 1− β1 and

β1

m1
+ β2

m2
= 1
m′
.

(The solutions are βi = mi(m3−i−m′)
m′(m3−i−mi) , i = 1,2.) Then

make two queries to the oracle with inputs m1

and m2; let (Xi , Yi , Zi), i = 1,2, denote the oracle’s
responses, and let ri , i = 1,2, denote the random r

used by the oracle to produce (Xi , Yi , Zi). One then
easily checks that, for m′ the triple

X′ =m′
(
(β1/m1)X1 + (β2/m2)X2

)
,

Y ′ = β1Y1 + β2Y2, Z′ = β1Z1 + β2Z2

(where the coefficients of the Xi are computed in
Fp) is a solution of M-LRSW (with x = β1r1 + β2r2).
Notice that this algorithm is generic, i.e., it works
in any group of order p.

But Theorem 5.1 of [7], which is proved in
Appendix D of the full version of the paper, gives
an exponential lower bound (essentially of order√p) for the time needed to solve M-LRSW. The above
Huang-Lee-Yung algorithm shows that Theorem
5.1 is dramatically false.

Oops!
What went wrong? The 4-page single-spaced

argument purporting to prove Theorem 5.1 is
presented in a style that is distressingly common
in the provable security literature, with cumber-
some notation and turgid formalism that make it
unreadable to nonspecialists (and even to some
specialists). To a mathematician reader, Appendix
D of [7] does not resemble what we would normally
recognize as a proof of a theorem. If one tries
to wade through it, one sees that the authors are
essentially assuming that all an attacker can do is
make queries of the oracle and some rudimentary
hit-or-miss computations and wait for two group
elements to coincide. They are forgetting that the
exponent space is a publicly known prime field
and that the attacker is free to do arithmetic in
that field and even solve an equation or two.

Conclusion
What are the implications of all this confusion?
Should we be worried about the true security of
the protocols that are deployed in the real world?
Should we cut up our credit cards and stop making
online purchases?

No, that’s not the conclusion to draw from these
examples. In the first place, fallacies found in proofs
of security do not necessarily lead to an actual
breach. Rather, the flaw in the proof simply means
that the advertised guarantee disappears. Similarly,
even if we are bewildered and unimpressed by
the mathematical problem whose intractability is
being assumed in a security proof, we might still
have confidence—based on other criteria besides
the reductionist proof—that the protocol is secure.

In the second place, cryptographic protocols are
not developed and marketed in the real world unless
they have been approved by certain industrial-
standards bodies. Most cryptosystems proposed
in academic papers never get used commercially,
and the ones that do have a long lag—sometimes
decades—between the initial proposal and actual
deployment. Protocols that are based on dubious
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assumptions or fallacious proofs are not likely to
survive this process.

In reality the mathematical sciences have only a
limited role to play in evaluating the true security of
a cryptographic protocol. Admittedly it is tempting
to hype up the centrality of mathematics in
cryptography and use cryptographic applications
as a marketing tool for mathematics, saying things
like: “Number theory can provide the foundation
for information security in an electronic world.”
The first author pleads guilty to having made
this statement to an audience of several thousand
security specialists at the 2009 RSA Conference. In
so doing he violated his own belief that scientists
should show self-restraint and refrain from BS-ing2

the public.
Perhaps the main lesson to learn from the

unreliability of so many “proofs of security” of
cryptosystems is that mathematicians (and com-
puter scientists) should be a bit more modest
about our role in determining whether or not a
system can be relied upon. Such an evaluation
needs to incorporate many other disciplines and
involve people with hands-on experience and not
just theoretical knowledge. A discussion of the
nonmathematical side of this problem would be
out of place in the AMS Notices. For the interested
reader a good place to start would be the short
article [32] by Brian Snow, the Technical Director of
Research (now retired) at the U.S. National Security
Agency.
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