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R
ecent years have witnessed unprece-
dented progress in the biosciences.
Perhaps the most visible event is the
completion of the Human Genome
Project—the �rst step toward a molecu-

lar genetic understanding of the human organisms.
Subsequent discovery of noncoding genes and
deeper understanding of the genomic/proteomic
machinery continue to advance biology at a revo-
lutionary pace. Advances are reported continually
in the �ghts against cancer and degenerative
diseases of the brain, such as Alzheimer's,
Parkinson's, and ALS, and in the management
of health threats such as AIDS, insect disease
vectors, and antibiotic resistance. Society is eager
to see basic research quickly translated into
longer and better quality of life through deeper
understanding of disease mechanisms and better
medical treatment. Accordingly, many topics from
bioscience have been given high priority on the
national agenda.

Behind the headlines lie astonishing advances
in basic science and technology, including medical
imaging, nanoscale bioengineering, and gene ex-
pression arrays. These technologies have rapidly
generated massive sets of loosely structured
data and enabled researchers to elucidate ba-
sic biomedical mechanisms and pathways. This
explosion of experimental results has challenged
researchers' abilities to synthesize the data and
draw knowledge from them.

Thus the emergence of models and the exis-
tence of large data sets that require quantitative
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analysis, coupled with strong public support for
accelerated progress in the biosciences, presents
a great opportunity for the mathematical sci-
ences. To successfully exploit this opportunity
will require mathematical scientists to learn the
bioscientists' language so that they can understand
the underlying biology clearly enough before they
bring the power of mathematics to bear. While
we can expect that established methods in math-
ematical sciences will be of immediate use, the
quantitative analysis of fundamental problems in
bioscience will undoubtedly require new ideas
and new techniques. Indeed, when viewed over a
long times cale, biological applications launched
new �elds within mathematics, for example, pat-
tern formation in reaction-di�usion equations and
combinatorial problems arising in sequence align-
ment. There already exist several mathematical
bioscience research groups in departments of
mathematics, statistics, computer science, and bi-
ology, as well as biostatistics centers in medical
research facilities around the country. In addition,
individual topics from mathematical biosciences
have been featured in the programs of some of
the existing mathematical institutes in the United
States. Nevertheless, the current size of the math-
ematical biosciences community is relatively small
compared with the demands of the biosciences.
Therefore, there is a need to encourage an in�ux of
mathematicians and statisticians into mathemat-
ical biosciences and to nurture a new generation
of researchers more systematically than before.

These challenges have motivated us to found the
Mathematical Biosciences Institute at Ohio State
University as one of the NSF/DMS Mathematical
Institutes. The Institute became operational in the
autumn of 2002, and having served as its �rst
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Figure 1. Schematic view of the wound
environment developed by Roy et al. [18] (with
permission from C. K. Sen). The blue segments

represent circulation barriers created using a
bipedicle �ap, and the red arrows illustrate the

blood circulation near the wound.

director, I witnessed �rsthand the enthusiasm of
thousands of our visitors, both mathematicians
and biologists. In this article I would like to
share with the mathematical community some
of the knowledge I have gained as director and
researcher in the MBI.

What Is Mathematical Biology?
If the unit of physics is an atom, then the unit of
life is a cell; but a cell is in�nitely more complex.
A cell in mammals typically contains 300 mil-
lion molecules. Some are very large, such as the
DNA molecules, which consist of many millions of
atoms. But a cell is not just a huge collection of
molecules. The cell maintains control and order
among its molecules as exempli�ed, for instance,
in the DNA-RNA-protein machinery. A cell absorbs
nutrients and generates biomass to perform spe-
ci�c functions, such as secreting chemicals or
engul�ng pathogens; it adapts to its microenvi-
ronment by moving toward sources of nutrients or
by remaining quiescent when resources are scarce,
and a cell replicates when conditions are favorable.
Consequently, mathematical modeling of cellular
processes is quite challenging [1]. Furthermore,
since the human body has 10 13 cells of di�erent
types and functions continuously talking to each
other, it is quite clear that mathematical models
of biological processes are extremely challenging.
Even the most successful models can be expected
to deal only with limited situations, ignoring all
but the most essential variables.

Work in mathematical biology is typically a
collaboration between a mathematician and a

biologist. The latter will pose the biological ques-
tions or describe a set of experiments, while the
former will develop a model and simulate it.

In order to develop a model, for instance in
terms of a system of di�erential equations, the
mathematician needs to determine a diagram of
relationships among the biological variables and
specify rate parameters. Typically some of these
parameters are not found in the literature and
need to be estimated. They are determined in an
iterative process of simulations aimed at achieving
good �t with the experimental data. This process
may take many iterations. Hence it is crucial
that each simulation does not take too much
computational time. When the model simulations
�nally agree with experimental results, the model
may be considered useful for suggesting new
hypotheses that are biologically testable. It may
suggest, for example, a particular therapy that
is represented, in the model, in the form of an
increase in one or several rate parameters.

“How useful is mathematical biology?” is a
question with two parts: Does mathematics ad-
vance biology, and does biology inspire new
mathematics? In what follows I shall give a few
examples of research conducted at the Mathemat-
ical Biosciences Institute that illustrate how both
disciplines, mathematics and biology, bene�t from
each other.

Ischemic Wounds
Chronic wounds represent a major public health
problem worldwide, a�ecting 6.5 million individ-
uals annually in the United States alone. Vascular
complications commonly associated with prob-
lematic wounds are primarily responsible for
wound ischemia (shortage of blood �ow), which
severely impairs healing response. Recent exper-
iments with a porcine model to study healing
in a preclinical approach were conducted by Roy
et al. [18]. In those experiments a full-thickness
bipedicle dermal �ap was developed �rst, such
that blood supply was isolated from underneath
the �ap and from two long edges, as shown in
Figure 1. One circular wound was then developed
in the center of the �ap (ischemic wound) and
another on the normal skin (nonischemic wound)
of the same animal as a pair-matched control.

In order to determine therapeutic strategies that
may help heal ischemic wounds, Xue et al. [19]
developed a mathematical model that incorporates
the main variables involved in the wound closure
phase of the healing process, namely, several
types of blood and tissue cells, chemical signals,
and tissue density. The model was formulated in
terms of a system of partial di�erential equations
in a viscoelastic, partially healed domain where a
portion of the boundary, namely the open wound's
surface, is a free boundary unknown in advance.
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Figure 2 (from [19]). The open wound is the
circular region f 0 � r � R„t…gf 0 � r � R„t…gf 0 � r � R„t…g, the partially
healed region is the annulus f R„t…� r � R„0…gf R„t…� r � R„0…gf R„t…� r � R„0…g,
and the normal healthy tissue is
f R„0…� r � Lgf R„0…� r � Lgf R„0…� r � Lg.

However, each simulation of the free boundary
problem in the 3-dimensional geometry takes too
much time. The challenge then was how to simplify
the geometry while still imposing conditions of
ischemia. Xue et al. [19] assumed that the wound
is circular, as shown in Figure 2, but that many
small incisions of size � are made at r ƒ L
with adjacent incisions separated by distance � .
Taking � , � ! 0 in appropriate proportions and
applying homogenization theory, they deduced
that each boundary condition u ƒ us (for a solution
of Ñu ƒ f ) before the incisions changed into a
boundary condition

„1 � �…„u � us…‚ �
@u
@r

ƒ 0 at r ƒ L

after the incisions were made, where � is a measure
of ischemia; � near 1 means extreme ischemia.

Figure 3 shows simulations of the radii of the
open ischemic and nonischemic wounds over a
period of twenty days. The results are in tight
agreement with the experimental results of Roy et
al. [18]. The model is now going to be used as a
tool to suggest biologically testable hypotheses for
improved healing, thereby reducing the need for
guesswork and time-consuming animal testing.

Cancer-Inspired Free Boundary Problems
The mathematical theory of free boundary prob-
lems has developed extensively over the last forty
years, but the range of new applications has re-
mained modest. Recently, histological changes in
biology o�ered new mathematical models and

Figure 3 (from [19]). Radius of ischemic
„� ƒ 0:92…„� ƒ 0:92…„� ƒ 0:92…and nonischemic wound „� ƒ 0…„� ƒ 0…„� ƒ 0…
over a period of twenty days. The nonischemic
wound closes after thirteen days, whereas the
ischemic wound does not heal.

inspired new theories; examples occurred in tu-
mor growth, wound healing, and developmental
biology, to name a few. We shall consider here
tumor models and describe a new class of free
boundary problems related to symmetry-breaking
bifurcations of a spherical tumor and its stability.

Consider a tumor that occupies a region Ú„t…,
at time t , and assume that all the cells in Ú„t…are
identical tumor cells and are uniformly distributed.
Due to proliferation, the region Ú„t…will expand,
but only as long as there is su�cient supply of
nutrients � . The concentration � is assumed to
satisfy a di�usion system

� t � Ñ� ‚ � ƒ 0 in Ú„t…; � ƒ 1 on @Ú„t…;

and the proliferation rate S is assumed to depend
linearly on � :

S ƒ �„� � e� … „� > 0; 0 < e� < 1…;

roughly speaking, if � > e� , the tumor expands,
and if � < e� , the tumor shrinks. By conservation
of mass div ~v ƒ S, where ~v is the velocity of cells
within the tumor. Assuming Darcy's law ~v ƒ �r p ,
where p is the inner pressure, one gets

� Ñp ƒ �„� � e� … in Ú„t…:

We introduce a boundary condition

� ƒ � on @Ú„t… „� ƒ mean curvature …;

which represents the adhesive forces among cells
at the boundary, and the continuity condition

Vn ƒ ~v � ~n ƒ �
@p
@n

on @Ú„t…;

where Vn is the velocity of the free boundary in
the outward normal direction ~n.
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Figure 4 (from [16]). Schematic of tissue �ap. The top colore d layer consists of dermis, epidermis,
and subdermal plexus. The bottom layer represents fat tissu e. The perforator artery and vein are

located at the bottom of the �ap.

It is well known that for every e� there exists a � -
family of stationary radially symmetric solutions
with radius R which depends only on e� :

1
R2

„R cot h R � 1…ƒ
e�
3

; � „r… ƒ
R

sin h R
sin h r

r
;

p„r…ƒ C � �� „r… ‚
�
6

e� r 2 ;

where C ƒ
1
R

‚ � �
�
6

e� R 2 . The radius R varies

from 0 to 1 when e� varies from 1 to 0. The sta-
tionary problem lends itself to questions naturally
considered in bifurcation analysis, with � as the
bifurcation parameter.

It was proved in [15], [6], and [7] that, given
R, there exists a family of symmetry-breaking
bifurcation branches of solutions originating at
� ƒ � n „R…where
0 < � 2 < � 3 < � � � < � u < � � � ,

� ƒ � n ‚ � � n;1 ‚ O„� 2…;

r ƒ R ‚ � Y n;0„�… ‚ O„� 2…

and where Yn;0„�… is the spherical harmonic of
order „n; 0…. Furthermore ([7], [8]), the spherical
solution is asymptotically stable (as t ! 1 ) if
� < � � „R… and linearly unstable (as t ! 1 ) if
� > � � „R…. Here � � „R…ƒ � 2„R… if R > R, and
� � „R… < � 2„R…if R < R, where R ƒ 0:62207 : : : is
a solution of a transcendental equation. In case
R > R, the �rst bifurcation point � 2 is transcritical,
with one branch being linearly stable and the other
branch unstable [13].

The bifurcation results have been extended to
the case where Darcy's law is replaced by the
Stokes equation ([11], [12]); this models a tumor
developing in �uid-like tissue, for instance, in the
mammary gland or in the brain. However, in this
case the �rst bifurcation branch has a boundary
with many �ngers:

r ƒ R ‚ Ö Yn � „R…;0„�… ‚ O„� 2…

where n � „R…! 1 if R ! 1 . The biological in-
terpretation is that when a spherical tumor in
�uid-like tissue becomes unstable, it develops
many �ngers; hence it incurs a higher risk of
metastasis.

Tumor models with several types of cells
(proliferating, quiescent, dead) were analyzed
mathematically in [3], but the existence of spheri-
cal stationary solutions and their bifurcation and
stability remain mostly open problems.

Surgical Tissue Transfer
Reconstructive microsurgery is a clinical technique
used to transfer large amounts of a patient's tissue
from one location to another in order to restore
physical deformities caused by trauma, tumor, or
congenital abnormalities. The trend in this �eld is
to transfer tissue using increasingly smaller blood
vessels, which decreases problems associated with
tissue harvest but increases the possibility that
blood supply to the transferred tissue may not be
adequate for healing. Surgical �aps are currently
designed based on blood supply from a single
vessel. However, there is no objective method
to assist the surgeon in deciding how large a
�ap can be transferred given the diameter of
the perforating vessel. If the surgical �ap is too
large, some portion may develop ischemia and die,
requiring another surgery.

A mathematical model was developed by Matza-
vinos et al. [16] to determine the transport of
oxygen in a rectangular �ap with one perforating
vessel, as shown in Figure 4. The model is based
on a multiphase approach, which assumes that the
�ap consists of tissue cells, arterial blood cells,
and venous blood cells of volume fractions � c„x…,
� a „x…, and � v „x…. Correspondingly, the model in-
cludes three transport/di�usion equations for the
oxygen concentrations and two conservation laws
for arterial and venous blood �ow. Simulations
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Figure 5 (from [16]). Range of oxygen
concentration in the �ap of dimension 4 cm x
2.5 cm x 1 cm with di�erent arterial diameter
ranging 0.2 cm to 1.2 cm.

of the model show which �ap will survive the
transfer after four hours and which will develop
necrosis. An example is shown in Figure 5 for a
�ap of dimensions 4 cm x 2.5 cm x 1 cm with
di�erent arterial diameter ranging from 0.2 cm to
1.2 cm. Each vertical segment represents the range
of oxygen level in the �ap; when the level is below
0.15 (which is 15% of the oxygen level in healthy
tissue), the �ap will develop necrosis.

In order to develop the model into a predictive
tool that could be used by surgeons, experiments
with animal models will be needed to determine
more carefully the parameters in the di�eren-
tial equations and, more importantly, to address,
in the model, the issue of heterogeneity of the
vasculature in the tissue.

Reaction-Di�usion-Hyperbolic Systems in
Neuro�lament Transport in Axon
Most axonal proteins are synthesized in the nerve
cell body and are transported along axons by
mechanisms of axonal transport.

A mathematical model was developed by
Craciun et al. [4] that determines the pro�le and
velocity of the population of transported proteins,
as observed in vivo and in vitro experiments. The
model is described by a hyperbolic system of
equations

�„@t ‚ � i @x…pi

ƒ
nX

j ƒ 1

k ij p j for 0 < x < 1 ; t > 0; 1 � i � n;

where k ij � 0 if i ” j ,
nP

i ƒ 1
k ij ƒ 0 and 0 < � << 1.

Here p i „x; t… is the density of cargo in one of
n states (moving forward along a track, moving

backward, resting, o� track, etc.) and x is the
distance from the cell body.

Setting

pm „x; t…ƒ � m Q m

�
x � vt

p
�

; t
�

;

where � m is determined by the boundary condi-
tions at x ƒ 0 and v is a weighted average of the
velocities v i (v i can be positive or negative), it was
proved in [9] that

Q m „s; t…! Q„s; t…as � ! 0;

where Q„s; t…is the bounded solution of a parabolic
system

„@t � � 2@2
s … Q„s; t…ƒ 0; �1 < s < 1 ; t > 0;

Q„s; 0…ƒ

(
1 if �1 < s < 0

q0„s… if 0 < s < 1 ;

q0„s…depends on the initial conditions of the p i

and � 2 is a function of the k ij .
This result, which was inspired by formal cal-

culations in Reed et al. [17], shows that the cargo
moves as an approximate wave: its velocity is
�xed, but its pro�le decreases.

The above result was extended to include cargo
moving in multitracks [10].

The Lung Response to Infection
The lung environment is specialized to reorga-
nize and eliminate most invaders without causing
excessive in�ammation. However, this highly reg-
ulated in�ammatory strategy can be detrimental
to the host when a prompt, strong in�amma-
tory response is needed to e�ectively eradicate
pathogens. Such is the case, for instance, in the
early stages of infection with Mycobacterium tu-
berculosis (Mtb). The alveolar macrophages, which
play a large role in the innate immune system in
the lung, are unable to win the �ght against the
bacteria all by themselves. With the aid of an-
other family of cells of the immune system, the
dendritic cells, they communicate to the lymph
nodes the need to activate a more in�ammatory
brand of macrophages, called classically activated
macrophages (CAMs), and move them to the lung. It
takes approximately two months before the CAMs
become the dominant population of macrophages
in the lung, i.e., before the number of CAM cells ex-
ceeds the number of alveolar macrophages; we call
this time the “switching time”. Considering that
5-10% of the world population develops clinical
symptoms of tuberculosis, it is clearly important
to investigate how to shorten the switching time.

A mathematical model was developed by Day
et al. [5] to address this question. Based on the
biomedical literature, a diagram of interactions
between various cell types, cytokines, and the bac-
teria was developed, as shown in Figure 6. Based
on the diagram, a system of ordinary di�erential
equations was set up, with parameters taken from
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Figure 6 (from [5]). Diagram of interactions between variou s cell types and cytokines. Bacteria is
found both in alveolar macrophages „A i …„A i …„A i …and externally.

the literature, or estimated using sensitivity anal-
ysis. The model simulations predict a switching
time of �fty days and residual bacterial load, after
recovery from the infection, of 10 4 bacteria per
cm 3 in the lung; these numbers are in agreement
with the biomedical literature. The model was used
to determine the e�ect of therapeutic drugs, such
as IFN-
 , on shortening the switching time and, as
a consequence, reducing the maximum bacterial
load during the early weeks of infection and the
residual bacterial load after host recovery.

Modeling the immune rheostat of macrophages
in the lung in response to infection is not restricted
to infection with tuberculosis. Indeed, the same
ideas of reducing the switching time can be applied
to other airborne infections. However, for some
infections it is desirable to slow down the activa-
tion of highly proin�ammatory immune response.
This is the case, for instance, in an infection such
as anthrax, in which the immediate highly toxic
immune response overwhelms the infected host
and may result in sepsis shock.

Cell Di�erentiation
A T cell is a type of blood cell that is a key
component of the immune system. T cells dif-
ferentiate into either TH1 or TH2 cells that have
di�erent functions. The decision to which cell type
to di�erentiate depends on the concentration of
transcription factors T-bet „x 1…and GATA-3 „x 2…
within the cell. A T cell will di�erentiate into TH1
(TH2) if x1 is high (low) and x2 is low (high). A
mathematical model was developed by Yates et al.
[20] (see also [1]). Accordingly, the x i evolve by a

dynamical system

dx i

dt
ƒ f i „x 1 ; x2 ; Si „t…… „iƒ 1; 2…;

where Si „t…is a signal of the form

Si „t…ƒ
Ci „t…‚

RR
x i �„x 1 ; x2 ; t…dx1dx 2RR

�„x 1 ; x2 ; t…dx1dx 2
;

Ci „t…is an external signal (e.g., an infection) and
�„x 1 ; x2 ; t…is the density of cells with concentra-
tion „x 1 ; x2…at time t . The function � satis�es a
conservation law

@�
@t

‚
2X

i ƒ 1

@
@xi

„f i �… ƒ g�;

where g is a growth rate, and the f i above have the
speci�c form

f i „x 1 ; x2 ; Si „t……

ƒ � � x i ‚

 

� i
xn

i

kn
i ‚ xn

i
‚ � i

Si

� i ‚ Si

!

�
1

1 ‚ x j =
 j
‚ � i ;

where „i; j… ƒ „1; 2…and „i; j… ƒ „2; 1….
It was proved by Friedman et al. [14] that, as

t ! 1 , the function �„x 1 ; x2 ; t…tends to 1-peak
Dirac measure, 2-peak Dirac measures, or 4-peak
Dirac measures, depending on the parameters
of the dynamical system. The idea motivating
the proof is to use a nested adaptive sequence
of domains that enclose the trajectories of the
dynamical system as time increases and then
prove that the nested sequence converges to one,
two, or four points. The location of each peak in
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the „x 1 ; x2…-plane determines whether it represents
TH1 or TH2 cells.

The same idea can be applied, in princi-
ple, to other dynamical systems with nonlocal
coe�cients.

Conclusion
Historically, science and technology have been
a driving force for new mathematical theories.
The great alliance between the physical and the
mathematical sciences is recognized universally:
both disciplines thrived by supporting each other.
The renowned educator, John Dewey, wrote in his
1901 book The Child and Society that “We do not
have a series of strati�ed earths, one of which
is mathematical, another physical, etc. We should
not be able to live very long in any one taken by
itself. We live in a world where all sides are bound
together; all studies grow out of relations in the
one great common world.”

What John Dewey wrote in 1901 is even more
true today, especially in mathematical biology. The
few examples in this article illustrate this point. But
beyond these examples, there are substantial ar-
eas of biology that have advanced by mathematics,
such as computational neuroscience, population
dynamics, ecology, spread of disease, and phy-
logenomics. There is also a series of mathematical
studies launched by biological applications, such
as in reaction-di�usion equations, pattern forma-
tion, stochastic di�erential equations, numerical
methods of PDEs, and hybrid methods connect-
ing discrete to continuous models. Two workshops
held at the MBI in the autumn of 2008 and two held
in the autumn of 2009 provide many examples of
research on the mathematical-biological interface:
“Multiscale problems in thrombosis development”,
“Biochemical reaction networks”, “Computational
modeling of blood �ow”, and “Topology and to-
mography of medical data” are just a few of the
titles presented in these workshops. Viewing the
present trends in mathematical biology, I believe
that the coming decade will demonstrate very
clearly that mathematics is the future frontier
of biology and biology is the future frontier of
mathematics.
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