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Equivariant
Cohomology?

Loring W. Tu

Many invariants in geometry and topology can
be computed as integrals. For example, in classical
differential geometry the Gauss–Bonnet theorem
states that if M is a compact, oriented surface in
Euclidean 3-space with Gaussian curvature K and
volume form vol, then its Euler characteristic is

χ(M) =
1

2π

∫

M
K vol.

On the other hand, if there is a continuous vector
field X with isolated zeros on a compact, oriented
manifold, the Hopf index theorem in topology
computes the Euler characteristic of the manifold
as the sum of the indices at the zeros of the vector
field X. Putting the two theorems together, one
obtains

(1)
1

2π

∫

M
K vol =

∑

p∈Zero(X)

iX(p),

where iX(p) is the index of the vector field X at
the zero p. This is an example of a localization
formula, for it computes a global integral in terms
of local information at a finite set of points. More
generally, one might ask what kind of integrals
can be computed as finite sums. A natural context
for studying this problem is the situation in which
there is a group acting on the manifold with
isolated fixed points. In this case, one can try to
relate an integral over the manifold to a sum over
the fixed point set.

Rotating the unit sphere S2 in R3 about the
z-axis is an example of an action of the circle S1 on
the sphere. It has two fixed points, the north pole
and the south pole. This circle action generates
a continuous vector field on the sphere, and the
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Figure 1. A circle action on a sphere.

zeros of the vector field are precisely the fixed
points of the action (see Figure 1).

Recall that the familiar theory of singular co-
homology gives a functor from the category of

topological spaces and continuous maps to the
category of graded rings and their homomor-
phisms. When the topological space has a group
action, one would like a functor that reflects

both the topology of the space and the action of
the group. Equivariant cohomology is one such
functor.

The origin of equivariant cohomology is some-

what convoluted. In 1959 Borel defined equivariant
singular cohomology in the topological category
using a construction now called the Borel construc-
tion. Nine years earlier, in 1950, in two influential

articles on the cohomology of a manifold M acted
on by a compact, connected Lie group G, Cartan
constructed a differential complex

(
Ω∗G(M), dG

)

out of the differential forms on M and the Lie

algebra of G. Although the term “equivariant
cohomology” never occurs in Cartan’s papers,
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Cartan’s complex turns out to compute the real
equivariant singular cohomology of a G-manifold
(a manifold with an action of a Lie group G), in
much the same way that the de Rham complex
of smooth differential forms computes the real
singular cohomology of a manifold. Without ex-
plicitly stating it, Cartan provided the key step in a
proof of the equivariant de Rham theorem, before
equivariant cohomology was even defined! In fact,
a special case of the Borel construction was al-
ready present in Cartan’s earlier article (Colloque
de Topologie, C.B.R.M., Bruxelles, 1950, p. 62). Ele-
ments of Cartan’s complex are called equivariant
differential forms or equivariant forms. Let S(g∗)
be the polynomial algebra on the Lie algebra g ofG;
it is the algebra of all polynomials in linear forms
on g. An equivariant form on a G-manifold M is a
differential form ω on M with values in the poly-
nomial algebra S(g∗) satisfying the equivariance
condition:

ℓ∗gω = (Adg−1) ◦ω for all g ∈ G,

where ℓ∗g is the pullback by left multiplication

by g and Ad is the adjoint representation. An
equivariant form ω is said to be closed if it
satisfies dGω = 0.

What makes equivariant cohomology particu-
larly useful in the computation of integrals is
the equivariant integration formula of Atiyah-Bott
(1984) and Berline-Vergne (1982). In case a torus
acts on a compact, oriented manifold with isolated
fixed points, this formula computes the integral of
a closed equivariant form as a finite sum over the
fixed point set. Although stated in terms of equi-
variant cohomology, the equivariant integration
formula, also called the equivariant localization
formula in the literature, can often be used to com-
pute the integrals of ordinary differential forms. It
opens up the possibility of machine computation
of integrals on a manifold.

Equivariant Cohomology
Suppose a topological group G acts continuously
on a topological space M . A first candidate for
equivariant cohomology might be the singular
cohomology of the orbit space M/G. The example
above of a circle G = S1 acting on M = S2 by
rotation shows that this is not a good candidate,
since the orbit space M/G is a closed interval,
a contractible space, so that its cohomology is
trivial. In this example, we lose all information
about the group action by passing to the quotient
M/G.

A more serious deficiency of this example is
that it is the quotient of a nonfree action. In
general, a group action is said to be free if the
stabilizer of every point is the trivial subgroup. It
is well known that the orbit space of a nonfree
action is often “not nice”—not smooth or not
Hausdorff. However, the topologist has a way of

turning every action into a free action without
changing the homotopy type of the space. The
idea is to find a contractible space EG on which
the group G acts freely. Then EG×M will have the
same homotopy type as M , and no matter how G
acts onM , the diagonal action of G on EG×M will
always be free. The homotopy quotient MG ofM by
G, also called the Borel construction, is defined to
be the quotient of EG ×M by the diagonal action
of G, and the equivariant cohomology H∗

G(M) of
M is defined to be the cohomology H∗(MG) of
the homotopy quotient MG. Here H∗( ) denotes
singular cohomology with any coefficient ring.

A contractible space on which a topological
group G acts freely is familiar from homotopy
theory as the total space of a universal principal
G-bundle π : EG → BG, of which every principal
G-bundle is a pullback. More precisely, if P →
M is any principal G-bundle, then there is a
map f : M → BG, unique up to homotopy and
called a classifying map of P → M , such that the
bundle P is isomorphic to the pullback bundle
f∗(EG). The base space BG of a universal bundle,
uniquely defined up to homotopy equivalence, is
called the classifying space of the group G. The
classifying space BG plays a key role in equivariant
cohomology, because it is the homotopy quotient
of a point:

ptG = (EG × pt)/G = EG/G = BG,

so that the equivariant cohomology H∗

G(pt) of a
point is the ordinary cohomology H∗(BG) of the
classifying space BG.

It is instructive to see a universal bundle for
the circle group. Let S2n+1 be the unit sphere
in Cn+1. The circle S1 acts on Cn+1 by scalar
multiplication. This action induces a free action of
S1 on S2n+1, and the quotient space is by definition
the complex projective space CPn. Let S∞ be
the union

⋃
∞

n=0 S
2n+1, and let CP∞ be the union⋃

∞

n=0 CP
n. Since the actions of the circle on the

spheres are compatible with the inclusion of one
sphere inside the next, there is an induced action
of S1 on S∞. This action is free with quotient space
CP∞. It is easy to see that all homotopy groups
of S∞ vanish, for if a sphere Sk maps into the
infinite sphere S∞, then by compactness its image
lies in a finite-dimensional sphere S2n+1. If n is
large enough, any map from Sk to S2n+1 will be
null-homotopic. Since S∞ is a CW complex, the
vanishing of all homotopy groups implies that
it is contractible. Thus the projection S∞ → CP∞

is a universal S1-bundle and, up to homotopy
equivalence, CP∞ is the classifying space BS1 of
the circle.

If H∗( ) is a cohomology functor, the constant
map M → pt from any space M to a point induces
a ring homomorphism H∗(pt) → H∗(M), which
gives H∗(M) the structure of a module over the
ringH∗(pt). Thus the cohomology of a point serves
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as the coefficient ring in any cohomology theory.

For the equivariant real singular cohomology of a
circle action, the coefficient ring is

H∗

S1(pt;R) = H∗
(
ptS1 ;R

)
= H∗(BS1;R)

= H∗(CP∞;R) ≃ R[u],

the polynomial ring generated by an element
u of degree 2. For the action of a torus T =

S1
× · · · × S1

= (S1)ℓ, the coefficient ring is the
polynomial ring H∗

T (pt;R) = R[u1, . . . , uℓ], where
each ui has degree 2.

Equivariant Integration
Let G be a compact, connected Lie group. Over a
compact, oriented G-manifold, equivariant forms
can be integrated, but the values are in the coef-
ficient ring H∗

G (pt;R), which is generally a ring of

polynomials. According to Cartan, in the case of a
circle action on a compact, oriented manifold, an
equivariant form of degree 2n is a sum

(2) ω =ω2n +ω2n−2 u+ω2n−4 u
2

+ · · · +ω0 u
n,

where ω2j ∈ Ω2j(M)S
1

is an S1-invariant 2j-form
on M . If ω is closed under the Cartan differential,
then it is called an equivariantly closed extension of
the ordinary differential formω2n. The equivariant
integral

∫
Mω is obtained by integrating each ω2j

over M . If M has dimension 2n, then the integral∫
Mω2j vanishes except when j = n, and one has

∫

M
ω =

∫

M
ω2n +

(∫

M
ω2n−2

)
u

+ · · · +

(∫

M
ω0

)
un

=

∫

M
ω2n + 0+ · · · + 0 =

∫

M
ω2n.

One peculiarity of equivariant integration is
the possibility of obtaining a nonzero answer
while integrating a form over a manifold whose
dimension is not equal to the degree of the form.
For example, if M has dimension 2n − 2 instead

of 2n, then the integral over M of the equivariant
2n-form ω above is∫

M
ω =

(∫

M
ω2n−2

)
u,

since for dimensional reasons all other terms
are zero. From this, one sees that an equivariant
integral for a circle action is in general not a real
number, but a polynomial in u.

Localization
What kind of information can be mined from the
fixed points of an action? If a Lie group G acts

smoothly on a manifold, then for each g ∈ G, the
action induces a diffeomorphism ℓg : M → M . At

a fixed point p ∈ M , the differential ℓg∗ : TpM →

TpM is a linear automorphism of the tangent

space, giving rise to a representation of the group

G on the tangent space TpM . Invariants of the
representation are then invariants of the action at
the fixed point. For a circle action, at an isolated

fixed point p, the tangent space TpM decomposes
into a direct sum Lm1 ⊕ · · · ⊕ Lmn , where L is
the standard representation of the circle on the

complex plane C and m1, . . . ,mn are nonzero
integers. The integers m1, . . . ,mn are called the
exponents of the circle action at the fixed point
p. They are defined only up to sign, but if M is

oriented, the sign of the productm1 · · ·mn is well
defined by the orientation of M .

When a torus T = (S1)ℓ acts on a compact,

oriented manifold M with isolated fixed point set
F , for any closed T -equivariant form ω on M , the
equivariant integration formula states that

(3)

∫

M
ω =

∑

p∈F

i∗pω

eT (νp)
,

where i∗pω is the restriction of the equivariantly

closed form ω to a fixed point p and eT (νp) is the
equivariant Euler class of the normal bundle νp to
p in M . Of course, the normal bundle to a point p
in a manifold M is simply the tangent space TpM ,
but formula (3) is stated in a way to allow easy
generalization: when F has positive-dimensional
components, the sum over the fixed points is

replaced by an integral over the components C of
the fixed point set and νp is replaced by νC , the
normal bundle to the component C. In formula (3),

the degree of the form ω is not assumed to be
equal to the dimension of the manifold M , and
so the left-hand side is a polynomial in u1, . . . , uℓ,
while the right-hand side is a sum of rational
expressions in u1, . . . , uℓ, and it is part of the
theorem that the equivariant Euler classes eT (νp)
are nonzero and that there will be cancellation on

the right-hand side so that the sum becomes a
polynomial.

Return now to a circle action with isolated

fixed points on a compact, oriented manifold M
of dimension 2n. Let ω be a closed equivariant
form of degree 2n on M . Since the restriction of a

form of positive degree to a point is zero, on the
right-hand side of (3) all terms in ω except ω0 un

restrict to zero at a fixed point p ∈M :

i∗pω =

n∑

j=0

(i∗pω2n−2j)u
j

= (i∗pω0)u
n
=ω0(p) u

n.

The equivariant Euler class eS
1
(νp) turns out to be

m1 · · ·mn un, where m1, . . . ,mn are the exponents
of the circle action at the fixed point p. Therefore,
the equivariant integration formula for a circle

action assumes the form∫

M
ω2n =

∫

M
ω =

∑

p∈F

ω0

m1 · · ·mn
(p).
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In this formula, ω2n is an ordinary differential

form of degree 2n on M , ω is an equivariantly

closed extension of ω2n, and ω0 is the coefficient

of the un term in ω as in (2).

Applications

In general, an integral of an ordinary differential

form on a compact, oriented manifold can be

computed as a finite sum using the equivariant

integration formula if the manifold has a torus

action with isolated fixed points and the form

has an equivariantly closed extension. These con-

ditions are not as restrictive as they seem, since

many problems come naturally with the action of

a compact Lie group, and one can always restrict

the action to that of a maximal torus. It makes

sense to restrict to a maximal torus, instead of

any torus in the group, because the larger the

torus, the smaller the fixed point set, and hence

the easier the computation.

As for the question of whether a form has

an equivariantly closed extension, in fact a large

collection of forms automatically do. These in-

clude characteristic classes of vector bundles on

a manifold. If a vector bundle has a group action

compatible with the group action on the mani-

fold, then the equivariant characteristic classes

of the vector bundle will be equivariantly closed

extensions of its ordinary characteristic classes.

A manifold on which every closed form has

an equivariantly closed extension is said to be

equivariantly formal. Equivariantly formal man-

ifolds include all manifolds whose cohomology

vanishes in odd degrees. In particular, a homoge-

neous space G/H, where G is a compact Lie group

and H is a closed subgroup of maximal rank, is

equivariantly formal.

The equivariant integration formula is a power-

ful tool for computing integrals on a manifold. If

a geometric problem with an underlying torus ac-

tion can be formulated in terms of integrals, then

there is a good chance that the formula applies.

For example, it has been applied to show that the

stationary phase approximation formula is exact

for a symplectic action (Atiyah-Bott 1984), to cal-

culate the number of rational curves in a quintic

threefold (Kontsevich 1995, Ellingsrud-Strømme

1996), to calculate the characteristic numbers of

a compact homogeneous space (Tu 2010), and to

derive the Gysin formula for a fiber bundle with

homogenous space fibers (Tu preprint 2011). In

the special case in which the vector field X is gen-

erated by a circle action, the Gauss-Bonnet-Hopf

formula (1) is a consequence of the equivariant

integration formula. Equivariant cohomology has

also helped to elucidate the work of Witten on

supersymmetry, Morse theory, and Hamiltonian

actions (Atiyah-Bott 1984, Jeffrey-Kirwan 1995).

The formalism of equivariant cohomology car-
ries over from singular cohomology to other
cohomology theories such as K-theory, Chow
rings, and quantum cohomology. There are similar
localization formulas that compare the equivari-
ant functor of a G-space to that of the fixed
point set of G or of some subgroup of G (for
example, Segal 1968 and Atiyah-Segal 1968). In
the fifty years since its inception, equivariant
cohomology has found applications in topology,
differential geometry, symplectic geometry, alge-
braic geometry, K-theory, representation theory,
and combinatorics, among other fields, and is
currently a vibrant area of research.
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