
Mysteries in Packing
Regular Tetrahedra
Jeffrey C. Lagarias and Chuanming Zong

T
he regular tetrahedron is the simplest
Platonic solid. Nevertheless, in studying
its packing properties, several renowned
scholars have made mistakes, and many
questions about it remain unsolved.

Currently no one knows the density of its densest
packings, the density of its densest translative
packings, or the exact value of its congruent
kissing number. In this paper we recount historical
developments on packing regular tetrahedra, report
new results on its translative packing density and
congruent kissing number, and formulate several
unsolved problems.

Aristotle’s Error
In the history of mathematics, one of the earliest
recorded mistakes was made by Aristotle. More
than 2,300 years ago, Aristotle (384–322 BCE)
taught that the regular tetrahedra fill space. In
De Caelo (On the Heavens) Book III.8 he says (in
translation): “Among surfaces it is agreed that
there are three figures which fill the place that
contain them—the triangle, the square and the
hexagon: among solids only two, the pyramid and
the cube” [3, 306b, p. 319]. Here “pyramid” refers
to the regular tetrahedron, a Platonic solid. Thus
Aristotle’s assertion can be taken to mean: space
can be tiled by congruent regular tetrahedra.
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Figure 1. Five regular tetrahedra that share an
edge.

Such a tiling is impossible. Let T denote a regular
tetrahedron with unit edges and let α denote one
of its dihedral angles. By a routine computation
one can deduce that

α = arccos(1/3) ≈ 70◦32′.

If five tetrahedra are fitted around an edge (see
Figure 1), then there is a small gap whose angular
measure θ satisfies

0 < θ = 2π − 5α ≈ 7◦21′ < α,

and we conclude that regular tetrahedra cannot fill
the space when arranged face-to-face. In any other
tiling arrangement, along an edge a dihedral angle
of π −α is created, which also cannot be filled by
regular tetrahedra.

Of course, at the time of Aristotle, methods of
geometric measurement and computation were
more limited and computers were not available!
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Eighteen Hundred Years to a Corrigendum
It took 1,800 years for Aristotle’s error to be
resolved. Much of the following history was
uncovered by Struik [51].

Simplicius and Averroës

Aristotle’s early commentators considered regular
tetrahedral packing around a point and in so doing
introduced a new mistake.

In the sixth century, to clarify Aristotle’s as-
sertion, the commentator Simplicius stated that
twelve regular tetrahedra (locally) fill space about
a point [33, p. 650, lines 27–28], [51]. Such an
arrangement of regular tetrahedra, if it existed,
would have twelve tetrahedra touch at a point and
fill the solid angle. (But twelve tetrahedra do not
fill the solid angle.)

In the twelfth century Averroës (Abu al-Walid
Mohammad ibn Ahmad al Rushd (1126–1198)), in
Cordoba, wrote thousands of pages of commentary
on Aristotle, basing his work on Arabic translations
of the Greek. Concerning Aristotle’s assertion in
De Caelo, he formulated a (mistaken) analysis of
trihedral angles as sums of three dihedral angles
and, based on this, inferred that twelve tetrahedra
fill the same solid angle as eight cubes (they don’t).
He then concluded that twelve regular tetrahedra
(locally) fill space around a point [4, Comm. 66,
pp. 628–631].

Michael Scot

The Arabic commentaries of Averroës reached
Christian Europe through Latin translations, many
done by the Toledo school of translators. Ger-
ard of Cremona (c. 1114–1187) translated many
books, including Ptolemy’s Almagest and Euclid’s
Elements. The translation of the commentaries
of Averroës on De Caelo is attributed to Michael
Scotus (Michael Scot (1175–c. 1234)) [19, p. 27], [54,
pp. 23–25]. In 1217, in Toledo, Scot translated from
Arabic the astronomical treatise of Alpetragius
(al-Bit.rûjî (died c. 1204)), a non-Ptolemaic astro-
nomical system for describing planetary motion [7].
He also translated works of Aristotle and Avicenna
on animals. He later joined the service of the Holy
Roman Emperor Frederick II as astrologer and
wrote several works covering topics on astrology,
meteorology, and other subjects [32]. His request
to Leonardo of Pisa (Fibonacci) for a copy of Liber
Abaci led Fibonacci to prepare his 1228 revised
edition, which he dedicated to Scot [50, pp. 15–16].
Scot’s knowledge of alchemy and other esoteric
subjects (e.g., using the astrolabe to invoke evil
spirits but recommending against it) led to his
acquiring a reputation as a magician [54, Chap
12]. He appears in Dante’s Inferno, condemned
to the second lowest circle of Hell [1, Canto XX,

v. 115–116]. He is also mentioned in Boccaccio’s
Decameron, as a necromancer [8, Eighth Day, Story
9].

Scholastic Philosophers: Roger Bacon, Peter of
Auvergne, and Thomas Bradwardine

In 1266–1267 Roger Bacon (c. 1214–1294) wrote a
series of essays on natural science at the request
of Pope Clement II. According to Struik [51], Bacon
writes in “Opus Tertium” [5, Chap. XL, pp. 135–140]
that there is a fool in Paris who says that Averroës
was incorrect and that twenty pyramids fill space
(around a point). Bacon defends the assertion of
Averroës that twelve pyramids fill space around a
point but concludes that one cannot have complete
certainty on these things without constructing the
bodies as in Euclid’s Book 13.1

Thomas Aquinas (c. 1225–1274), best known for
his lectures on theology, commented on Aristotle
using new, more literal, translations of Aristotle
made by William of Moerbeke2 (1215–c. 1286).
In Naples in 1272–1273 he wrote lectures on
Aristotle’s De Caelo. These remained incomplete
at his death, and the lectures of De Caelo, covering
Books III and IV, were completed by Peter of Au-
vergne (d. 1304) [2, p. 222, bottom]. Peter criticizes
Averroës’s commentary, saying the assertion of
Averroës that twelve tetrahedra fill space (at a
point) is contrary to both sense perception and
reason and that his assertion on solid angles is
not intelligible [2, Book III, Lectio XII, pp. 234–238].
Concerning sense perception, Peter says he saw it
for himself.3

A perceptive observation was made by Brad-
wardinus (Thomas Bradwardine (c. 1290–1349)),
a scholastic philosopher who late in life became
Archbishop of Canterbury. In Geometria Specula-
tiva he stated that there are differing opinions
whether the assertion of Averroës that twelve
tetrahedra fill space is correct, that others assert
that twenty regular tetrahedra (locally) fill space.
He observed that a regular icosahedron can be sub-
divided around its centroid into twenty congruent
tetrahedra. But he could not decide if the tetrahe-
dra in this subdivision were regular tetrahedra [44,

1The culminating Book 13 of The Elements proves existence
and uniqueness of the five regular solids and constructs
them, in each case inscribed in a sphere.
2William of Moerbeke translated part of De Caelo by 1260,
the full text by 1265, and later the Greek commentary of
Simplicius, finishing on June 15, 1271 [19, pp. 29 and 48]. He
also translated mathematical works of Hero of Alexandria
and Archimedes.
3“Sensui quidem; quoniam si accipiantur duodecim pyra-
mides aequilaterae, et applicentur secundum duodecim
angulos circa punctum unum, ad sensum apparebit eas
non replere locum corporaliter, et hoc ad sensum expertus
sum” [2, p. 237].
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Sect. 4.3]. In fact, they are not regular; the solid
angle at the central vertex is about ten percent
larger than that of a regular tetrahedron.

Regiomontanus and Paul of Middelburg

Aristotle’s error was detected by the fifteenth
century. According to Struik [51], the incorrect-
ness of Averroës’s assertion, and of Aristotle’s,
was likely known to Regiomontanus (Johannes
Müller von Königsberg (1436–1476)). The work of
Regiomontanus covers symbolic algebra, spherical
trigonometry, astronomy, and calendar reform. He
apparently obtained a correct measure of solid an-
gles, but the results of his investigations were not
published. Only a title is known from a catalogue
of his posthumous works: “On the five like-sided
bodies, that are usually called regular, and which
of them fill their natural place, and which do not,
in contradiction to the commentator on Aristotle,
Averroës.” No manuscript copy is known.

In any event, a definite observation of incorrect-
ness was made by Paul of Middelburg (Paulus van
Middelburg (1445–1534)), professor of astrology in
Padua circa 1478–1481, in astrological prognostics
made for the years 1480 and 1481.4 He asserts
the impossibility of a (local) filling of space using
any number of regular tetrahedra, since any such
filling would produce a regular polyhedron having
the same number of triangular faces, but the
only possibilities allowed by Euclid’s Book 13, the
octahedron and icosahedron, cannot work.

Francesco Maurolico

A modification that corrects Aristotle’s assertion
by changing the tiling was found by Francesco
Maurolico (1494–1575). He was of Greek descent,
became a Benedictine monk in 1521 and later abbot
in Messina, Sicily, and eventually was in charge
of the Messina mint. He was a mathematician
and astronomer and wrote many books, including
observations of the supernova in 1572. His Arith-
meticorum libri duo [42], published posthumously,
contains an early proof by mathematical induction
(see Libri [40, pp. 102–118]). His writings include a
manuscript with a title nearly identical to the one
of Regiomontanus [41]. This manuscript is now
lost, but it was catalogued in Rome in 1883, listing
a table of contents and a colophon stating that it
was completed on December 9, 1529. According to
Libri [40, pp. 242–243], a catalogue of Maurolico’s

4The 1481prognostic reads:
“Correlarium de errore aristotelis et commentatoris eius
averroys patum ex 15 propositione 13 euclidis: quia pyra-
mides ex quibus Icocedron conficit non sunt regularis: ergo
pyramides regulares non possunt replere locum nedum si
20 sumant: immo nec in quocunque alio numero facerent
corpus regulare quod est impossible” ([51, p. 136]).

Figure 2. A polyhedral space-filler is obtained
from two regular tetrahedra and a regular

octahedron.

works lists this one as:5 “Our booklet on plane
and spatial regular figures, which fill their place;
although it is certain that Johannes Regiomontanus
has written in great detail on this, this work has
never been published as far as I know. We show
now in this booklet that, of the regular bodies, the
cube itself, and pyramids together with octahedra,
fill the place whereby it will be clear that Averroës
erred in a childish way.”

That is, Maurolico knew: there exists a tiling
of space using regular polyhedra other than the
cube: this tiling is a periodic face-to-face tiling us-
ing a mixture of regular tetrahedra and regular
octahedra having the same side length (cf. [51]).

To describe it, make a polyhedron by gluing two
regular tetrahedra to diagonally opposite faces
of a regular octahedron; it has six congruent
faces, each a 60◦–120◦ rhombus (see Figure 2).
This polyhedron then lattice tiles space using the
face-centered cubic (fcc) lattice. The tiling has
eight tetrahedra and six octahedra meeting at each
vertex, and this tiling is vertex-transitive.

Hilbert’s 18th Problem
In the extended version of his talk presented at the
ICM 1900 in Paris, Hilbert [34] proposed twenty-
three unsolved mathematical problems. At the end
of his eighteenth problem, he wrote, “I point out
the following question, related to the preceding
one, and important to number theory and perhaps
sometimes useful to physics and chemistry: How
can one arrange most densely in space an infinite
number of equal solids of given form, e.g., spheres
with given radii or regular tetrahedra with given
edges (or in prescribed position); that is, how can

5“De figuris planis, solidisque regularibus locum implen-
tibus libellus noster; quamquam de hoc negocio Ioannem
a Regiomonte accuratissime scripsisse certum sit: verum
opus nondum, quod sciam, editum. Demonstramus autem
in libello e solidis regularibus cubos per se; pyramides vero
cum octahedris compactas duntaxat implere locum, qua in
re Averroem pueriliter errasse, manifestum erit.”
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one so fit them together that the ratio of the filled
to the unfilled space may be as great as possible?”

The sphere case has a long and complicated
history (see Hales [30], [31] and Lagarias [39]).
Kepler’s conjecture, made in 1611 [37], asserts
that the fcc lattice packing is a densest (general)
sphere packing. The fcc packing was determined
to be the densest lattice sphere packing by Gauss
and Seeber in 1831 by studying the arithmetic of
positive definite ternary quadratic forms (see [21],
[61, Chap. 2]). Perhaps this was one of the reasons
for Hilbert to ask this question.

Let K denote a convex body in the Euclidean
space E3, with boundary ∂(K), nonempty interior
int(K), and volume vol(K). We define three notions
of packing density as follows. Let W = [− 1

2 ,
1
2]

3

denote a unit cube centered at the origin so that
sW = [− s2 ,

s
2]

3. A general packing P consists of
a (possibly infinite) collection of nonoverlapping
congruent copies of K, where nonoverlapping
means disjoint interiors. For such P we define an
(upper) density

δ(P, K) := lim sup
s→∞

vol(P ∩ sW)
vol(sW)

.

Then we define the congruent packing density, the
translative packing density, and the lattice packing
density of K respectively as

δc(K) := sup
P
{δ(P, K) : P a general packing},

δt(K) := sup
P
{δ(P, K) : P uses translates of K},

and

δl(K) := sup
P
{δ(P, K) : P is a lattice packing}.

One can show that each of these suprema is
attained: e.g., there exists a general packing P
having

δ(P, K) = δc(K),
and similarly there exist a translative packing and
lattice packing attaining their respective suprema.
Moreover, such P can also be chosen to have a
limiting density, i.e., having the corresponding
lower density equal to their upper density. In fact,
for δc(K), δt(K) and δl(K), the unit cube W in the
definition of δ(P, K) can be replaced by any other
fixed convex body. For basic results and problems
about these densities we refer to [10], [17], [18],
[24], [46], and [61].

It follows from these definitions that

(1) δl(K) ≤ δt(K) ≤ δc(K) ≤ 1

hold for every convex body K. Let σ(x) denote a
nonsingular affine linear transformation from E3

to E3. It is known (easy to verify) that both

δl(σ(K)) = δl(K)

v1

v2 v3

v4

v5
v6

u 1

u2

Figure 3. A cube can be divided into six
congruent tetrahedra.

and
δt(σ(K)) = δt(K)

hold for all K and σ . However, for some objects K
and suitable σ , we may have

δc(σ(K)) 6= δc(K).
For example, let u1, u2, v1, v2, . . ., v6 be the

eight vertices of a unit cube, as shown in Figure
3, and let Ti denote the tetrahedron with vertices
u1, u2, vi , and vi+1 (we take v7 = v1 in T6). It is
easy to see that the six tetrahedra T1, T2, . . ., T6 are
congruent to each other. Thus, since unit cubes
tile the space nicely, we have

δc(T1) = 1.

In fact, we obtain a periodic tetrahedron tiling
of space by copies of T1 having six tetrahedra in
its unit cell. On the other hand, for the regular
tetrahedron T we have (see [9], p. 208)

δc(T) < 1,

and therefore

δc(T1) 6= δc(T),
although T1 = σ(T) holds for some suitable
affine linear transformation σ . This illustrates
the subtle dependence of the maximal density of
a (congruent) tetrahedron packing on the shape
of the tetrahedron. It remains an open problem
to determine those shapes of tetrahedra whose
congruent copies tile space; see Senechal [49].

Minkowski’s Genius and Mistake
Assume that a1, a2, a3 are three linearly indepen-
dent vectors in E3. We callΛ = {∑ziai : zi ∈ Z

}
a lattice. Lattices are very regular discrete sets in
the space, which are additive groups with three
generators.

The first work on lattice packing of general
convex bodies in E3 was done by Minkowski [43] in
1904. Let S be a centrally symmetric convex body
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centered at the origin o. Minkowski proved the
following criterion for densest lattice packings:

Theorem 1. If S has a lattice packing of S + Λ of
maximal density, then Λ has a basis a1, a2, and a3

such that either

{a1,a2,a3,a1 − a2,a2 − a3,a3 − a1} ⊂ ∂(2S)
or

{a1,a2,a3,a1 + a2,a2 + a3,a3 + a1} ⊂ ∂(2S).

As an application, he determined the density of
the densest lattice packings of an octahedron O.
In other words, he proved

(2) δl(O) = 18
19
.

Let K be a convex set and define

D(K) = {x− y : x,y ∈ K}.
Usually, we call D(K) the difference set of K.
Clearly D(K) is a centrally symmetric convex set
centered at the origin o. It can be shown (see [43])
that

(K + x)∩ (K + y) 6= ∅
if and only if(

1
2D(K)+ x

)
∩
(

1
2D(K)+ y

)
6= ∅.

Therefore, for a discrete set X in E3, K + X is a
packing if and only if 1

2D(K) + X is a packing.
Consequently, we get

(3) δt(K) = 23vol(K)
vol(D(K))

· δt(D(K))

and

(4) δl(K) = 23vol(K)
vol(D(K))

· δl(D(K)).

In [43, p. 312], Minkowski wrote6 “If K is a
tetrahedron, then 1

2D(K) is an octahedron with
faces parallel to the faces of the tetrahedron.” Let
O denote the regular octahedron of edge length
one. By routine computations, one can get

vol(T) =
√

2/12

and
vol(O) =

√
2/3.

Then, by (2) and (4) Minkowski [43] concluded that

(5) δl(T) = 9
38
.

Minkowski’s idea was brilliant. Unfortunately,
he made a mistake. The difference set of a regular
tetrahedron is not an octahedron but a cubocta-
hedron. As shown in Figure 4, a cuboctahedron is
very different from an octahedron.

6“Ist z.B. K ein Tetraeder, so wird 1
2D(K) ein Oktaeder mit

Flächen parallel den Flächen des Tetraeders.”

Octahedron Cuboctahedron

Figure 4. A cuboctahedron is very different from
an octahedron.

Groemer’s and Hoylman’s Work
Minkowski’s mistake was discovered by Groemer
[23] in 1962.

Let T ′ denote the tetrahedron with vertices
(−1,1, 1), (1,−1,1), (1,1,−1) and (−1,−1,−1),
and let Λ be the lattice generated by a1 =
(2,− 1

3 ,−
1
3), a2 = (− 1

3 ,2,−
1
3) and a3 = (− 1

3 ,−
1
3 , 2).

It can be shown that

D(T ′) =
{
(x1, x2, x3) :

∑
|xi| ≤ 4, |xi| ≤ 2

}
and Λ∩ int(D(T ′)) = o.
Therefore both 1

2D(T
′)+Λ and T ′ +Λ are lattice

packings.7 By routine computation it follows that
the packing density of 1

2D(T
′) + Λ and T ′ + Λ

are 45
49 and 18

49 , respectively. Thus, Groemer [23]
obtained

(6) δl(D(T)) ≥ 45
49

and

(7) δl(T) ≥ 18
49
.

Clearly Minkowski’s conclusion (5) is wrong.
In addition, Groemer also observed that each

tetrahedron in T ′ + Λ touches fourteen others.
However, he was not able to prove that the
equalities in (6) and (7) hold.

In 1970 Hoylman [35] applied Minkowski’s
criterion to a cuboctahedron C. By considering
thirty-eight cases with respect to the possible
positions of the three vectors of the bases, he
proved

δl(C) = 45
49
,

δl(T) = 18
49
,

and the optimal lattice is unique up to certain
equivalence. In fact, Groemer’s example is the only
optimal lattice tetrahedron packing.

7Minkowski’s paper also provided
a criterion to check whether
K +Λ is a packing.

1544 Notices of the AMS Volume 59, Number 11



Figure 5. An icosahedron; twenty regular
tetrahedra fit in it.

Based on Minkowski’s work, in 2000 Betke and
Henk [6] developed an algorithm by which one
can determine the density of the densest lattice
packing of an arbitrary three-dimensional polytope.
As an example of application, Hoylman’s result
was verified.

Tetrahedra Touching a Point
How many nonoverlapping regular tetrahedra can
touch a point?

By considering the solid angle that a regular
tetrahedron cuts out, which is

3 arccos(1/3)−π ≈ 0.55129 steradians,

and comparing with the full solid angle 4π , it
follows that at most twenty-two tetrahedra can
occupy the solid angle without overlap.

One finds that twenty regular tetrahedra can
touch without overlap. This fact can be deduced
from the structure of an icosahedron, as shown in
Figure 5, since the distance between its centroid
and vertices is shorter than its edge length. One
places the twenty tetrahedra so each has one vertex
at its centroid of edge length so that their opposite
face sits (concentrically) inside a corresponding
face of the icosahedron. There are now small gaps
between each of the twenty tetrahedra so arranged.

Conjecture 1. The maximal number of nonover-
lapping regular tetrahedra that can meet at a point
is twenty.

This problem has circulated in the mathematical
community for some years and has been noted
by more than one person. Paul Sally (University of
Chicago) [47] said that he encountered the question
at Lincoln Laboratories in 1958 and later circulated
it.

Conjecture 1 can be reformulated as a two-
dimensional packing problem. It is equivalent to
the assertion: The maximum number of equilateral
spherical triangles with angle arccos(1/3) that can
be placed without overlap on the surface of a sphere
is twenty.

T
T + x

1

T + x2

T + x3

Figure 6. Three tetrahedra meet at a vertex of a
fixed tetrahedron.

Kissing Numbers of Tetrahedra
The kissing number problem concerns finite pack-
ings. It was originally raised as the question: How
many spheres, all of the same radius, can touch
another sphere of the same radius? In the four-
teenth century Thomas Bradwardine observed that
twelve such spheres can touch a given sphere
[44, Sect. 4.42]. The mathematician David Gregory
discussed related problems with Isaac Newton in
1694, and in an unpublished notebook, Gregory
recorded the assertion that thirteen spheres can
touch one sphere [45, Vol. III, p. 317]. A rigorous
mathematical proof that the kissing number of
a sphere is twelve was published only in 1953
by Schütte and van der Waerden [48] (see also [9,
Chap. 8], [14, Chap. 1], [61, Chap. 1]).

To generalize the thirteen sphere problem of
Gregory and Newton, Hadwiger [26] introduced
and studied the translative kissing number of
a general convex body K. Let τc(K), τ t(K) and
τ l(K) denote the congruent kissing number, the
translative kissing number, and the lattice kissing
number of K, respectively. For example, τ t(K) is
the maximal number of nonoverlapping translates
of K, all of which touch K at its boundary. Clearly,
we have

τ l(K) ≤ τ t(K) ≤ τc(K).
In addition, both τ l(K) and τ t(K) are invariant un-
der nonsingular linear transformations. Of course,
for τc(K) this is not always true.

In 1961 Grünbaum [25] made the following
conjecture: The translative kissing number of an
n-dimensional simplex is n(n+ 1).

This conjecture lasted only one year, as Groe-
mer’s example from the last section disproves it.
Groemer’s example shows that

τc(T) ≥ τ t(T) ≥ τ l(T) ≥ 14.

But what are the values of τ l(T), τ t(T), and τc(T)?
For convenience, we assume that one of the four

vertices of T is the origin o and the other three are
v1, v2, and v3.
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When Grünbaum made his conjecture, perhaps
he thought about the structure that at each vertex
of T there are three translates that touch it (as
shown in Figure 6), and therefore altogether twelve
translates surround T . In fact, this is the local
structure of the lattice packing T +Λ1, where

Λ1 =
{∑

zivi : zi ∈ Z
}
.

In 1996 Zong [59] observed that the holes in
T +Λ1 are big enough to hold additional translates
ofT . In fact, we can put a whole copy ofT+Λ1 into it.
We write a1 = v1, a2 = v2, and a3 = 1

2(v1+v3+v3)
and define Λ2 =

{∑
ziai : zi ∈ Z

}
.

Then it can be verified that T + Λ2 is a lattice
packing of density 1/3 in which each tetrahedron
touches eighteen others. Together with Groemer
and Hoylman’s result, we have (see [60])

Theorem 2. The density of the densest lattice tetra-
hedron packings is 18/49, in which each tetrahe-
dron touches fourteen others. There is a lattice
tetrahedron packing of density 1/3 in which each
tetrahedron touches eighteen others.

Besides this discovery, Zong [59] proved that

τ l(T) = 18

and

(8) 18 ≤ τ t(T) ≤ 19.

Three years later, by modifying Zong’s method,
Talata [53] was able to improve (8) to

τ t(T) = 18.

Congruent Kissing Numbers of Tetrahedra
From the viewpoint of pure mathematics, to deter-
mine the value τc(T) for the regular tetrahedron
is an interesting and challenging problem.

For a lower bound, one can arrange fifty-six
congruent regular tetrahedra touching a fixed one
T to form an interesting cluster of fifty-seven
regular tetrahedra. We follow a construction8 given
by Chen [12, Chap. 2]. First, put four tetrahedra
face-to-face on the original one, forming a cluster
B5 of five tetrahedra. Second, around each of
the six edges of T , insert two more tetrahedra,
each face-to-face with one of the four tetrahedra
added in the first step. The resulting cluster, B17,
has five tetrahedra sharing each edge of T , the
maximum possible. Third, insert at each vertex
new tetrahedra that sit face-to-face with each of
the six tetrahedra added at the last step that
touch that vertex. This adds twenty-four new
nonoverlapping tetrahedra, resulting in a cluster

8Chen gives explicit constructions with coordinates for all
the clusters listed, but does not observe the kissing number
property of B57.

B41. This cluster is invariant under the symmetric
group S4 of twenty-four isometries preserving T .
Finally, there is still room at each vertex to insert
four more tetrahedra touching it without overlap;
these tetrahedra have some room to move and
need not sit face-to-face. This adds sixteen more
tetrahedra, giving the desired cluster B57. One
may check that this cluster has twenty tetrahedra
touching each of the vertices of T and furthermore
that the final layer of sixteen tetrahedra may be
chosen so that B57 has the full S4-symmetry group
of isometries. This construction establishes that

τc(T) ≥ 56.

To obtain an upper bound, let B denote the unit
ball centered at the origin. If T∗ is congruent to T
and T ∩ T∗ 6= ∅, then we have

T∗ ⊂ T + B.
Thus we get

(τc(T)+ 1) · vol(T) ≤ vol(T + B).
By routine computations we get

vol(T) =
√

2
12
,

vol(T + B) =
√

2
12
+
√

3

+ 3

(
π − 2 arctan

√
2

2

)
+ 4π

3
,

and therefore

τc(T) ≤
⌊

vol(T + B)
vol(T)

⌋
− 1 = 98.

In view of the conjecture that at most twenty
regular tetrahedra can touch a point, it seems
reasonable to guess that the construction above is
optimal.

Conjecture 2. The congruent kissing number of
the regular tetrahedron is

τc(T) = 56.

The congruent kissing number is not invariant
under linear transformations, so it can be consid-
ered for tetrahedra of any shape. As the shape
of T varies, τc(T) may become arbitrarily large.
Consider a tetrahedron Tα having one face an
equilateral triangle of side length 1 in the (x, y)
plane, with centroid located at the origin, and with
a fourth vertex along the positive z-axis at (0,0, α).
As α decreases to 0, the tetrahedron flattens
out. Now rotate the tetrahedron Tα so that its
equilateral triangular face is parallel to the (y, z)
plane. For small α many such rotated tetrahedra
can be moved by translations to be stacked in
parallel touching the original tetrahedron from
below without overlap. Thus the kissing number
for Tα grows without bound as α approaches 0.

This leads to the following natural problem.
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Problem 1. Determine the minimal congruent
kissing number δc(T) among all possible tetrahe-
dral shapes T .

In particular one may ask: Does the regular
tetrahedron have the minimal congruent kissing
number among all shapes of tetrahedra?

A Race for Densest Congruent Packing
In 2006 Conway and Torquato [15] made a
breakthrough in constructing dense congruent
tetrahedron packings. Their idea is simple but very
efficient.

1. Pack twenty regular tetrahedra into an icosa-
hedron (see Figure 5). The fraction of the icosa-
hedral volume occupied by the tetrahedra can be
0.8567627 . . . .

2. Construct a lattice icosahedra packing with
maximum density. According to Betke and Henk [6]
it is 0.8363574 . . . .

Thus we obtain a congruent tetrahedron packing
of density approximately

0.8363574× 0.8567627 ≈ 0.716559.

In other words, we have

(9) δc(T) ≥ 0.716559 . . . .

They further observed that, by deforming this
packing, one can slightly increase the density, and
in this way they found a packing with density
approximately 0.717455.

It was conjectured by Ulam (see p. 135 of [20])
that the maximal density (0.74048 . . .) for packing
congruent spheres is smaller than that for any
other convex body. Of course, it makes sense
to consider a regular tetrahedron as a possible
candidate for a counterexample, as Conway and
Torquato [15] did.

However, in 2008, by constructing a cluster
of eighteen congruent regular tetrahedra and a
suitable lattice packing of the cluster, the lower
bound (9) of Conway and Torquato was improved
by Chen [11] to

δc(T) ≥ 0.778615 . . . .

This shows that the regular tetrahedron does not
supply a counterexample to Ulam’s conjecture.

Packings of tetrahedra have recently become
relevant in materials science, in part because it is
now possible to manufacture nanomaterials made
of small tetrahedra, and these materials may have
interesting physical properties. It has become a
very active research topic, with materials scien-
tists, physicists, and mathematicians all studying
tetrahedral packings.

As one example, the Glotzer lab in chemical
engineering at the University of Michigan studied
such packings viewed as a fluid of hard tetrahedra,
and Haji-Akbari, Engel, and Glotzer [27], [28]

Figure 7. A pair of tetrahedra dimers, each a
reflected copy of the other.

computed by simulation its thermodynamic phase
diagram. It was observed that such a fluid appears
to have a quasicrystalline solid phase at a wide
range of pressures and densities [29], [28]. This
is the first example of a quasicrystalline phase
associated with identical nonspherical particles.
Furthermore, this result appears robust against
small changes in the shape of the tetrahedra.

Chen’s 2008 lower bound was rapidly improved
by [55], [56], [29], [36], [57], [13], and [58], some
packings being found by computer simulation and
others by new constructions.

The current record packing is that of Chen, Engel,
and Glotzer [13, Theorem 1]. It is a periodic packing
of regular tetrahedra having four tetrahedra in the
unit cell, consisting of a dimer of two tetrahedra
sharing a face and a reflected copy of this dimer
(see Figure 7), and it achieves a packing density
4000/4671 ≈ 0.856347. This packing has a set of
isometries that act transitively on the individual
dimers. It was found as a deformation of a
packing of Kallus et al. [36], which itself used a
three-dimensional extension of a double-lattice
packing idea of Kuperberg and Kuperberg [38]. The
paper [13] presents heuristic evidence based on
simulation, suggesting that this packing could be
the densest packing of regular tetrahedra. In any
case, it establishes

δc(T) ≥ 4000
4671

≈ 0.856347 . . . .

While the race for better lower bounds may
continue, the first nontrivial upper bound for δc(T)
was achieved only in 2011. It was proved by Gravel,
Elser, and Kallus [22] that

(10) δc(T) ≤ 1− 2.6× 10−25.

Congruent tetrahedron packings are still far
from being understood. We end this section with
two basic problems.

Problem 2. What is the value of δc(T)? Can the
optimum be achieved by a periodic packing?
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There is a chance that the packing of Chen, Engel,
and Glotzer [13] may be extremal. If true, such a
result will likely be very hard to prove. It seems
harder than the sphere packing problem, because
a proof must take into account the orientation of
the tetrahedra in a packing.

Problem 3. Let F denote the family of all tetrahe-
dra shapes. Is it true that among these the regular
tetrahedra are the hardest to pack? That is, do we
have

min
K∈F
{δc(K)} = δc(T)?

The Translative Packing Density
Perhaps it is easier to determine the value of
δt(T) than the value of δc(T). Moreover, since
it is invariant under nonsingular affine linear
transformations, δt(T) is important.

It was proved by Estermann [16] and Süss [52]
in 1928 that

vol(D(T))
vol(T)

= vol(C)
vol(T)

= 20.

Together with (1), (3), and (7), we can deduce

18
49
≤ δt(T) ≤ 2

5
,

where the lower bound is 0.3673469 · · · . Recently,
by introducing a particular local method, Zong [62]
has proved

δt(C) ≤ 90
√

10

95
√

10− 4
= 0.9601527 · · ·

and

δt(T) ≤ 36
√

10

95
√

10− 4
= 0.384061 · · · .

These facts support the following conjecture.

Conjecture 3. The translative packing density of
the regular tetrahedron is

δt(T) = 18
49
.
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