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8th year at the
Joint Mathematics Meetings!

[You are invited to attend the 2015 Grad School Fair
at the Joint Mathematics Meetings in San Antonio,
held at the Henry B. Gonzalez Convention Center.
Co-hosted by the AMS and MAA, the Grad School
Fair highlights more than 60 graduate programs in
the mathematical sciences. Each year, over 300
student attendees gather valuable information on
\programs in their fields of interest.

J

The event is free for registered students to
attend. Schools will pay a small table fee
to represent their programs.

Learn more at: www.ams.org/gradfair

Please check the Joint Mathematics Meetings registration site
for updated dates and times.

—

For further information,
phone: 800-321-4AMS, ext. 4060
email: aba@ams.org

—
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The Level Sets of
Typical Games

Julie Rowlett

hat is a noncooperative game?
You probably know the Rock-Paper-
Scissors (RPS) game. Let’s play:
ready, set, go! What did you choose?
I chose rock. If you chose scissors,
then I win, because rock crushes scissors. If you
chose paper, then you win, because paper covers
rock. If you also chose rock, then it’s a draw. This
is an example of a two-player game in which each
player has the same three pure strategies: rock,
paper, and scissors. In order for this game to have
any significance, we ought to define a payoff func-
tion. For example, we could say the winner receives
$1, which the loser must pay to the winner, so the
loser’s payoff is —$1. If it’s a draw, then neither of
us receives anything, so the payoffs are both 0.
This is an example of what we’ll call a discrete
game. A more general notion is a continuous game,
also called a mixed game, which we will simply call
a game. Rather than just thinking about playing the
game once, we think of the game being repeated
an arbitrary or possibly infinite number of times.
Instead of deciding upon one of rock, paper, or
scissors, we decide upon a probability distribution
which is a list of three numbers corresponding to
the probabilities of drawing rock, paper, or scissors.
The sum of these three numbersis 1, because we as-
sume that we must draw something. One example
is (1/3,1/3,1/3), which means the probabilities of
drawing rock, paper, or scissors are equal to 1/3.If
you only want to draw rock, then your probability
distribution would be (1,0,0). We can use these
to compute our expected payoffs; these are known
as expected values in probability theory. The ex-
pected payoff is the sum of the probabilities of
each possible outcome multiplied with the payoff

Julie Rowlett wrote this article while working as a postdoc
at Leibniz Universitcdt Hannover and has recently been ap-
pointed to a position as professor of mathematics at the
Technische Hochschule Ingolstadt. Her email address is
rowlett@math.uni-hannover.de.

DOI: http://dx.doi.org/10.1090/noti1150
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according to that outcome. For me, there is a 1/3
chance I will win, which happens if I draw paper;
there is a 1/3 chance I will lose, which happens if
I draw scissors; and there is a 1/3 chance we will
have a draw, which happens if I also draw rock.
Summing these probabilities multiplied with the
corresponding payoffs, my expected payoff is
1 1 1

$1>|<3+ $1>|<3+0>l<3—0.
In your case, there is also a 1/3 chance you will
win, which happens if I draw scissors; and there
is a 1/3 chance you will lose, which happens if
I draw paper; and there is a 1/3 chance we will
have a draw, which happens if I draw rock. So, your
expected payoff is also

1 1 1

$1>x<3+ $1>x<3+0>k3—0.
More generally, if my probability distribution is
(a,b,c), and yours is (x,y,z), corresponding to
probabilities of executing rock, paper, or scissors,
respectively, then we compute my expected payoff
as

—ay +az+bx—-bz+cy—cx.

Exercise 1. What is your expected payoff?

For those of you with some background in game
theory, you know that RPS is an example of a two-
player, symmetric, zero-sum game which can be
given in normal form. We will see how to express
RPS in normal form in the section entitled “Pre-
liminaries”. The general field of game theory is
enormous and has connections to many areas of
mathematics, including geometry and analysis. It
would be quite bold to claim to present an exhaus-
tive survey of games and game theory. Instead, I
would like to present an introduction to games
which are especially appealing to geometric ana-
lysts. A noncooperative (continuous) game, which
we will simply call a game, is canonically identified
with a payoff function, from RN to R”, where n is
the number of players, and N is the total number
of pure strategies summed over all players. This

VOLUME 61, NUMBER 8



function will be assumed to be consistent with the
definition of expected payoff and expected value.

Exercise 2. What are n and N in the RPS game?

For mathematicians in the fields of analysis and
geometry, these games are appealing because we
can prove theorems about them using the tools of
geometry and analysis. A perfect example is the
Nobel-prize winning Nash Equilibrium Theorem.
To state this, we need a few definitions.

In an n-player game, each player has some num-
ber of pure strategies, like rock, paper, and scissors.
For more general games it is possible that, unlike
in RPS, different players have different sets of pure
strategies. We will use m; to denote the number of
pure strategies the it" player has. A strategy for the
ith player is a list of m; nonnegative numbers which
sum to 1. These correspond to the probabilities
of executing each pure strategy. Note that these
are sometimes called mixed strategies, but since
they include the pure strategies, we will simply call
them strategies. We can identify each pure strategy
with a unit vector in R™ because each pure strat-
egy means doing that strategy with probability 1,
and the others with probability 0. So, for instance
in RPS, we could identify (1,0,0) € R3 with rock,
(0,1,0) € R3 with paper, and (0,0,1) € R3 with
scissors.

The set of strategies for the i'" player is the set
of all m;-tuples (cy, ¢z, ..., cm;) such that

mi
(1) O0=<¢=<1, j=12,....m, ZCJ':L
j=1

This is nice for geometers because we can geomet-
rically represent the set of strategies for the i"
player as the convex hull of the standard unit vec-
tors {e1, ez, ..., em, } in R™. The pure strategies are
the vertices of this convex set. We will represent
this set by $; and the total strategy space for all
players,

n
s=]]s.
i=1

The total strategy space is the product of each of
the strategy spaces, so we can view this as a subset
of RN, where

n
N = Z mj.
i=1

The game is represented by n payoff functions
which give the expected payoff to each player de-
termined by the strategies across all players

Pi:5-R, i=1,...,n.

Exercise 3. Prove that, in order for the payoff func-
tion to correspond to the expected value given by
the probability distributions over pure strategies,
each player’s payoff function must be linear in the
strategy of that player.

SEPTEMBER 2014

This means that, if all other players’ strategies
are fixed, then each p; : §; — R is a linear function.
The (total) payoff function is

P:5-R", o=(901,02...,0n.

Each component function p; of the total payoff
function depends on the strategies of all players.
Although each function g; is a linear function on
S; alone, it need not in general be simultaneously
linear in the strategies of the other players. For
example, the i'" player’s payoff could depend on
the j'" player’s strategy in a nonlinear way. We
will see more about this in the section called “Main
Result”.

Now, let us introduce the last bit of notation
necessary to state Nash’s celebrated theorem. For
s € 5 and o € 5, let (s;i;0) be the strategy in
which the i'" player’s strategy is replaced by o,
and all other players’ strategies are given by s.
An equilibrium strategy, which is also called an
equilibrium point, is s € § such that

0i(s) = pi(s;i;0) Voes, Vi=1,2,...,n.

This means that no player can increase his payoff

by changing his strategy if the strategies of the
other players remain fixed.

Theorem 1 (Nash). There exists at least one equi-
librium strategy in S.

The proof is a clever application of the Kaku-
tani Fixed Point Theorem. Nash defined a function
which has a fixed point precisely at an equilibrium
point. He then used the continuity of the total pay-
off function and the Fixed Point Theorem to prove
that this cleverly defined function must have at
least one fixed point.

In the spirit of Nash’s theorem, one can apply
geometric analysis to prove a characterization of
the level sets of the total payoff function for most
games. We begin in the section entitled “Prelimi-
naries” with an example from popular culture and
a preliminary result based on linear algebra. We
will see in “Main Result” that continuity of the pay-
off function and further properties follow from its
definition and use these properties to prove the
main theorem. This result is already recognized by
game theorists; see for example [23]. Nonetheless
the proof is instructive for readers learning the
theory of noncooperative games and combines ele-
ments of analysis, geometry, geometric measure
theory, and algebraic geometry, yet deep knowl-
edge of these areas is not required. Consequently,
we hope the reader also finds the result and its
proof interesting. Although this theorem does not
appear to be new, we have made a novel application
in biology to the “paradox of the plankton”, which
is described in the section called “Applications.”

NOTICES OF THE AMS



Preliminaries

In the film “A Beautiful Mind,” based on the life
and work of John Nash [19], there is a scene which
purportedly depicts Theorem 1.

A Beautiful Mind

In this scene Nash is together with a group of male
colleagues at a bar as a group of women enters. One
woman is depicted as being thought of as the most
attractive to the men, whereas the other women
are depicted as being considered only of average
attractiveness to the men. In a flash of insight,
Nash’s character apparently realizes that he can
apply the mathematics he has been studying to
determine the best course of action for the men: he
imagines each of the men approaching a different,
averagely attractive woman and leaving with her,
whereas the most attractive woman is left alone.
At this point Nash hurriedly leaves the bar to work
on his new insight.

The situation is depicted as a competition be-
tween the men, where each man decides without
communicating with the others which woman he
will court. This corresponds to a noncooperative
game. For simplicity, let’s assume there are 2 men,
denoted by man 1 and man 2, and 3 women, de-
noted by “M” (for most attractive) and “A” (for
averagely attractive). Each man has two pure strate-
gies: M which corresponds to courting the most
attractive woman, and A which corresponds to
courting one of the averagely attractive women.
The normal form of the game is the following.

M A
M| (0,00 | (1,-1)
Al(-1,1)] (0,0

This is also known as a payoff matrix, since it
lists the payoffs to each player according to the
corresponding strategies. This is an example of a
two-player, symmetric, zero-sum game, with one
dominant (winning) strategy. The winning strategy
is successfully courting the most attractive woman.
The interpretation of the payoffs is that if both men
do strategy M, then they are both unsuccessful.
This means that neither man has won, so they
each receive a neutral payoff, 0. Similarly, if both
men do strategy A, and presumably each court a
different woman, then they are both successful,
but since neither man has won, they each receive
a neutral payoff. In the last case one man does
strategy M while the other does strategy A, and so
the man doing M has won and receives a payoff of
1, whereas the other man can be seen as the loser
and receives a payoff of —1.

Exercise 4. Represent the rock-paper-scissors game
in normal form.

NOTICES OF THE AMS

Equilibrium
Strategy

Probability Player 2
does dominant strategy

A [ ]

>
>

Probability Player 1
does dominant strategy

For a two-player, symmetric, zero-sum game
with one dominant strategy, the level sets of the
total payoff function are line segments. This
depicts the general idea of Theorem 2; the level
sets of most games almost always have positive
Jj-dimensional Hausdorff measure for

some j > 1.

If the probability that man 1 does M is x, and
the probability that man 2 does M is y, then the
payoff functions are

P1x,y) =x-y, f(xy)=y-X
Exercise 5. Show that the unique equilibrium strat-
egyisx =y =1.

The interpretation of the equilibrium strategy
is that both men should with probability 1 attempt
to court the most attractive woman. This contra-
dicts the film which indicates that the equilibrium
strategy ought tobe x = y = 0.

One possible explanation is that, if indeed the
above model was used to determine the best strat-
egy for the characters in the film, perhaps the
filmmakers understood that the payoff accord-
ing to the equilibrium strategy is (0,0). There is
precisely one strategy contained in the level set
£71(0,0) = {0 < x = y < 1} for which each man
pairs up with a woman with probability 1, and that
is the strategy (x = y = 0) given in the film. While
not the equilibrium strategy, it is just as good in
the sense that the payoff is identical to the payoff
according to the equilibrium strategy, so perhaps
this is the reason it is considered to be the best.

It may however seem more natural to define the
game with a different payoff matrix.

Exercise 6. Is it possible to define a game in normal
form such that the equilibrium strategy is consistent
with the film?

For the solution to this exercise, see [1].

VOLUME 61, NUMBER 8



Linear Payoff Functions

While it is always true that the i‘" player’s payoff
function depends linearly on his own strategy, it
need not be the case that his payoff function also
depends linearly on the other players’ strategies.
If, however, this is the case, then we can prove the
following result. This is a good warm-up for the
more general characterization of the level sets of
payoff functions for typical games.

Proposition 1. For an n-player game, assume that
each player has at least two pure strategies and at
least one of the following holds.

(1) At least one player has three or more pure
strategies.
(2) The game is zero-sum.

Let N denote the total number of pure strategies
over all players as above. If only (1) holds, let k =
N —2n. If (2) holds, letk = N — 2n + 1. If the payoff
functions are all linear functions in the strategies
of all players, then the level sets of the total payoff
function are affine linear subsets of dimension j > k,
where j is given in the proof below.

Recall that a game is zero-sum precisely when,
for each s € §,

() > pils) = 0.
i=1

Zero-sum games imply that gains by some players
are met by equal losses to other players and can
therefore be used to model competition for limited
resources.

Proof. Do you remember the Rank-Nullity Theo-
rem from linear algebra? This theorem states that,
for an m x n matrix, the sum of the dimension of
the column space (rank) together with the dimen-
sion of the kernel (nullity) is equal to n. The idea
is that if one uses Gauss-Jordan elimination to put
the matrix in row-reduced echelon form, then each
column is either a pivot column or not. The num-
ber of pivot columns is the rank, and the number
of nonpivot columns is the nullity. This number
must sum up to the total number of columns, and
that is n. So, what does this mean if we have a ma-
trix which is longer than it is tall, so that n > m?
Since the column space is the dimension of the
space spanned by the columns, and each column
is an element of R™, this dimension is at most m.
Since n > m, the nullity must be at least n — m.
It turns out that the payoff function g for most
games can be canonically identified with a map
from a higher-dimensional Euclidean space to a
lower-dimensional Euclidean space.

Exercise 7. Show that the strategy space S is an
N — n-dimensional subset of RN. Using (2) if the
game is zero-sum, show that the payoff function

SEPTEMBER 2014

is canonically identified with a map from RN=" to
[RN—n—k .

Since the payoff function can be represented
by an affine linear function from RV-" to RN~k
there exists an (N —n — k) X (N — n) matrix M and
an (N —n—k) x 1 vector b such that po(s) = Ms+b.
The level sets of p are translations of the kernel of
M, and since M is k-columns wider than it is tall,
by the Rank-Nullity Theorem the dimension of the
kernel of M is j > k. O

This proposition may be helpful in familiarizing
readers with games and payoff functions, since it
relies only on the definitions and linear algebra.
What is more interesting is that this result can be
generalized to payoff functions which are notlinear
in the strategies of all players. The assumptions
(1) and (2) above are satisfied by a “typical game,”
because if a player has only one pure strategy, then
he cannot affect the outcome of play, so his role is
trivial. Moreover, many games have at least three
pure strategies per player and/or are zero-sum.

Main Result

While John Nash was a graduate student at Prince-
ton in 1950, he proved the existence of equilibrium
strategies for noncooperative games [19]. In 1952,
he published Real Algebraic Manifolds and proved
that two real algebraic manifolds are equivalent
if and only if they are analytically homeomorphic
[20]. He then proceeded in 1954-1956 to study
the imbedding problem for Riemannian manifolds
[21], [22]. That work involved what are now known
as Nash functions and Nash manifolds; the payoff
functions considered here are examples of Nash
functions. Based on his work in game theory, dif-
ferential geometry, and algebraic geometry, we can
be pretty sure that Nash was the first to recognize
this result and therefore acknowledge it to him.!

Theorem 2 (Nash). For an n-player game, assume
that each player has at least two pure strategies,
and at least one of the following holds.

(1) At least one player has three or more pure
Strategies.
(2) The game is zero-sum.

The image $(5) is then a k-dimensional semial-
gebraic set for some k < n in case only (1) holds
ork < n -1 in case (2) holds. For almost every
y € $(5) with respect to k-dimensional Hausdorff
measure, the level set =1 (y) has positive (or in-
finite) N — n — k-dimensional Hausdorf{f measure,
noting that N —n — k > 1.

'The author would like to note that this result and its
proof, although implicitly or explicitly known by experts, was
obtained independently.
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Proof. The main idea is to put a game which satis-
fies these hypotheses in normal form. The strategy
space is

n
s=]]s;,
i=1

m; m;
§iE‘IZCjej€RmiZOSCJS1, ZCJ':l},
Jj=1 J=1

where e; are used to denote the standard unit vec-
tors in Euclidean space. The normal form of a game
lists the payoffs to all players corresponding to all
possible combinations of pure strategies. These
combinations of pure strategies geometrically cor-
respond to the vertices of 5. We denote this set
by V and use binary expansions of integers to
represent the elements of V. There are

n
M = n mi
i=1

elements of V. Each element is of the form
N
Vy = Z xjej, xj € {0,1} Vj,
j=1

N
x:= > x;20 € {2,4,...,2N"1 -2},
Jj=1
So we see that each vertex vy corresponds to a
unique x, because binary expansions are unique
(see Chapter 6 of [26]). There is one further re-
striction on the vertices: each player executes one
pure strategy at a vertex vy. Mathematically we can
express this using the orthogonal projections

¢i:5-5;,
together with
mi
1;:= z ej,
j=1
so that

Pi(vy) - 1 =1,

The normal form for such a game would in this gen-
erality be arather large matrix. Each player requires
one dimension, so the matrix is n-dimensional.
Along the i'" dimension there are m; slots, corre-
sponding to each of the m; possible pure strategies
for the i™" player. In an entry of this matrix, we list
the payoffs to each player for the corresponding
list of pure strategies. Once we know all these pay-
offs, then just like the RPS game, we can write the
payoff for any mixed strategy, because this must
be consistent with the expected value. So, for a

Vi=1,...,n.

strategy
N
s=> cjej €S, pi(s) = D Proby, (s)@i(vy).
J=1 wev
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Above, we used Prob,, (s) to denote the probability
according to s of the combination of pure strate-
gies in vy. This is the product of the probabilities
according to s of each pure strategy in vy,

N
Prob, (s) = [ ] xjc;.
-1

So what does this mean? The payoff functions
are

N
pi(s) = > (l_[ ijJ) 2i (V).
weV \Jy=1
The important observation is that this is a poly-
nomial function in the variables {c;}}_,. The total
payoff function is therefore a real polynomial func-
tion from § ¢ RN — R”. Since § is defined by a
finite set of inequalities and linear equations, it
is by definition a semialgebraic set (see Definition
2.1.4 on p. 24 of [3]). By the Tarski-Seidenberg
Theorem (see pp. 28-29 of [3]), (5) is also a semi-
algebraic set. Such a set has the structure of a
stratified space, which is a disjoint union of a fi-
nite number of smooth manifolds (strata) which
are themselves semialgebraic sets, and such that
this stratification can be taken to satisfy the Whit-
ney conditions [14]. In this case, since the payoff
function is continuous, and § is compact, the im-
age ©(5) is compact, and so this semialgebraic set
is triangulable and is semialgebraically isomorphic
to a finite polyhedron [14]. It has some dimension
k < n. Note that if the game is zero-sum, then
n-1
Pn(s) =1- > pi(s),
i=1
which implies that ©(5) has dimension k < n —
1. The level sets, g1 (p(s)) for p(s) € p(5) are
known in this setting as fibers. By Theorem 9.3.2
and Corollary 9.3.3 on pp. 221-224 of [3], we can
decompose ©(5) as the union of semialgebraic sets
L
9(5) = J 71, dim(Ty) = k, dim(Ty) <k, VI =1,
1=0

such that each T; is closed for I > 1, and g has
a semialgebraic trivialization over each T;. This
means that, for each I, the fibers p~!(y) have di-
mension d; for all y € T;. By removing the lower-
dimensional strata, Ty is an open k-dimensional
semialgebraic set. By Proposition 2.38 on p. 71 of
[2], o~ 1 (To) is an open semialgebraic set (openness
follows since g is a polynomial and therefore con-
tinuous). By the Semialgebraic Sard Theorem (see
Theorem 9.6.2 on p. 235 of [3]) the set of critical
values in Ty has dimension strictly smaller than
k. At a regular (not critical) point, the derivative
matrix Dg(s) has rank equal to k, and the level
set p~1(p(s)) is an N — n — k-dimensional sub-
manifold of § (recall that $ is N — n-dimensional).
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Since the dimension of the fibers over T are all
the same, this means that the level sets =1 (y)
have dimension N — n — k for all y € Ty. Further-
more the sets 9 (5) and Ty differ by a set of zero
k-dimensional Hausdorff measure. Consequently,
for almost all (with respect to k-dimensional Haus-
dorff measure) y € 9(5), the level set p~1(y) is
an N — n — k-dimensional submanifold and there-
fore has positive (or infinite) N — n — k-dimensional
Hausdorff measure. O

Remark 1. One could likely say more about the
structure of the level sets (fibers) using the tools
of real algebraic geometry; references include [3],
[4], [2], [28], [10]. For our biological application
discussed in the section “Applications,” the above
theorem was sufficient.

Bibliographical Note

Since I was rather new to game theory, it was
natural to search the literature for results con-
cerning the level sets of payoff functions. In [15],
the level sets of the value (payoff) function for lin-
ear differential games of fixed terminal time with
a convex payoff function were numerically investi-
gated. For a linear pursuit-evasion game with two
pursuers and one evader, the level sets of the value
function were numerically studied in [8]. For zero-
sum games, [29] studied a certain Hamiltonian flow
which can be used to study the best response dy-
namic in two-person games, and showed that under
certain assumptions the level sets of the associ-
ated Hamiltonian function are topological spheres.
Further examples of the study of the level sets
of the payoff functions for specific games include
[18], [24], [25], and [27]. Investigating connections
between real algebraic geometry and game theory
led to Neyman’s work including [23]. It appears
that many results in game theory tend to be more
computational whereas the results in real algebraic
geometry tend to be more theoretical. We hope to
encourage further communication between game
theorists and real algebraic geometers.

Applications

The structure of the level sets of the payoff func-
tions has a novel application to biology by pro-
viding a new and rigorous solution to the long-
standing “paradox of the plankton” in [16].

Biodiversity of Micro-Organisms

The “paradox of the plankton” coined by Hutchin-
son in 1961 [13] is the observation that the
number of co-existing plankton species appears
to contradict the explicable number based on
competition theory [11], [9]. The number of co-
existing species is orders of magnitude larger
than expected, based on competition theories
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and predictions which yield reasonably accurate
numbers for macro-organisms. There have been
numerous explanations proposed by biologists,
but a mathematical theory consistent with all
these explanations, which is based on a biological
factor subject to natural selection and is not in
contradiction with competition theory, appears
to have been missing. In [16], we realized that
Theorem 2 has implications for a game modeling
competition of plankton organisms which may
resolve the paradox.

How can we use a game to model competition
of plankton organisms? Plankton reproduce asex-
ually and are genetically identical within a species.
Justified by this clonal nature we define a “player”
as consisting of many individuals belonging to one
species. The survival of the species is a cumulative
function of the survival of its individuals. Due to
the asexual reproduction, success in competition
among microbes can be identified with population
increase or decrease, which corresponds to positive
or negative payoff. The strategies for each player
(=species) are probability distributions across the
various behaviors of which that species is capa-
ble. Each of these probabilities is the probability
that a randomly selected individual organism does
the corresponding behavior (like swim up, for ex-
ample). In this way, we can use a game to model
competition between plankton species.

What is the connection with the structure of the
level sets of typical games? In a broad sense evolu-
tion can be described as a feedback loop; we refer
readers interested in evolutionary game dynamics
to [12] and the references therein. This means that,
within a level set of a game modeling competition,
the feedback to all species is identical. There is ab-
solutely no difference. In the generic sense made
precise in Theorem 2, the level sets of typical games
are typically large. How do the hypotheses of the
theorem fit with plankton ecology? The hypotheses
mean that all species are capable of at least two
different behaviors. This corresponds to individual
variability which seems to be the underlying mech-
anism supporting the large plankton biodiversity
and may explain the unexpectedly large biodiver-
sity of other microbes as well. The assumptions
(1) and (2) mean that either species possess fur-
ther variability and/or are competing for limited
resources which also appears to be the case.

Although plankton individuals are genetic
clones within a species, they exhibit significant
variability among individuals; see §1 of [16] and
the references cited therein. This individual vari-
ability is inherent to a species and is subject to
natural selection and consequently to the evo-
lutionary feedback loop [7]. We propose that it
is this individual variability which is driving the
large biodiversity. Mathematically, by Theorem 2,
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this variability implies that the level sets of the
payoff function are large. These large level sets
correspond to the large variety of strategies which
are all “equally good”, in the sense that they
produce identical feedback. The various strategies
in the level sets may characterize different species
and correspond to the large number of species
which may co-exist, which we describe as “many
different ways to stay in the game” [16].

Our theory may be thought of as “survival of
the cumulatively fit” rather than “survival of the
fittest” and is applicable to micro-organisms which
reproduce asexually. Defining a player as consist-
ing of several organisms belonging to one species,
while reasonable for micro-organisms which repro-
duce asexually, no longer makes sense for larger
macro-organisms which do not reproduce asexu-
ally, because the death of an individual implies
the loss of that individual’s unique genome. Con-
sequently, our theory does not contradict competi-
tion theories or predictions of species abundance
for macro-organisms.

Compatibility. It may seem counterintuitive to ap-
ply noncooperative game theory to evaluate a rela-
tionship, but many everyday decisions are made
quickly according to self-interest, without coop-
erative discussion. In [1] we used noncooperative
game theory to design a new type of compatibility
test to measure the balance and overall happiness
of two people in a relationship. Our test may be
customized to analyze the overall balance and sat-
isfaction in any relationship between two people,
romantic or otherwise; this is discussed in [1]. If
you are in a relationship, we challenge you to take
this test!

Concluding Remarks

In situations modeled by noncooperative games,
players do not communicate; the only feedback
they experience is their payoff. This means that
not only equilibrium strategies but also the struc-
ture of the level sets of the payoff function are
important to understand. Some readers may be of
the opinion that only seasoned experts ought to
write about a certain topic. However, approach-
ing a field from a different perspective may at
times be helpful, and so I hope that this note
written from a geometric analyst’s perspective has
provided some basic insight into noncooperative
(mixed/continuous) games, and that it may inspire
further investigation and collaboration.
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he theories as developed by European

mathematicians prior to 1870 differed

from the modern ones in that none of

them used the modern theory of limits.

Fermat develops what is sometimes
called a “precalculus” theory, where the optimal
value is determined by some special condition such
as equality of roots of some equation. The same
can be said for his contemporaries like Descartes,
Huygens, and Roberval.

Leibniz’s calculus advanced beyond them in
working on the derivative function of the variable x.
He had the indefinite integral whereas his prede-
cessors only had concepts more or less equivalent
to it. Euler, following Leibniz, also worked with
such functions, but distinguished the variable (or
variables) with constant differentials dx, a status
that corresponds to the modern assignment that x
is the independent variable, the other variables of
the problem being dependent upon it (or them)
functionally.
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Fermat determined the optimal value by impos-
ing a condition using his adequality of quantities.
But he did not really think of quantities as func-
tions, nor did he realize that his method produced
only a necessary condition for his optimization
condition. For a more detailed general introduc-
tion, see chapters 1 and 2 of the volume edited by
Grattan-Guinness (Bos et al. 1980 [19]).

The doctrine of limits is sometimes claimed to
have replaced that of infinitesimals when analysis
was rigorized in the nineteenth century. While
it is true that Cantor, Dedekind and Weierstrass
attempted (not altogether successfully; see Ehrlich
2006 [32], Mormann & Katz 2013 [79]) to eliminate
infinitesimals from analysis, the history of the limit
concept is more complex. Newton had explicitly
written that his ultimate ratios were not actually
ratios but, rather, limits of prime ratios (see Russell
1903 [89, item 316, pp. 338-339]; Pourciau 2001
[84]). In fact, the sources of a rigorous notion of
limit are considerably older than the nineteenthth
century.

In the context of Leibnizian mathematics, the
limit of f(x) as x tends to xo can be viewed as
the “assignable part” (as Leibniz may have put
it) of f(xp + dx) where dx is an “inassignable”
infinitesimal increment (whenever the answer is
independent of the infinitesimal chosen). A modern
formalization of this idea exploits the standard
part principle (see Keisler 2012 [67, p. 36]).
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In the context of ordered fields E, the standard
part principle is the idea that, if E is a proper
extension of the real numbers R, then every finite
(or limited) element x € E is infinitely close to
a suitable x¢o € R. Such a real number is called
the standard part (sometimes called the shadow)
of x, or in formulas, st(x) = xo. Denoting by E; the
collection of finite elements of E, we obtain a map

st: Er — R.

Here x is called finite if it is smaller (in absolute
value) than some real number (the term finite is
immediately comprehensible to a wide mathemati-
cal public, whereas limited corresponds to correct
technical usage); an infinitesimal is smaller (in
absolute value) than every positive real; and x is
infinitely close to xo in the sense that x — xq is
infinitesimal.

Briefly, the standard part function “rounds off”
a finite element of E to the nearest real number
(see Figure 1).

The proof of the principle is easy. A finite
element x € E defines a Dedekind cut on the
subfield R c E (alternatively, on Q C R), and
the cut in turn defines the real x¢ via the usual
correspondence between cuts and real numbers.
One sometimes writes down the relation

X = X0

to express infinite closeness.

We argue that the sources of such a relation,
and of the standard part principle, go back to
Fermat, Leibniz, Euler, and Cauchy. Leibniz would
discard the inassignable part of 2x + dx to arrive
at the expected answer, 2x, relying on his law of
homogeneity (see the section entitled “Leibniz’s
Transcendental Law of Homogeneity”). Such an
inferential move is mirrored by a suitable proxy in
the hyperreal approach, namely the standard part
function.

Fermat, Leibniz, Euler, and Cauchy all used
one or another form of approximate equality, or
the idea of discarding “negligible” terms. Their
inferential moves find suitable proxies in the
context of modern theories of infinitesimals, and
specifically the concept of shadow.

The last two sections present an application of
the standard part to decreasing rearrangements
of real functions and to a problem on divergent
integrals due to S. Konyagin.

This article continues efforts in revisiting the
history and foundations of infinitesimal calculus
and modern nonstandard analysis. Previous efforts
in this direction include Bair et al. (2013 [6]),
Bascelli (2014 [7]), Blaszczyk et al. (2013 [15]),
Borovik et al. (2012 [16], [17]), Kanovei et al. (2013
[55]), Katz, Katz & Kudryk (2014 [61]), Mormann
et al. (2013 [79]), Sherry et al. (2014 [92]), Tall et
al. (2014 [97]).
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Figure 1. The standard part function, st, “rounds
off” a finite hyperreal to the nearest real number.
The function st is here represented by a vertical
projection. An “infinitesimal microscope” is used
to view an infinitesimal neighborhood of a
standard real number r, where «, 8, and y
represent typical infinitesimals. Courtesy of
Wikipedia.

Methodological Remarks

To comment on the historical subtleties of judging
or interpreting past mathematics by present-day
standards,’ note that neither Fermat, Leibniz, Euler,
nor Cauchy had access to the semantic founda-
tional frameworks as developed in mathematics
at the end of the nineteenthth and first half of
the twentieth centuries. What we argue is that
their syntactic inferential moves ultimately found
modern proxies in Robinson’s framework, thus
placing a firm (relative to ZFC)? semantic foun-
dation underneath the classical procedures of
these masters. Benacerraf (1965 [10]) formulated
a related dichotomy in terms of mathematical
practice vs. mathematical ontology.

For example, the Leibnizian laws of continuity
(see Knobloch 2002 [69, p. 67]) and homogene-
ity can be recast in terms of modern concepts
such as the transfer principle and the standard
part principle over the hyperreals, without ever
appealing to the semantic content of the technical
development of the hyperreals as a punctiform con-
tinuum,; similarly, Leibniz’s proof of the product
rule for differentiation is essentially identical, at
the syntactic level, to a modern infinitesimal proof
(see, again, the section “Leibniz’s Transcendental
Law of Homogeneity”).

1Some reflections on this can be found in Lewis (1975 [76]).
>The Zermelo-Fraenkel Set Theory with the Axiom of
Choice.
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A-track and B-track

The crucial distinction between syntactic and se-
mantic aspects of the work involving mathematical
continua appears to have been overlooked by
R. Arthur who finds fault with the hyperreal proxy
of the Leibnizian continuum, by arguing that the
latter was non-punctiform (see Arthur 2013 [5]).
Yet this makes little difference at the syntactic
level, as explained above. Arthur’s brand of the syn-
categorematic approach following Ishiguro (1990
[52]) involves a reductive reading of Leibnizian
infinitesimals as logical (as opposed to pure) fic-
tions involving a hidden quantifier a la Weierstrass,
ranging over “ordinary” values. This approach was
critically analyzed in (Katz & Sherry 2013 [65]),
(Sherry & Katz 2013 [92]), and (Tho 2012 [101]).

Robinson’s framework poses a challenge to
traditional historiography of mathematical analysis.
The traditional thinking is often dominated by a
kind of Weierstrassian teleology. This is a view
of the history of analysis as univocal evolution
toward the radiant Archimedean framework as
developed by Cantor, Dedekind, Weierstrass, and
others starting around 1870, described as the
A-track in a recent piece in the Notices (see Bair et
al. 2013 [6]).

Robinson’s challenge is to point out not only
the possibility, but also the existence of a parallel
Bernoullian® track for the development of analysis,
or B-track for short. The B-track assigns an
irreducible and central role to the concept of
infinitesimal, a role it played in the work of Leibniz,
Euler, mature Lagrange,4 Cauchy, and others.

The caliber of some of the response to Robin-
son’s challenge has been disappointing. Thus, the
critique by Earman (1975 [30]) is marred by a
confusion of second-order infinitesimals like dx?
and second-order hyperreal extensions like **R;
see (Katz & Sherry 2013 [65]) for a discussion.

Victor J. Katz (2014 [66]) appears to imply
that a B-track approach based on notions of
infinitesimals or indivisibles is limited to “the work
of Fermat, Newton, Leibniz, and many others in
the seventeenth and eighteenth centuries.” This
does not appear to be Felix Klein’s view. Klein

3 Historians often name Johann Bernoulli as the first mathe-
matician to have adhered systematically and exclusively to
the infinitesimal approach as the basis for the calculus.

“In the second edition of his Mécanique Analytique dating
from 1811, Lagrange fully embraced the infinitesimal in the
following terms: “Once one has duly captured the spirit of
this system [i.e., infinitesimal calculus], and has convinced
oneself of the correctness of its results by means of the geo-
metric method of the prime and ultimate ratios, or by means
of the analytic method of derivatives, one can then exploit
the infinitely small as a reliable and convenient tool so as
to shorten and simplify proofs.” See (Katz & Katz 2011 [58])
for a discussion.
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formulated a condition, in terms of the mean value
theorem,’ for what would qualify as a successful
theory of infinitesimals, and concluded:

I will not say that progress in this direction
is impossible, but it is true that none of
the investigators have achieved anything
positive (Klein 1908 [68, p. 219]).

Klein was referring to the current work on
infinitesimal-enriched systems by Levi-Civita, Bet-
tazzi, Stolz, and others. In Klein’s mind, the
infinitesimal track was very much a current re-
search topic; see Ehrlich (2006 [32]) for a detailed
coverage of the work on infinitesimals around 1900.

Formal Epistemology: Easwaran on Hyperreals

Some recent articles are more encouraging in that
they attempt a more technically sophisticated ap-
proach. K. Easwaran’s study (2014 [31]), motivated
by a problem in formal epistemology,6 attempts to
deal with technical aspects of Robinson’s theory
such as the notion of internal set, and shows an
awareness of recent technical developments, such
as a definable hyperreal system of Kanovei & Shelah
(2004 [57]).

Even though Easwaran, in the tradition of
Lewis (1980 [77]) and Skyrms (1980 [94]), tries to
engage seriously with the intricacies of employing
hyperreals in formal epistemology,” not all of his
findings are convincing. For example, he assumes
that physical quantities cannot take hyperreal
values.® However, there exist physical quantities
that are not directly observable. Theoretical proxies
for unobservable physical quantities typically
depend on the chosen mathematical model. And,
not surprisingly, there are mathematical models
of physical phenomena which operate with the
hyperreals, in which physical quantities take
hyperreal values. Many such models are discussed
in the volume by Albeverio et al. (1986 [1]).

For example, certain probabilistic laws of nature
have been formulated using hyperreal-valued prob-
ability theory. The construction of mathematical

> The Klein-Fraenkel criterion is discussed in more detail in
Kanovei et al. (2013 [55]).

5The problem is concerned with saving philosophical
Bayesianism, a popular position in formal epistemology,
which appears to require that one be able to find on every
algebra of doxastically relevant propositions some subjec-
tive probability assignment such that only the impossible
event () will be assigned an initial/uninformed subjective
probability, or credence, of 0.

"For instance, he concedes: “And the hyperreals may also
help, as long as we understand that they do not tell us
the precise structure of credences.” (Easwaran 2014 [31],
Introduction, last paragraph).

8Easwaran’s explicit premise is that “All physical quanti-
ties can be entirely parametrized using the standard real
numbers.” (Easwaran 2014 |31, Section 8.4, Premise 3]).
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Brownian motion by Anderson (1976 [4]) provides
a hyperreal model of the botanical counterpart. It
is unclear why (and indeed rather implausible that)
an observer A, whose degrees of belief about botan-
ical Brownian motion stem from a mathematical
model based on the construction of mathematical
Brownian motion by Wiener (1923 [104]), should
be viewed as being more rational than another
observer B, whose degrees of belief about botanical
Brownian motion stem from a mathematical model
based on Anderson’s construction of mathematical
Brownian motion.’

Similarly problematic is Easwaran’s assumption
that an infinite sequence of probabilistic tests must
necessarily be modeled by the set of standard
natural numbers (this is discussed in more detail in
the subsection “Williamson, Complexity, and Other
Arguments”). Such an assumption eliminates the
possibility of modeling it by a sequence of infinite
hypernatural length. Indeed, once one allows for
infinite sequences to be modeled in this way, the
problem of assigning a probability to an infinite
sequence of coin tosses that was studied in (Elga
2004 [33]) and (Williamson 2007 [105]) allows for
an elegant hyperreal solution (Herzberg 2007 [48]).

Easwaran reiterates the common objection that
the hyperreals are allegedly “nonconstructive”
entities. The bitter roots of such an allegation in the
radical constructivist views of E. Bishop have been
critically analyzed in (Katz & Katz 2011 [59]), and
contrasted with the liberal views of the intuitionist
A. Heyting, who felt that Robinson’s theory was
“a standard model of important mathematical
research” (Heyting 1973 [51, p. 136]). Itis important
to keep in mind that Bishop’s target was classical
mathematics (as a whole), the demise of which he
predicted in the following terms:

Very possibly classical mathematics will

cease to exist as an independent discipline
(Bishop 1968 [14, p. 54)).

Zermelo-Fraenkel Axioms and the Feferman-
Levy Model

In his analysis, Easwaran assigns substantial weight
to the fact that “itis consistent with the ZF [Zermelo-
Fraenkel set theory] without the Axiom of Choice”

90ne paradoxical aspect of Easwaran’s methodology is that,
despite his anti-hyperreal stance in (2014 [30]), he does en-
vision the possibility of useful infinitesimals in an earlier
Jjoint paper (Colyvan & Easwaran 2008 [27]), where he cites
John Bell’s account (Bell’s presentation of Smooth Infinitesi-
mal Analysis in [9] involves a category-theoretic framework
based on intuitionistic logic); but never the hyperreals. Fur-
thermore, in the 2014 paper he cites the surreals as possible
alternatives to the real number-based description of the
“structure of physical space” as he calls it; see subsection
“Williamson, Complexity, and Other Arguments” for a more
detailed discussion.
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Figure 2. Easwaran’s attempted slaying of the
infinitesimal, following P. Uccello. Uccello’s
creature is shown as inhabiting an infinitesimal
neighborhood of 0.

that the hyperreals do not exist (Easwaran 2014
[30, Section 8.4]); see Figure 2. However, on the
same grounds, one would have to reject parts of
mathematics with important applications. There
are fundamental results in functional analysis
that depend on the Axiom of Choice such as the
Hahn-Banach theorem; yet no one would suggest
that mathematical physicists or mathematical
economists should stop exploiting them.

Most real analysis textbooks prove the o-
additivity (i.e., countable additivity) of Lebesgue
measure, but o-additivity is not deducible from
ZF, as shown by the Feferman-Levy model; see
(Feferman & Levy 1963 [36]); (Jech 1973 [54,
chapter 10]). Indeed, it is consistent with ZF that
the following holds:

() the continuum R of real numbers is a
countable union R = |J, ey X of countable
sets X,.

See (Cohen 1966 [26, chapter IV, section 4]) for a
description of a model of ZF in which () holds.'°
Note that () implies that the Lebesgue measure
is not countably additive, as all countable sets are
null sets whereas R is not a null set. Therefore
countable additivity of the Lebesgue measure
cannot be established in ZF.
Terence Tao wrote:

By giving up countable additivity, one loses
a fair amount of measure and integration
theory, and in particular the notion of the
expectation of a random variable becomes
problematic (unless the random variable
takes only finitely many values). (Tao 2013
[100])

1OProperty () may appear to be asserting the countabil-
ity of the continuum. However, in order to obtain a bijective
map from a countable collection of countable sets to N x N
(and hence, by diagonalization, to N), the Axiom of Choice
(in its “countable” version which allows a countably-infinite
sequence of independent choices) will necessarily be used.
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Tao’s remarks suggest that deducibility from ZF
is not a reasonable criterion of mathematical
plausibility by any modern standard.

There are models of ZF in which there are
infinitesimal numbers, if properly understood,
among the real numbers themselves. Thus, there
existmodels of ZF which are also models of Nelson’s
(1987 [82]) radically elementary mathematics, a
subsystem of Nelson’s (1977 [81]) Internal Set
Theory. Here radically elementary mathematics is
an extension of classical set theory (which may be
understood as ZF'! ) by a unary predicate, to be
interpreted as

“...1is a standard natural number,”

with additional axioms that regulate the use of
the new predicate (notably external induction
for standard natural numbers) and ensure the
existence of nonstandard numbers. Nelson (1987
[82, Appendix]) showed that a major part of the
theory of continuous-time stochastic processes
is in fact equivalent to a corresponding radically
elementary theory involving infinitesimals, and
indeed, radically elementary probability theory has
seen applications in the sciences; see for example
(Reder 2003 [85]).

In sum, mathematical descriptions of nontrivial
natural phenomena involve, by necessity, some
degree of mathematical idealization, but Easwaran
has not given us a good reason why only such
mathematical idealizations that are feasible in
every model of ZF should be acceptable. Rather,
as we have already seen, there are very good
arguments (e.g., from measure theory) against
such a high reverence for ZF.

Skolem Integers and Robinson Integers

Easwaran recycles the well-known claim by
A. Connes that a hypernatural number leads to
a nonmeasurable set. However, the criticism by
Connes'? is in the category of dressing down a
feature to look like a bug, to reverse a known
dictum from computer science slang.'® This can be
seen as follows. The Skolem nonstandard integers
Ngsko are known to be purely constructive; see
Skolem (1955 [93]) and Kanovei et al. (2013 [55]).
Yet they imbed in Robinson’s hypernaturals Nggp:

(1) Nsko = NRob-

HEyen though Nelson would probably argue for a much
weaker system; see Herzberg (2013 [49, Appendix A.1]),
citing Nelson (2011 [83]).

12Note that Connes relied on the Hahn-Banach theorem,
exploited ultrafilters, and placed a nonconstructive entity
(namely the Dixmier trace) on the front cover of his mag-
num opus; see (Katz & Leichtnam 2013 [62]) and (Kanovei
et al. 2013 [55]) for details.

13See[https: //enwikipedia.org/wiki/Undocumented_|
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Viewing a purely constructive Skolem hypernatural
H € Ngko \ N

as a member of Ngop via the inclusion (1), one can
apply the transfer principle to form the set

Xy ={ACN:H e *A},

where *A C Ngep is the natural extension of A.
The set Xy is not measurable. What propels the
set Xy C P(N) into existence is not a purported
weakness of a nonstandard integer H itself, but
rather the remarkable strength of both the Los-
Robinson transfer principle and the consequences
it yields.

Williamson, Complexity, and Other Arguments

Easwaran makes a number of further critiques of
hyperreal methodology. His section 8.1, entitled
“Williamson’s Argument,” concerns infinite coin
tosses. Easwaran’s analysis is based on the model
of a countable sequence of coin tosses given by
Williamson [105]. In this model, it is assumed that

... for definiteness, [the coin] will be flipped
once per second, assuming that seconds
from now into the future can be numbered
with the natural numbers (Easwaran 2014
[31, section 8.1]).

What is lurking behind this is a double assumption
which, unlike other “premises,” is not made explicit
by Easwaran. Namely, he assumes that

(1) avast number of independent tests is best
modeled by a temporal arrangement thereof,
rather than by a simultaneous collection;
and

(2) the collection of seconds ticking away “from
now [and] into the future” gives a faithful
representation of the natural numbers.

These two premises are not self-evident and
some research mathematicians have very different
intuitions about the matter, as much of the
literature on applied nonstandard analysis (e.g.,
Albeverio etal. 1986 [1], Reder 2003 [85]) illustrates.

It seems that in Easwaran’s model, an agent can
choose not to flip the coin at some seconds, thus
giving rise to events like “a coin that is flipped
starting at second 2 comes up heads on every flip.”
However, in all applications we are aware of, this
additional structure used to rule out the use of
hyperreals as the range of probability functions
seems not to be relevant.

Williamson and Easwaran appear to be unwilling
to assume that, once one decides to use hyperreal
infinitesimals, one should also replace the original
algebra “of propositions in which the agent has
credence” with an internal algebra of the hyperreal
setting. In fact, such an additional step allows one
to avoid both the problems raised by Williamson’s
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argument in his formulation using conditional
probability, and those raised by Easwaran in
section 8.2 of his paper.

A possible model with hyperreal infinitesi-
mals for an infinite sequence of coin tosses is
given by representing every event by means of
a sequence {a,...,ay}, where a, represents the
outcome of the nth flip and N is a fixed hypernat-
ural number. In this model, consider the events
“a, = Heads for n < N”, which we will denote H(1),
and “a, = Heads for 2 < n < N”, that we will
denote H(2). In such a setting, events H(1) and
H(2) are not isomorphic, contrary to what was
argued in (Williamson [105, p. 3]). This is due to the
fact that hypernatural numbers are an elementary
extension of the natural numbers, for which the
formula k # k + 1 always holds. Moreover, the
probability of H(1) is the infinitesimal 2~N, while
the probability of H(2) is the strictly greater
infinitesimal 2-N-1 | thus obeying the well-known
rule for conditional probability.

Easwaran’s section 8.4 entitled “The complexity
argument” is based on four premises. However, his
premise 3, to the effect that “all physical quantities
can be entirely parameterized using the standard
real numbers,” is unlikely to lead to meaningful
philosophical conclusions based on “first princi-
ples.” This is because all physical quantities can
be entirely parameterized by the usual rational
numbers alone, due to the intrinsic limits of our
capability to measure physical quantities. A clear
explanation of this limitation was given by Dowek.
In particular, since

a measuring instrument yields only an ap-
proximation of the measured magnitude,
[...]itis therefore impossible, except accord-
ing to this idealization, to measure more
than the first digits of a physical magnitude.
[...] According to this principle, this ideal-
ization of the process of measurement is a
fiction. This suggests the idea, reminiscent
of Pythagoras’ views, that Physics could be
formulated with rational numbers only. We
can therefore wonder why real numbers
have been invented and, moreover, used in
Physics. A hypothesis is that the invention
of real numbers is one of the many situa-
tions, where the complexity of an object is
increased, so that it can be apprehended
more easily. (Dowek 2013 [29])

Related comments by Wheeler (1994 [103, p. 308]),
Brukner & Zeilinger (2005 [22, p. 59]), and oth-
ers were analyzed by Kanovei et al. (2013 [55,
Section 8.4]). See also Jaroszkiewicz (2014 [53]).
If all physical quantities can be entirely parame-
terized by using rational numbers, there should
be no compelling reason to choose the real num-
ber system as the value range of our probability
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measures. However, Easwaran is apparently com-
fortable with the idealization of exploiting a larger
number system than the rationals for the value
range of probability measures. What we argue
is that the real numbers are merely one among
possible idealizations that can be used for this
purpose. For instance, in hyperreal models for
infinite sequence of coin tosses developed by Benci,
Bottazzi, & Di Nasso (2013 [11]), all events have
hyperrational probabilities. This generalizes both
the case of finite sequences of coin tosses, and
the Kolmogorovian model for infinite sequences
of coin tosses, where a real-valued probability is
generated by applying Carathéodory’s extension
theorem to the rational-valued probability measure
over the cylinder sets.

Given Easwaran’s firm belief that “the function
relating credences to the physical is not so complex
that its existence is independent of Zermelo-
Fraenkel set theory” (see his section 8.4, premise
2), it is surprising to find him suggesting that

the surreal numbers seem more promising
as a device for future philosophers of
probability to use (Easwaran 2014 [31,
Appendix A.3]).

However, while the construction of the surre-
als indeed “is a simultaneous generalization of
Dedekind’s construction of the real numbers and
von Neumann'’s construction of the ordinals,” as
observed by Easwaran, it is usually carried out
in the Von Neumann-Bernays-Godel set theory
(NBG) with Global Choice; see, for instance, the
“Preliminaries” section of (Alling 1987 [3]). The
assumption of the Global Axiom of Choice is a
strong foundational assumption.

The construction of the surreal numbers can
be performed within a version of NBG that is a
conservative extension of ZFC, but does not need
Limitation of Size (or Global Choice). However, NBG
clearly is not a conservative extension of ZF; and if
one wishes to prove certain interesting features of
the surreals one needs an even stronger version
of NBG that involves the Axiom of Global Choice.
Therefore the axiomatic foundation that one needs
for using the surreal numbers is at least as strong
as the one needed for the hyperreals.

Infinity and Infinitesimal: Let Both Pretty
Severely Alone

At the previous turn of the century, H. Heaton
wrote:

I think I know exactly what is meant by the
term zero. But I can have no conception
either of infinity or of the infinitesimal, and
I think it would be well if mathematicians
would let both pretty severely alone (Heaton
1898 [47, p. 225]).
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Heaton’s sentiment expresses an unease about a
mathematical concept of which one may have an
intuitive grasp'* but which is not easily formal-
izable. Heaton points out several mathematical
inconsistencies or ill-chosen terminology among
the conceptions of infinitesimals of his contempo-
raries. This highlights the brilliant mathematical
achievement of a consistent “calculus” for infinites-
imals attained through the work of Hewitt (1948
[50]), Los (1955 [78]), Robinson (1961 [87]), and
Nelson (1977 [81]), but also of their predecessors
like Fermat, Euler, Leibniz, and Cauchy, as we
analyze respectively in sections entitled “Fermat’s
Adequality,” “Leibniz’s Transcendental Law of Ho-
mogeneity,” “Euler’s Principle of Cancellation,” and
“What Did Cauchy Mean by Limit?”.

Fermat’s Adequality

Our interpretation of Fermat’s technique is compat-
ible with those by Stremholm (1968 [95]) and Giusti
(2009 [43]). It is at variance with the interpretation
by Breger (1994 [21]), considered by Knobloch
(2014 [70]) to have been refuted.

Adequality, or mxptooTng (parisotés) in the
original Greek of Diophantus, is a crucial step
in Fermat’s method of finding maxima, minima,
tangents, and solving other problems that amodern
mathematician would solve using infinitesimal
calculus. The method is presented in a series of
short articles in Fermat’s collected works. The first
article, Methodus ad Disquirendam Maximam et
Minimam, opens with a summary of an algorithm
for finding the maximum or minimum value
of an algebraic expression in a variable A. For
convenience, we will write such an expression in
modern functional notation as f(a).

Summary of Fermat’s Algorithm

One version of the algorithm can be broken up
into six steps in the following way:

(1) Introduce an auxiliary symbol e, and
form f(a + e);

(2) Set adequal the two expressions f (a+e) =ap
f(a) (the notation “=p” for adequality is
ours, not Fermat’s);

(3) Cancel the common terms on the two sides
of the adequality. The remaining terms all
contain a factor of e;

(4) Divide by e (see also next step);

(5) In a parenthetical comment, Fermat adds:
“or by the highest common factor of e;”

Y The intuitive appeal of infinitesimals make them an
effective teaching tool. The pedagogical value of teach-
ing calculus with infinitesimals was demonstrated in a
controlled study by Sullivan (1976 [96]).
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(6) Among the remaining terms, suppress all
terms which still contain a factor of e.
Solving the resulting equation for a yields
the extremum of f.

In modern mathematical language, the algorithm

entails expanding the difference quotient

fla+e)—f(a)

e

in powers of e and taking the constant term.'
The method (leaving aside step (5)) is immediately
understandable to a modern reader as the elemen-
tary calculus exercise of finding the extremum
by solving the equation f'(a) = 0. But the real
question is how Fermat understood this algorithm
in his own terms, in the mathematical language
of his time, prior to the invention of calculus by
Barrow, Leibniz, Newton, and others.

There are two crucial points in trying to under-
stand Fermat’s reasoning: first, the meaning of
“adequality” in step (2), and second, the justifica-
tion for suppressing the terms involving positive
powers of e in step (6). The two issues are closely
related because interpretation of adequality de-
pends on the conditions on e. One condition which
Fermat always assumes is that e is positive. He did
not use negative numbers in his calculations.'®

Fermat introduces the term adequality in Metho-
dus with a reference to Diophantus of Alexandria.
In the third article of the series, Ad Eamdem
Methodum (Sur la Méme Méthode), he quotes
Diophantus’s Greek term maxptooTng, which
he renders following Xylander and Bachet, as
adaequatio or adaequalitas (see A. Weil [102,
p. 28)).

Tangent Line and Convexity of Parabola

Consider Fermat’s calculation of the tangent line
to the parabola (see Fermat [38, pp. 122-123]). To
simplify Fermat’s notation, we will work with the
parabola y = x2, or
X
y

=1.

15 Fermat also envisions a more general technique involving
division by a higher power of e as in step (5).

16 pjg point is crucial for our argument below using the
transverse ray. Since Fermat is only working with positive
values of his e, he only considers a ray (rather than a full
line) starting at a point of the curve. The convexity of the
curve implies an inequality, which Fermat transforms into
an adequality without giving much explanation of his pro-
cedure, but assuming implicitly that the ray is tangent to
the curve. But a transverse ray would satisfy the inequality
no less than a tangent ray, indicating that Fermat is relying
on an additional piece of geometric information. His proce-
dure of applying the defining relation of the curve itself to a
point on the tangent ray is only meaningful when the incre-
ment e is small (see subsection “Tangent Line and Convexity
of Parabola”).
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To understand what Fermat is doing, it is helpful
to think of the parabola as a level curve of the
two-variable function %

Given a point (x,y) on the parabola, Fermat
wishes to find the tangent line through the
point. Fermat exploits the geometric fact that,
by convexity, a point

(p,a)
on the tangent line lies outside the parabola. He
therefore obtains an inequality equivalent in our
2
notation to % >1,0orp?>qg.Hereq=y—e,and e
is Fermat’s magic symbol we wish to understand.

Thus we obtain

]92

y-—e
At this point Fermat proceeds as follows:

(2) > 1.

(i) he writes down the inequality y’”—_ze > 1,
orp?>y-—e;

(ii) he invites the reader to adégaler (to “ade-
quate”);

(iii) he writes down the adequality ;‘,—i =D yoob

(iv) heuses anidentity involving similar triangles
to substitute

X  y+r

p y+r—e
where r is the distance from the vertex of
the parabola to the point of intersection of
the tangent to the parabola at y with the axis
of symmetry,

(v) he cross multiplies and cancels identical
terms on right and left, then divides out by e,
discards the remaining terms containing e,
and obtains y = r as the solution.!”

What interests us here are steps (i) and (ii).
How does Fermat pass from an inequality to an
adequality? Giusti noted that

Comme d’habitude, Fermat est autant dé-
taillé dans les exemples qu’il est réticent
dans les explications. On ne trouvera donc
presque jamais des justifications de sa regle
des tangentes (Giusti 2009 [43]).

In fact, Fermat provides no explicit explanation
for this step. However, what he does is apply
the defining relation for a curve to points on
the tangent line to the curve. Note that here the
quantity e, as in g = y — e, is positive: Fermat did
not have the facility we do of assigning negative
values to variables. Stromholm notes that Fermat

17 In Fermat’s notation y=d,y+r =a.Step (v) can be un-

2
derstood as requiring the expression =~ — —Y£r)

y=e ~ 1 > to have
y+r—e)
a double root at e = 0, leading to the solution’y = r or in

Fermat’s notation a = 2r.
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never considered negative roots, and if A =
0 was a solution of an equation, he did not
mention it as it was nearly always geomet-
rically uninteresting (Stremholm 1968 [95,
p- 49)).

Fermat says nothing about considering
points y + e “on the other side,” i.e., further away
from the vertex of the parabola, as he does in the
context of applying a related but different method,
for instance in his two letters to Mersenne (see [95,
p.- 51]), and in his letter to Brilart [39].18 Now for
positive values of e, Fermat’s inequality (2) would
be satisfied by a transverse ray (i.e., secant ray)
starting at (x,y) and lying outside the parabola,
just as much as it is satisfied by a tangent ray
starting at (x,y). Fermat’s method therefore
presupposes an additional piece of information,
privileging the tangent ray over transverse rays.
The additional piece of information is geometric
in origin: he applies the defining relation (of the
curve itself) to a point on the tangent ray to the
curve, a procedure that is only meaningful when
the increment e is small.

In modern terms, we would speak of the tangent
line being a “best approximation” to the curve
for a small variation e; however, Fermat does not
explicitly discuss the size of e. The procedure of
“discarding the remaining terms” in step (v) admits
of a proxy in the hyperreal context. Namely, it is
the standard part principle (see the Introduction).
Fermat does not elaborate on the justification of
this step, but he is always careful to speak of the
suppressing or deleting the remaining term in e,
rather than setting it equal to zero. Perhaps his
rationale for suppressing terms in e consists in
ignoring terms that don’t correspond to an actual
measurement, prefiguring Leibniz’s inassignable
quantities. Fermat’s inferential moves in the context
of his adequality are akin to Leibniz’s in the context
of his calculus; see the section called “Leibniz’s
Transcendental Law of Homogeneity”.

Fermat, Galileo, and Wallis

While Fermat never spoke of his e as being infinitely
small, the technique was known both to Fermat’s
contemporaries like Galileo (see Bascelli 2014 [7],
[8]) and Wallis (see Katz & Katz [60, Section 24])
as well as Fermat himself, as his correspondence
with Wallis makes clear; see Katz, Schaps & Shnider
(2013 [63, Section 2.1]).

Fermat was very interested in Galileo’s treatise
De motu locali, as we know from his letters to Marin
Mersenne dated Apr/May 1637, 10 August, and 22
October 1638. Galileo’s treatment of infinitesimals
in De motu locali is discussed by Wisan (1974 [106,
p- 292]) and Settle (1966 [91]).

18This was noted by Giusti (2009 [43]).
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Alexander (2014 [2]) notes that the clerics in
Rome forbade the doctrine of the infinitely small
on 10 August 1632 (a month before Galileo was put
on trial over heliocentrism); this may help explain
why the Catholic Fermat might have been reluctant
to speak of the infinitely small explicitly.

In a recent text, U. Felgner analyzes the Dio-
phantus problems which exploit the method of
TTptooTng, and concludes that

Aus diesen Beispielen wird deutlich, dass
die Verben m&ptoo0v und adaequare nicht
ganz dasselbe ausdriicken. Das griechische
Wort bedeutet, der Gleichheit nahe zu sein,
wahrend das lateinische Wort das Erreichen-
der Gleichheit (sowohl als vollendeten als
auch als unvollendeten ProzeR) ausdruckt
(Felgner 2014 [37]).

Thus, in his view, even though the two expres-
sions have slightly different meanings, the Greek
meaning “being close to equality” and the Latin
meaning “equality which is reached (at the end
of either a finite or an infinite process),” they
both involve approximation. Felgner goes on to
consider some of the relevant texts from Fermat,
and concludes that Fermat’s method has nothing
to do with differential calculus and involves only
the property of an auxiliary expression having a
double zero:

Wir hoffen, deutlich gemacht zu haben,
dass die fermatsche “Methode der Adaequa-
tio” gar nichts mit dem Differential-Kalkiil
zu hat, sondern vielmehr im Studium des
Wertverlaufs eines Polynoms in der Umge-
bung eines kritischen Punktes besteht, und
dabei das Ziel verfolgt zu zeigen, dass
das Polynom an dieser Stelle eine doppelte
Nullstelle besitzt. (ibid.)

However, Felgner’s conclusion is inconsistent with
his own textual analysis which indicates that the
idea of approximation is present in the methods of
both Diophantus and Fermat. As Knobloch (2014
[70]) notes, “Fermat’s method of adequality is not
a single method but rather a cluster of methods.”
Felgner failed to analyze the examples of tangents
to transcendental curves, such as the cycloid, in
which Fermat does not study the order of the
zero of an auxiliary polynomial. Felgner mistakenly
asserts that, in the case of the cycloid, Fermat
did not reveal how he thought of the solution:
“Wie FERMATsich die Losung dachte, hat er nicht
verraten.” (ibid.) Quite to the contrary, as Fermat
explicitly stated, he applied the defining property
of the curve to points on the tangent line:

Yo a related discussion at http://math.
stackexchange.com/questions/661999/are]

infinitesimals-dangerous.
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Il faut donc adégaler (a cause de la propriété
spécifique de la courbe qui est a considérer
sur la tangente)

(see Katz et al. (2013 [63]) for more details).
Fermat’s approach involves applying the defining
relation of the curve, to a point on a tangent to the
curve. The approach is consistent with the idea of
approximation inherent in his method, involving a
negligible distance (whether infinitesimal or not)
between the tangent and the original curve when
one is near the point of tangency. This line of
reasoning is related to the ideas of the differential
calculus. Note that Fermat does not say anything
here concerning the multiplicities of zeros of
polynomials. As Felgner himself points out, in the
case of the cycloid the only polynomial in sight is
of first order and the increment “e” cancels out.
Fermat correctly solves the problem by obtaining
the defining equation of the tangent.

For a recent study of seventeenth century
methodology, see the article (Carroll et al. 2013
[23]).

Leibniz’s Transcendental Law of
Homogeneity

In this section, we examine a possible connection
between Fermat’s adequality and Leibniz’s Tran-
scendental Law of Homogeneity (TLH). Both of
them enable certain inferential moves that play
parallel roles in Fermat’s and Leibniz’s approaches
to the problem of maxima and minima. Note the
similarity in titles of their seminal texts: Methodus
ad Disquirendam Maximam et Minimam (Fermat,
see Tannery [98, pp. 133]) and Nova methodus
pro maximis et minimis ... (Leibniz 1684 [72] in
Gerhardt [42]).

When Are Quantities Equal?

Leibniz developed the TLH in order to enable
inferences to be made between inassignable and
assignable quantities. The TLH governs equations
involving differentials. H. Bos interprets it as
follows:
A quantity which is infinitely small with
respect to another quantity can be neglected
if compared with that quantity. Thus all
terms in an equation except those of the
highest order of infinity, or the lowest order
of infinite smallness, can be discarded. For
instance,

(3) a+dx=a
dx + ddy = dx

etc. The resulting equations satisfy this
[...] requirement of homogeneity (Bos 1974
[18, p. 33] paraphrasing Leibniz 1710 [75,
pp- 381-382]).
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The title of Leibniz’s 1710 text is Symbolismus
memovabilis calculi algebraici et infinitesimalis in
comparatione potentiarum et differentiarum, et de
lege homogeneorum transcendentali. The inclusion
of the transcendental law of homogeneity (lex
homogeneorum transcendentalis) in the title of the
text attests to the importance Leibniz attached to
this law.

The “equality up to an infinitesimal” implied in
TLH was explicitly discussed by Leibniz in a 1695
response to Nieuwentijt, in the following terms:

Caeterum aequalia esse puto, non tantum
quorum differentia est omnino nulla, sed
et quorum differentia est incomparabiliter
parva; et licet ea Nihil omnino dici non de-
beat, non tamen est quantitas comparabilis
cum ipsis, quorum est differentia (Leibniz
1695 [73, p. 322]) [emphasis added-authors]

We provide a translation of Leibniz’s Latin:
Besides, I consider to be equal not only
those things whose difference is entirely
nothing, but also those whose difference is
incomparably small: and granted that it [i.e.,
the difference] should not be called entirely
Nothing, nevertheless it is not a quantity
comparable to those whose difference it is.

Product Rule

How did Leibniz use the TLH in developing the
calculus? The issue can be illustrated by Leibniz’s
justification of the last step in the following
calculation:

duv) = (u+du)(v+dv) —uv

4) =udv + vdu + dudv
udv + vdu.

The last step in the calculation (4) depends on the
following inference:

d(uv) = udv+vdu+dudv = d(uv) = udv+vdu.

Such an inference is an application of Leibniz’s TLH.

In his 1701 text Cum Prodiisset [74, pp. 46-47],
Leibniz presents an alternative justification of the
product rule (see Bos [18, p. 58]). Here he divides
by dx, and argues with differential quotients rather
than differentials. The role played by the TLH
in these calculations is similar to that played
by adequality in Fermat’s work on maxima and
minima. For more details on Leibniz, see Guillaume
(2014 [45]); Katz & Sherry (2012 [64]), (2013 [65]);
Sherry & Katz [92]; Tho (2012 [101]).

Euler’s Principle of Cancellation

Some of the Leibnizian formulas reappear, not
surprisingly, in his student’s student Euler. Euler’s
formulas like

(5) a+dx=a,
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where a “is any finite quantity” (see Euler 1755
[35, §§86,87]) are consonant with a Leibnizian
tradition as reported by Bos; see formula (3) above.
To explain formulas like (5), Euler elaborated
two distinct ways (arithmetic and geometric) of
comparing quantities, in the following terms:

Since we are going to show that an infinitely
small quantity is really zero, we must
meet the objection of why we do not
always use the same symbol 0 for infinitely
small quantities, rather than some special
ones...[S]ince we have two ways to compare
them, either arithmetic or geometric, let us
look at the quotients of quantities to be
compared in order to see the difference.

If we accept the notation used in the
analysis of the infinite, then dx indicates
a quantity that is infinitely small, so that
both dx = 0 and adx = 0, where a is any
finite quantity. Despite this, the geomet-
vic ratio adx : dx is finite, namely a : 1.
For this reason, these two infinitely small
quantities, dx and a dx, both being equal
to 0, cannot be confused when we consider
their ratio. In a similar way, we will deal
with infinitely small quantities dx and dy
(ibid., § 86, pp. 51-52) [emphasis added-the
authors].

Having defined the arithmetic and geometric com-
parisons, Euler proceeds to clarify the difference
between them as follows:

Let a be a finite quantity and let dx be
infinitely small. The arithmetic ratio of
equals is clear: Since ndx = 0, we have

a+ndx—-a=0.

On the other hand, the geometric ratio is
clearly of equals, since

©6) a + ndx _1
a
From this we obtain the well-known rule that
the infinitely small vanishes in comparison
with the finite and hence can be neglected
[with respect to it] [35, §87] [emphasis in
the original-the authors].

Like Leibniz, Euler considers more than one way
of comparing quantities. Euler’s formula (6) indi-
cates that his geometric comparison is procedurally
identical with the Leibnizian TLH.

To summarize, Euler’s geometric comparison
of a pair of quantities amounts to their ratio
being infinitely close to a finite quantity, as in
formula (6); the same is true for TLH. Note
that one has a + dx = a in this sense for an
appreciable a # 0, but not for a = 0 (in which
case there is equality only in the arithmetic sense).
Euler’s “geometric” comparison was dubbed “the
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principle of cancellation” in (Ferraro [40, pp. 47,
48, 54]).

Euler proceeds to present the usual rules of
infinitesimal calculus, which go back to Leibniz,
I’'Hopital, and the Bernoullis, such as

(7) adx™ + bdx" = adx™

provided m < n “since dx" vanishes compared
with dx™” ([35, § 89]), relying on his “geometric”
comparison. Euler introduces a distinction between
infinitesimals of different order, and directly
computes®’ a ratio of the form

dx + dx?
dx

of two particular infinitesimals, assigning the
value 1 to it (ibid., § 88). Euler concludes:

Although all of them [infinitely small quan-
tities] are equal to O, still they must be
carefully distinguished one from the other
if we are to pay attention to their mutual
relationships, which has been explained
through a geometric ratio (ibid., § 89).

The Eulerian hierarchy of orders of infinitesimals
harks back to Leibniz’s work (see the section
“Leibniz’s Transcendental Law of Homogeneity”).
Euler’s geometric comparison, or “principle of
cancellation,” is yet another incarnation of the idea
at the root of Fermat’s adequality and Leibniz’s
Transcendental Law of Homogeneity. For further
details on Euler see Bibiloni et al. (2006 [13]); Bair
et al. (2013 [6]); Reeder (2013 [86]).

=1l+xdx=1

What Did Cauchy Mean by “Limit”?
Laugwitz’s detailed study of Cauchy’s methodology
places it squarely in the B-track (see the section
called “Methodological Remarks”). In conclusion,
Laugwitz writes:
The influence of Euler should not be ne-
glected, withregard both to the organization
of Cauchy’s texts and, in particular, to the
fundamental role of infinitesimals (Laugwitz
1987 [71, p. 273])).
Thus, in his 1844 text Exercices d’analyse et de
physique mathématique, Cauchy wrote:

...si, les accroissements des variables étant
supposés infiniment petits, on néglige,
vis-a-vis de ces accroissements consid-
érés comme infiniment petits du premier
ordre, les infiniment petits des ordres
supérieurs au premier, les nouvelles équa-
tions deviendront linéaires par rapport aux

20Note that Euler does not “prove that the expression
is equal to 1;” such indirect proofs are a trademark of
the (e€,6) approach. Rather, Euler directly computes (what
would today be formalized as the standard part of) the
expression.
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accroissements petits des variables. Leibniz
et les premiers géometres qui se sont oc-
cupés de I'analyse infinitésimale ont appelé
différentielles des variables leurs accroisse-
ments infiniment petits, ... (Cauchy 1844
[25, p. 5]).

Two important points emerge from this passage.
First, Cauchy specifically speaks about neglecting
(“on néglige”) higher-order terms, rather than
setting them equal to zero. This indicates a
similarity of procedure with the Leibnizian TLH
(see the section “Leibniz’s Transcendental Law of
Homogeneity”). Like Leibniz and Fermat before
him, Cauchy does not set the higher-order terms
equal to zero, but rather “neglects” or discards
them. Furthermore, Cauchy’s comments on Leibniz
deserve special attention.

Cauchy on Leibniz

By speaking matter-of-factly about the infinitesi-
mals of Leibniz specifically, Cauchy reveals that
his (Cauchy’s) infinitesimals are consonant with
Leibniz’s. This is unlike the differentials where
Cauchy adopts a different approach.

On page 6 of the same text, Cauchy notes that
the notion of derivative

représente en réalité la limite du rapport
entre les accrossements infiniment petits et
simultanés de la fonction et de la variable
(ibid., p. 6) [emphasis added-the authors]

The same definition of the derivative is repeated on
page 7, this time emphasized by means of italics.
Note Cauchy’s emphasis on the point that the
derivative is not a ratio of infinitesimal increments,
but rather the limit of the ratio.

Cauchy’s use of the term “limit” as applied
to a ratio of infinitesimals in this context may
be unfamiliar to a modern reader, accustomed
to taking limits of sequences of real numbers.
Its meaning is clarified by Cauchy’s discussion
of “neglecting” higher order infinitesimals in the
previous paragraph on page 5 cited above. Cauchy’s
use of “limit” is procedurally identical with the
Leibnizian TLH, and therefore similarly finds its
modern proxy as extracting the standard part out
of the ratio of infinitesimals.

On page 11, Cauchy chooses infinitesimal
increments As and At, and writes down the
equation

ds . As
(8) - lim. AL
Modulo replacing Cauchy’s symbol “lim.” by the
modern one “st” or “sh,” Cauchy’s formula (8) is
identical to the formula appearing in any textbook
based on the hyperreal approach, expressing the
derivative in terms of the standard part function
(shadow).
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Cauchy on Continuity

On page 17 of his 1844 text, Cauchy gives a
definition of continuity in terms of infinitesimals
(an infinitesimal x-increment necessarily produces
an infinitesimal y-increment). His definition is
nearly identical with the italicized definition that
appeared on page 34 in his Cours d’Analyse (Cauchy
1821 [24]) 23 years earlier, when he first introduced
the modern notion of continuity. We will use the
translation by Bradley & Sandifer (2009 [20]). In his
Section 2.2 entitled Continuity of functions, Cauchy
writes:

If, beginning with a value of x contained
between these limits, we add to the variable x
an infinitely small increment «, the function
itself is incremented by the difference f (x +
o) — f(x).

Cauchy goes on to state that

the function f(x) is a continuous function
of x between the assigned limits if, for
each value of x between these limits, the
numerical value of the difference f(x +
«) — f(x) decreases indefinitely with the
numerical value of «.

He then proceeds to provide an italicized definition
of continuity in the following terms:

the function f (x) is continuous with respect
to x between the given limits if, between
these limits, an infinitely small increment
in the variable always produces an infinitely
small increment in the function itself.

In modern notation, Cauchy'§ definition can be
stated as follows. Denote by X the halo of x, i.e.,

the collection of all points infinitely close to x.

Then f is continuous at x if

©) f(X)c oo,

Most scholars hold that Cauchy never worked with
a pointwise definition of continuity (as is customary
today) but rather required a condition of type (9)
to hold in a range (“between the given limits”). It
is worth recalling that Cauchy never gave an €, 6
definition of either limit or continuity (though
(e, 0)-type arguments occasionally do appear in
Cauchy). It is a widespread and deeply rooted
misconception among both mathematicians and
those interested in the history and philosophy of
mathematics that it was Cauchy who invented the
modern (€, ) definitions of limit and continuity;
see, e.g., Colyvan & Easwaran (2008 [27, p. 88])
who err in attributing the formal (€, 6) definition
of continuity to Cauchy. That this is not the case
was argued by Blaszczyk et al. (2013 [15]), Borovik
et al. (2012 [17]), Katz & Katz (2011 [58]), Nakane
(2014 [80]), Tall et al. (2014 [97]).
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Modern Formalizations: A Case Study

To illustrate the use of the standard part in the
context of the hyperreal field extension of R, we
will consider the following problem on divergent
integrals. The problem was recently posed at
SE, and is reportedly due to S. Konyagin.’! The
solution exploits the technique of a monotone
rearrangement g of a function f, shown by Ryff
to admit a measure-preserving map ¢ : [0,1] —
[0,1] such that f = g o ¢. In general there is
no “inverse”  such that g = f o y; however, a
hyperreal enlargement enables one to construct a
suitable (internal) proxy for such a , so as to be
able to write g = st(f o ¢); see formula (14) below.

Theorem 1. Let f be a real-valued function contin-
uous on [0, 1]. Then there exists a number a such
that the integral

o
o Jo 70—

diverges.

A proof can be given in terms of a monotone
rearrangement of the function (see Hardy et
al. [46]). We take a decreasing rearrangement g(x)
of the function f(x). If f is continuous, then the
function g(x) will also be continuous. If { is not
constant on any set of positive measure, one can
construct g by setting
(11)

g=m

Ryff (1970 [90]) showed that there exists a
measure-preserving transformation?? ¢:[00,1] —
[0, 1] that relates f and g as follows:

(12) f(x) =gopx).

Finding a map ¢ such that g(x) = f o ¢(x) is
in general impossible (see Bennett & Sharpley
[12, p. 85, example 7.7] for a counterexample). This
difficulty can be circumvented using a hyperfinite
rearrangement (see the section entitled “A Combi-
natorial Approach to Decreasing Rearrangements”).
By measure preservation, we have

1 where m(y) = meas{x:f(x) > y}.

1 1
j IF(x) —al ' dx = j 19(x) — al ™! dx
0 0

(for every a).?3
To complete the proof of Theorem 1, ap-

ply the result that every monotone function is

21http ://math.stackexchange.com/questions/408311/
improper-integral-diverges

22However, see the section “A Combinatorial Approach to
Decreasing Rearrangements” for a hyperfinite approach
avoiding measure theory altogether.

23 Here one needs to replace the function |f(x) — a|~! by
the family of its truncations min <C, If (x) —al ‘1), and then
let C increase without bound.
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a.e. differentiable.?* Take a point p € [0, 1] where
the function g is differentiable. Then the num-
ber a = g(p) yields an infinite integral (10), since
the difference |g(x) — a| can be bounded above in
terms of a linear expression.

A Combinatorial Approach to Decreasing
Rearrangements

The existence of a decreasing rearrangement of a
function f continuous on [0, 1] admits an elegant
proof in the context of its hyperreal extension *f,
which we will continue to denote by f.

We present a combinatorial argument showing
that the decreasing rearrangement enjoys the same
modulus of uniformity as the original function.?®
The argument actually yields an independent con-
struction of the decreasing rearrangement (see
Proposition 2) that avoids recourse to measure
theory. It also yields an “inverse up to an infini-
tesimal,” ¢ (see formula (14)), to the function ¢
such that f = g o ¢. For a recent application of
combinatorial arguments in a hyperreal framework,
see Benci et al. (2013 [11]).

In passing from the finite to the continuous
case of rearrangements, Bennett and Sharpley [12]
note that

nonnegative sequences (ap,dz,...,dn)
and (by,by,...,b,) are equimeasurable
if and only if there is a permutation
o of {1,2,...,n} such that b; = as(
fori=1,2,...,n. ... The notion of permu-
tation is no longer available in this context
[of continuous measure spaces] and is
replaced by that of a “measure-preserving
transformation” (Bennett and Sharpley
1988 [12, p. 79]).

We show that the hyperreal framework allows one
to continue working with combinatorial ideas, such
as the “inverse” function y, in the continuous case
as well. ‘

Let H € *N\N, letp; = i fori=1,2,...,H. By
the Transfer Principle (see e.g., Davis [28], Herzberg
[49], Kanovei & Reeken [56]), the nonstandard
domain of internal sets satisfies the same basic

>4In fact, one does not really need to use the result that
monotone functions are a.e. differentiable. Consider the
convex hull in the plane of the graph of the monotone func-
tion g(x), and take a point where the graph touches the
boundary of the convex hull (other than the endpoints O
and 1). Setting a equal to the y-coordinate of the point does
the job.

25Namely, for x near such a point p, we have |g(x) —a| <
(Ig' )| + Dlx = pl, hence 551 = qagmmmear
yielding a lower bound in terms of a divergent integral.
264 function f on [0, 1] is said to satisfy a modulus of
uniformity u(n) > 0,n € N,ifVvn € N Vp,g €
[0,11(Ip —al <) ~ If (p) — f(@)] < ).
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laws as the usual, “standard” domain of real
numbers and related objects. Thus, as for finite
sets, there exists a permutation  of the hyperfinite
grid

(13) Gy = {p1,...,pu}

by decreasing value of f(p;) (here f(y@(p1)) is
the maximal value). We assume that equal values
are ordered lexicographically so that if f(p;) =
f(pj) withi < jthen y(p;) < @(p;). Hence we
obtain an internal function

(14) dp) =fwp)), i=1,...,H.

Here g is (perhaps nonstrictly) decreasing on the
grid Gy of (13). The internal sequences (f(p;))
and (g(pi)), wherei = 1,..., H, are equinumerable
in the sense above.

Proposition 2. Let f be an arbitrary continuous
function. Then there is a standard continuous real
function g(x) such that g(st(p;)) = st(g(p;)) for
all i, where st(y) denotes the standard part of a
hyperreal y.

Proof. Let gi = g(pi). We claim that § is S-
continuous (microcontinuous), i.e., for each
pairi,j = 1,...,H, if p; — p; is infinitesimal then

so is g(pi) — g(pj). To prove the claim, we will
prove the following stronger fact:

for everyi < jthere are m < n such that n—

m < j—iand |f(pm) - f(pn)l = gi — g;.
The sets A = {k:f(px) = gi} and B = {k : f(px) <
g;j} are nonempty and there are at most j —1 -1
points which are notin AuUB.Let me Aand n €
B be such that |m — n| is minimal. All integers
between m and n are not in AUB. Hence there are at
most j—i—1 such integers, and therefore |[n—m| <
Jj—1i.By the definition of A and B, we obtain |f (p,) —
f(pm)| = gi — gj, which proves the claim. Thus g
is indeed S-continuous.

This allows us to define, for any standard x €
[0, 1], the value g(x) to be the standard part of the
hyperreal g; for any hyperinteger i such that p; is
infinitely close to x, and then g is a continuous?”
and (nonstrictly) monotone real function equal to
the decreasing rearrangement g = m~! of (11). O

The hyperreal approach makes it possible to
solve Konyagin’s problem without resorting to
standard treatments of decreasing rearrangements
which use measure theory. Note that the rearrange-
ment defined by the internal permutation
preserves the integral of f (as well as the integrals
of the truncations of |f (x) — a|~!), in the following
sense. The right-hand Riemann sums satisfy

H H H
(15) D fpAx = > f(@pi))Ax = > §(pi)Ax,

i=1 i=1 i=1

27 The argument shows in fact that the modulus of unifor-
mity of g is bounded by that of f; see footnote 26.
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where Ax = % Thus y transforms a hyperfinite
Riemann sum of f into a hyperfinite Riemann
sum of §. Since fol f(x)dx = st (Zfilf(p,-)Ax)
and g(st(p;)) 