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Mathematical constants such as π , e, and γ
arise frequently in number theory and other
areas of mathematics and physics. Mathematicians
have long wondered whether such numbers are
irrational or perhaps even transcendental, that
is, not algebraic. Because they are solutions of
polynomial equations with rational coefficients,
algebraic numbers form a countable subset of
the complex numbers. Therefore, most complex
numbers are transcendental, although, for any
given number, it is usually difficult to figure out
whether it is transcendental.

This essay is about the arithmetic notion of
periods, a countable subalgebra P of the complex
numbers defined around 1999 by Maxim Kontsevich
and Don Zagier; see [4]. Periods contain all algebraic
numbers but also many other transcendental
numbers important for number theory. This notion
of periods generalizes in algebraic geometry and
yields the theory of periods and period domains
for algebraic varieties; see [2].

Kontsevich and Zagier define periods as those
complex numbers whose real and imaginary parts
are values of absolutely convergent integrals

p =
∫
∆
f (x1, . . . , xn)
g(x1, . . . , xn)

dx1 · · ·dxn.

Here f and g are polynomials with coefficients in
Q, and the integration domain ∆ ⊂ Rn is given by
polynomial inequalities with rational coefficients.

Some initial examples of periods are

log(n) =
∫ n

1

dx
x

and π =
∫
x2+y2≤1

dxdy.

Stefan Müller-Stach is professor of mathematics at Univer-
sität Mainz. His email address is stach@uni-mainz.de.

DOI: http://dx.doi.org/10.1090/noti1159

The representation of a period by an integral is not
unique, in the sense that there are many different
integrals representing that period.

The values ζ(s) =
∑
n n−s of the Riemann zeta

function at positive integers s ≥ 2, and their natural
generalizations, the multiple zeta values

ζ(s1, . . . , sk) =
∑

n1>···>nk>0

n−s11 n−s22 · · ·n−skk ,

for integers si ≥ 1 with s1 ≥ 2, are very interesting
periods. Even for the odd zeta-valuesζ(3),ζ(5), . . .
only a few results about their irrationality are
known. By work of Apéry, ζ(3) is irrational. Like
all multiple zeta values, it can be represented as
an iterated integral

ζ(3) =
∫∫∫

0<x<y<z<1

dxdydz
(1− x)yz .

Using notions from algebraic geometry, one can
also define periods in a different form as follows.
Let X be a smooth algebraic variety over Q of
dimension d. Take a regular algebraic d-formω on
X and a normal crossing divisorD inX; bothω and
D are also defined over Q. Then let γ be a singular
chain on the underlying topological manifold X(C)
with boundary in D(C). The integral

p =
∫
γ
ω

is the period of the quadruple (X,D,ω,γ).
From an even higher viewpoint, periods are

matrix coefficients of the period isomorphism

H∗dR(X,D)⊗Q C
�
-→H∗sing(X,D)⊗Q C

between algebraic de Rham cohomology and sin-
gular cohomology after choosing Q-bases in both
groups. In this case, X need not be smooth and
forms need not be of top degree. Sophisticated
arguments show that all three given definitions of
periods agree.
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In this setting, we find 2πi as the period of
H1(X) with X = P1 \ {0,∞}, D = ∅, ω = dx

x , and
γ the unit circle. In a similar way, log(n) is one
of the periods of H1(X,D), where X = P1 \ {0,∞},
D = {1, n}, ω = dx

x , and γ = [1, n]. Certain specialΓ -values occur in the Chowla–Selberg formula
for periods of abelian varieties with complex
multiplication. The Beilinson conjectures, which
extend Dirchlet’s class number formula in algebraic
number theory, would imply that leading terms
in the Taylor series of L-functions of motives are
periods in the extended period ring P̂ = P[ 1

π ],
whereπ is inverted. A completely different example
comes from quantum field theory, where periods
arise as values of regularized Feynman amplitudes.
Periods of homotopy groups are another source of
examples.

In addition to the additivity in the integrand
and the integration domain, periods inherit from
calculus some well-known relations: a change of
variables formula

∫
γ f∗ω =

∫
f∗γω, and Stokes’s

formula
∫
γ δω =

∫
∂γω. Fubini’s theorem gives P a

multiplication, hence it becomes a Q-algebra.
At the time Kontsevich and Zagier formu-

lated their idea, not a single explicit nonperiod
number was known. In 2008, Masahiko Yoshi-
naga (arXiv:0805.0349) wrote down a computable
nonperiod, using a variant of Cantor’s diagonal
argument. Moreover, he showed that all periods
are elementary computable, i.e., they lie in a certain
proper subset of all computable complex numbers
so that there are computable nonperiods.

It is still unknown whether e or 1/π are periods.
Presumably they are not. The notion of exponential
periods was invented to extend periods to a larger
set containing e; see [4].

Let us now turn to deeper properties of periods,
so that we find out more about the structure of
P. It turns out that the very abstract viewpoint of
mixed motives provides insights and brings into
the game a big symmetry group G—the motivic
Galois group.

Pure and mixed motives were envisioned by
Alexander Grothendieck in order to formalize
properties of algebraic varieties. In the 1990s,
Madhav Nori defined an abelian category MM(Q)
of mixed motives over Q. In Nori’s construction,
one starts with a directed graph, where the vertices
are pairs of algebraic varieties (X,D) defined over
Q, and the edges between them are deduced from
morphisms of pairs (X,D)→ (X′,D′) (“change of
variables”) and chains of inclusions Z ⊂ D ⊂ X
(“Stokes’s formula”). The edges thus immediately
resemble relations among periods, and this is what
makes the idea so helpful. These arrows are not
closed under composition. However, if one fixes a
representation T with values in vector spaces over

Q (e.g., singular or de Rham cohomology), then
there is a universal diagram category C(T) and an
extension of T as a functor. After formally inverting
the Tate motive Z(−1) = (P1 \ {0,∞}, {1}) in C(T),
one obtains a Q-linear Tannakian, hence abelian,
categoryMM(Q)without any further assumptions;
see [3]. The motivic Galois group is the pro-algebraic
fundamental group G = Aut⊗(T) ofMM(Q) in the
Tannaka sense. We call G a Galois group, as the
viewpoint gives a far-ranging extension of the Galois
theory of zero-dimensional varieties. In MM(Q)
cohomology groups of algebraic pairs (X,D) are
immediately mixed motives, i.e., finite-dimensional
Q-representations ofG or, equivalently, comodules
over the associated Hopf algebra A. Both singular
and de Rham cohomology provide fiber functors
Tsing, TdR from MM(Q) to Q-vector spaces. The
pro-algebraic torsor Isom⊗(TdR, Tsing) is given by

Spec(P̂formal), where P̂formal is the algebra of formal
periods ( i.e., generated by quadruples (X,D,ω,γ)),
and subject only to the relations of linearity, change
of variables, and Stokes; see [3, 4].

In this setting, P̂ is the set of periods of all
mixed motives over Q. Multiple zeta values form
the subset of periods of mixed Tate motives
over Z. The motivic Galois group restricted to
mixed Tate motives over Z gives much control
over multiple zeta values and implies relations
among multiple zeta values ζ(s1, . . . , sk) of a fixed
weight s1 + · · ·+ sk. The work of Francis Brown on
multiple zeta values and the fundamental group
of P1 \ {0,1,∞} demonstrates again the value of
the philosophy of motives; see [1]. Also in other
parts of number theory (for example in the area of
rational points) motivic arguments can be applied
in finiteness proofs.

Grothendieck formulated the famous and dif-
ficult period conjecture, stating that any relation
among periods is coming from algebraic geometry,
in particular through algebraic cycles on products
of varieties. In the setting of Nori, this is essen-
tially equivalent to saying that the evaluation map
ev : P̂formal → P̂ is injective. This conjecture would
have strong consequences for the transcendence
degree of the space of all periods of a given
algebraic variety X via the action of G.
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