
2014 Fields Medals

On August 13, 2014, the 2014 Fields Medals were awarded at the opening ceremony of
the International Congress of Mathematicians in Seoul, South Korea. The following news
releases, issued by the International Mathematical Union (IMU), provide descriptions of
the medalists’ work. A future issue of the Notices will carry the news releases about other
IMU awards given at the Congress.

—Allyn Jackson

The Work of Artur Avila
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Artur Avila

Artur Avila has made outstanding
contributions to dynamical sys-
tems, analysis, and other areas,
in many cases proving decisive
results that solved long-standing
open problems. A native of Brazil
who spends part of his time there
and part in France, he combines
the strong mathematical cultures
and traditions of both countries.
Nearly all his work has been done
through collaborations with some
thirty mathematicians around the
world. To these collaborations
Avila brings formidable technical
power, the ingenuity and tenacity

of a master problem-solver, and an unerring sense
for deep and significant questions.

Avila’s achievements are many and span a broad
range of topics; here we focus on only a few high-
lights. One of his early significant results closes a
chapter on a long story that started in the 1970s. At
that time, physicists, most notably Mitchell Feigen-
baum, began trying to understand how chaos can
arise out of very simple systems. Some of the systems
they looked at were based on iterating a mathemati-
cal rule such as 3x(1−x). Starting with a given point,
one can watch the trajectory of the point under re-
peated applications of the rule; one can think of the
rule as moving the starting point around over time.
For some maps, the trajectories eventually settle into
stable orbits, while for other maps the trajectories
become chaotic.

Out of the drive to understand such phenomena
grew the subject of discrete dynamical systems, to
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which scores of mathematicians contributed in the
ensuing decades. Among the central aims was to de-
velop ways to predict longtime behavior. For a trajec-
tory that settles into a stable orbit, predicting where
a point will travel is straightforward. But not for a
chaotic trajectory: Trying to predict exactly where an
initial point goes after a long time is akin to trying to
predict, after a million tosses of a coin, whether the
million-and-first toss will be a head or a tail. But one
can model coin-tossing probabilistically, using sto-
chastic tools, and one can try to do the same for tra-
jectories. Mathematicians noticed that many of the
maps that they studied fell into one of two categories:
“regular,” meaning that the trajectories eventually be-
come stable, or “stochastic,” meaning that the trajec-
tories exhibit chaotic behavior that can be modeled
stochastically. This dichotomy of regular vs. stochas-
tic was proved in many special cases, and the hope
was that eventually a more complete understanding
would emerge. This hope was realized in a 2003 pa-
per by Avila, Welington de Melo, and Mikhail Lyu-
bich, which brought to a close this long line of re-
search. Avila and his co-authors considered a wide
class of dynamical systems—namely, those arising
from maps with a parabolic shape, known as uni-
modal maps—and proved that, if one chooses such
a map at random, the map will be either regular or
stochastic. Their work provides a unified, compre-
hensive picture of the behavior of these systems.

Another outstanding result of Avila is his work,
with Giovanni Forni, on weak mixing. If one attempts
to shuffle a deck of cards by only cutting the deck—
that is, taking a small stack off the top of the deck
and putting the stack on the bottom—then the deck
will not be truly mixed. The cards are simply moved
around in a cyclic pattern. But if one shuffles the
cards in the usual way, by interleaving them—so that,
for example, the first card now comes after the third
card, the second card after the fifth, and so on—then
the deck will be truly mixed. This is the essential idea

1074 Notices of the AMS Volume 61, Number 9



of the abstract notion of mixing that Avila and Forni
considered. The system they worked with was not a
deck of cards, but rather a closed interval that is cut
into several subintervals. For example, the interval
could be cut into four pieces, ABCD, and then one
defines a map on the interval by exchanging the po-
sitions of the subintervals so that, say, ABCD goes to
DCBA. By iterating the map, one obtains a dynamical
system called an “interval exchange transformation.”

Considering the parallel with cutting or shuffling
a deck of cards, one can ask whether an interval
exchange transformation can truly mix the subinter-
vals. It has long been known that this is impossible.
However, there are ways of quantifying the degree
of mixing that lead to the notion of “weak mixing,”
which describes a system that just barely fails to
be truly mixing. What Avila and Forni showed is
that almost every interval exchange transformation
is weakly mixing; in other words, if one chooses
at random an interval exchange transformation, the
overwhelming likelihood is that, when iterated, it will
produce a dynamical system that is weakly mixing.
This work is connected to more recent work by Avila
and Vincent Delecroix, which investigates mixing in
regular polygonal billiard systems. Billiard systems
are used in statistical physics as models of particle
motion. Avila and Delecroix found that almost all
dynamical systems arising in this context are weakly
mixing.

In the two lines of work mentioned above, Avila
brought his deep knowledge of the area of analysis to
bear on questions in dynamical systems. He has also
sometimes done the reverse, applying dynamical sys-
tems approaches to questions in analysis. One exam-
ple is his work on quasi-periodic Schrödinger opera-
tors. These are mathematical equations for modeling
quantum mechanical systems. One of the emblematic
pictures from this area is the Hofstadter butterfly, a
fractal pattern named after Douglas Hofstadter, who
first came upon it in 1976. The Hofstadter butterfly
represents the energy spectrum of an electron mov-
ing under an extreme magnetic field. Physicists were
stunned when they noticed that, for certain param-
eter values in the Schrödinger equation, this energy
spectrum appeared to be the Cantor set, which is a
remarkable mathematical object that embodies seem-
ingly incompatible properties of density and sparsity.
In the 1980s, mathematician Barry Simon popular-
ized the “Ten Martini Problem” (so named by Mark
Kac, who offered to buy ten martinis for anyone who
could solve it). This problem asked whether the spec-
trum of one specific Schrödinger operator, known
as the almost-Mathieu operator, is in fact the Can-
tor set. Together with Svetlana Jitomirskaya, Avila
solved this problem.

As spectacular as that solution was, it repre-
sents only the tip of the iceberg of Avila’s work on
Schrödinger operators. Starting in 2004, he spent
many years developing a general theory that culmi-
nated in two preprints in 2009. This work establishes
that, unlike the special case of the almost-Mathieu

operator, general Schrödinger operators do not
exhibit critical behavior in the transition between
different potential regimes. Avila used approaches
from dynamical systems theory in this work,
including renormalization techniques.

A final example of Avila’s work is a very recent
result that grew out of his proof of a regularization
theorem for volume-preserving maps. This proof
resolved a conjecture that had been open for thirty
years; mathematicians hoped that the conjecture
was true but could not prove it. Avila’s proof has
unblocked a whole direction of research in smooth
dynamical systems and has already borne fruit.
In particular, the regularization theorem is a key
element in an important recent advance by Avila,
Sylvain Crovisier, and Amie Wilkinson. Their work,
which is still in preparation, shows that a generic
volume-preserving diffeomorphism with positive
metric entropy is an ergodic dynamical system.

With his signature combination of tremendous an-
alytical power and deep intuition about dynamical
systems, Artur Avila will surely remain a mathemati-
cal leader for many years to come.
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The Work of Manjul Bhargava
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Manjul Bhargava

Manjul Bhargava’s work in number
theory has had a profound influ-
ence on the field. A mathematician
of extraordinary creativity, he has
a taste for simple problems of
timeless beauty, which he has
solved by developing elegant and
powerful new methods that offer
deep insights.

When he was a graduate stu-
dent, Bhargava read the monumen-
tal Disquisitiones Arithmeticae, a
book about number theory by Carl
Friedrich Gauss (1777–1855). All
mathematicians know of the Dis-
quisitiones, but few have actually

read it, as its notation and computational nature
make it difficult for modern readers to follow. Bhar-
gava nevertheless found the book to be a wellspring
of inspiration. Gauss was interested in binary qua-
dratic forms, which are polynomials ax2 + bxy +
cy2, where a, b, and c are integers. In the Disquisi-
tiones, Gauss developed his ingenious composition
law, which gives a method for composing two bi-
nary quadratic forms to obtain a third one. This law
became, and remains, a central tool in algebraic num-
ber theory. After wading through the twenty pages of
Gauss’s calculations culminating in the composition
law, Bhargava knew there had to be a better way.

Then one day, while playing with a Rubik’s cube,
he found it. Bhargava thought about labeling each
corner of a cube with a number and then slicing
the cube to obtain two sets of four numbers. Each
4-number set naturally forms a matrix. A simple
calculation with these matrices resulted in a binary
quadratic form. From the three ways of slicing the
cube, three binary quadratic forms emerged. Bhar-
gava then calculated the discriminants of these three
forms. (The discriminant, familiar to some as the
expression “under the square root sign” in the qua-
dratic formula, is a fundamental quantity associated
with a polynomial.) When he found the discriminants
were all the same, as they are in Gauss’s composition
law, Bhargava realized he had found a simple, visual
way to obtain the law.

He also realized that he could expand his cube-
labeling technique to other polynomials of higher de-
gree (the degree is the highest power appearing in the
polynomial; for example, x3−x+1 has degree 3). He
then discovered thirteen new composition laws for
higher-degree polynomials. Up until this time, mathe-
maticians had looked upon Gauss’s composition law
as a curiosity that happened only with binary qua-
dratic forms. Until Bhargava’s work, no one realized
that other composition laws existed for polynomials
of higher degree.

One of the reasons Gauss’s composition law is
so important is that it provides information about
quadratic number fields. A number field is built by

extending the rational numbers to include nonra-
tional roots of a polynomial; if the polynomial is
quadratic, then one obtains a quadratic number field.
The degree of the polynomial and its discriminant
are two basic quantities associated with the number
field. Although number fields are fundamental ob-
jects in algebraic number theory, some basic facts
are unknown, such as how many number fields there
are for a fixed degree and fixed discriminant. With
his new composition laws in hand, Bhargava set
about using them to investigate number fields.

Implicit in Gauss’s work is a technique called
the “geometry of numbers”; the technique was more
fully developed in a landmark 1896 work of Hermann
Minkowski (1864–1909). In the geometry of numbers,
one imagines the plane, or 3-dimensional space, as
populated by a lattice that highlights points with in-
teger coordinates. If one has a quadratic polynomial,
counting the number of integer lattice points in a
certain region of 3-dimensional space provides infor-
mation about the associated quadratic number field.
In particular, one can use the geometry of numbers
to show that, for discriminant with absolute value
less than X, there are approximately X quadratic
number fields. In the 1960s, a more refined geometry
of numbers approach by Harold Davenport (1907–
1969) and Hans Heilbronn (1908–1975) resolved the
case of degree 3 number fields. And then progress
stopped. So a great deal of excitement greeted
Bhargava’s work in which he counted the number of
degree 4 and degree 5 number fields having bounded
discriminant. These results use his new composition
laws, together with his systematic development of
the geometry of numbers, which greatly extended
the reach and power of this technique. The cases of
degree bigger than 5 remain open, and Bhargava’s
composition laws will not resolve those. However, it
is possible that those cases could be attacked using
analogues of his composition laws.

Recently, Bhargava and his collaborators have
used his expansion of the geometry of numbers to
produce striking results about hyperelliptic curves.
At the heart of this area of research is the ancient
question of when an arithmetic calculation yields a
square number. One answer Bhargava found is strik-
ingly simple to state: A typical polynomial of degree
at least 5 with rational coefficients never takes a
square value. A hyperelliptic curve is the graph of an
equation of the form y2 = a polynomial with rational
coefficients. In the case where the polynomial has
degree 3, the graph is called an elliptic curve. Elliptic
curves have especially appealing properties and
have been the subject of a great deal of research;
they also played a prominent role in Andrew Wiles’s
celebrated proof of Fermat’s Last Theorem.

A key question about a hyperelliptic curve is how
one can count the number of points that have ratio-
nal coordinates and that lie on the curve. It turns out
that the number of rational points is closely related
to the degree of the curve. For curves of degree 1 and
2, there is an effective way of finding all the rational
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points. For degree 5 and higher, a theorem of Gerd
Faltings (a 1986 Fields Medalist) says that there are
only finitely many rational points. The most myste-
rious cases are those of degree 3—namely, the case
of elliptic curves—and of degree 4. There is not even
any algorithm known for deciding whether a given
curve of degree 3 or 4 has finitely many or infinitely
many rational points.

Such algorithms seem out of reach. Bhargava took
a different tack and asked, what can be said about
the rational points on a typical curve? In joint work
with Arul Shankar and also with Christopher Skinner,
Bhargava came to the surprising conclusion that a
positive proportion of elliptic curves have only one
rational point and a positive proportion have infin-
itely many. Analogously, in the case of hyperelliptic
curves of degree 4, Bhargava showed that a positive
proportion of such curves have no rational points
and a positive proportion have infinitely many ratio-
nal points. These works necessitated counting lattice
points in unbounded regions of high-dimensional
space, in which the regions spiral outward in compli-
cated “tentacles.” This counting could not have been
done without Bhargava’s expansion of the geometry
of numbers technique.

Bhargava also used his expansion of the geome-
try of numbers to look at the more general case of
higher degree hyperelliptic curves. As noted above,
Faltings’s theorem tells us that for curves of degree
5 or higher, the number of rational points is finite,
but the theorem does not give any way of finding
the rational points or saying exactly how many there
are. Once again, Bhargava examined the question of
what happens for a “typical” curve. When the degree
is even, he found that the typical hyperelliptic curve
has no rational points at all. Joint work with Benedict
Gross, together with follow-up work of Bjorn Poo-
nen and Michael Stoll, established the same result
for the case of odd degree. These works also offer
quite precise estimates of how quickly the number
of curves having rational points decreases as the de-
gree increases. For example, Bhargava’s work shows
that, for a typical degree 10 polynomial, there is a
greater than 99 percent chance that the curve has no
rational points.

A final example of Bhargava’s achievements is
his work with Jonathan Hanke on the so-called
“290-Theorem.” This theorem concerns a question
that goes back to the time of Pierre de Fermat
(1601-1665), namely, which quadratic forms rep-
resent all integers? For example, not all integers
are the sum of two squares, so x2 + y2 does not
represent all integers. Neither does the sum of three
squares, x2 + y2 + z2. But, as Joseph-Louis Lagrange
(1736–1813) famously established, the sum of four
squares, x2 + y2 + z2 + w2, does represent all in-
tegers. In 1916, Srinivasa Ramanujan (1887–1920)
gave fifty-four more examples of such forms in
four variables that represent all integers. What
other such “universal” forms could be out there? In
the early 1990s, John H. Conway and his students,

particularly William Schneeberger and Christopher
Simons, looked at this question a different way,
asking whether there is a number c such that, if a
quadratic form represents integers less than c, it
represents all integers. Through extensive computa-
tions, they conjectured that c could perhaps be taken
as small as 290. They made remarkable progress,
but it was not until Bhargava and Hanke took up
the question that it was fully resolved. They found
a set of twenty-nine integers, up to and including
290, such that, if a quadratic form (in any number
of variables) represents these twenty-nine integers,
then it represents all integers. The proof is a feat
of ingenuity combined with extensive computer
programming.

In addition to being one of the world’s leading
mathematicians, Bhargava is an accomplished musi-
cian; he plays the Indian instrument known as the
tabla at a professional level. An outstanding commu-
nicator, he has won several teaching awards, and his
lucid and elegant writing has garnered a prize for
exposition.

Bhargava has a keen intuition that leads him unerr-
ingly to deep and beautiful mathematical questions.
With his immense insight and great technical mas-
tery, he seems to bring a “Midas touch” to everything
he works on. He surely will bring more delights and
surprises to mathematics in the years to come.
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The Work of Martin Hairer
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Martin Hairer

Martin Hairer has made a ma-
jor breakthrough in the study
of stochastic partial differential
equations by creating a new
theory that provides tools for at-
tacking problems that up to now
had seemed impenetrable.

The subject of differential
equations has its roots in the
development of calculus by Isaac
Newton and Gottfried Leibniz in
the seventeenth century. A major
motivation at that time was to
understand the motion of the
planets in the solar system. New-
ton’s laws of motion can be used

to formulate a differential equation that describes,
for example, the motion of the Earth around the
Sun. A solution to such an equation is a function
that gives the position of the Earth at any time t .
In the centuries since, differential equations have
become ubiquitous across all areas of science and
engineering to describe systems that change over
time.

A differential equation describing planetary mo-
tion is deterministic, meaning that it determines
exactly where a planet will be at a given time in the
future. Other differential equations are stochastic,
meaning that they describe systems containing an
inherent element of randomness. An example is an
equation that describes how a stock price will change
over time. Such an equation incorporates a term that
represents fluctuations in the stock market price.
If one could predict exactly what the fluctuations
would be, one could predict the future stock price
exactly (and get very rich!). However, the fluctuations,
while having some dependence on the initial stock
price, are essentially random and unpredictable. The
stock-price equation is an example of a stochastic
differential equation.

In the planetary-motion equation, the system
changes with respect to only one variable, namely,
time. Such an equation is called an ordinary differen-
tial equation (ODE). By contrast, partial differential

equations (PDEs) describe systems that change with
respect to more than one variable, for example, time
and position. Many PDEs are nonlinear, meaning that
the terms in it are not simple proportions—for ex-
ample, they might be raised to an exponential power.
Some of the most important natural phenomena are
governed by nonlinear PDEs, so understanding these
equations is a major goal for mathematics and the
sciences. However, nonlinear PDEs are among the
most difficult mathematical objects to understand.
Hairer’s work has caused a great deal of excitement
because it develops a general theory that can be
applied to a large class of nonlinear stochastic PDEs.

An example of a nonlinear stochastic PDE—and
one that played an important role in Hairer’s work—
is the KPZ equation, which is named for Mehran
Kardar, Giorgio Parisi, and Yi-Cheng Zhang, the
physicists who proposed the equation in 1986 for
the motion of growing interfaces. To gain some
insight into the nature of the equation, consider
the following simplified model for ballistic deposi-
tion. Particles move towards a substrate and stick
upon arrival; as a consequence, the substrate height
grows linearly in time, at the same time becoming
increasingly more rough. In this context the KPZ
equation describes the time evolution of the inter-
face between vacuum and accumulated material. The
randomness in the arrival positions and times of the
particles introduces a space-time white noise into
the equation, thus turning KPZ into a stochastic PDE,
which describes the evolution over time of the rough,
irregular interface between the vacuum above and
the material accumulating below. A solution to the
KPZ equation would provide, for any time t and any
point along the bottom edge of the substrate, the
height of the interface above that point.

The challenge the KPZ equation posed is that,
although it made sense from the point of view of
physics, it did not make sense mathematically. A so-
lution to the KPZ equation should be a mathematical
object that represents the rough, irregular nature
of the interface. Such an object has no smoothness;
in mathematical terms, it is not differentiable. And
yet two of the terms in the KPZ equation call for the
object to be differentiable. There is a way to sidestep
this difficulty by using an object called a distribution.
But then a new problem arises, because the KPZ
equation is nonlinear: It contains a square term, and
distributions cannot be squared. For these reasons,
the KPZ equation was not well defined. Although
researchers came up with some technical tricks to
ameliorate these difficulties for the special case of
the KPZ equation, the fundamental problem of its
not being well defined long remained an unresolved
issue.

In a spectacular achievement, Hairer overcame
these difficulties by describing a new approach to
the KPZ equation that allows one to give a mathe-
matically precise meaning to the equation and its
solutions. What is more, in subsequent work he used
the ideas he developed for the KPZ equation to build
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a general theory, the theory of regularity structures,
that can be applied to a broad class of stochastic
PDEs. In particular, Hairer’s theory can be used in
higher dimensions.

The basic idea of Hairer’s approach to the KPZ
equation is the following. Instead of making the
usual assumption that the small random effects
occur on an infinitesimally small scale, he adopted
the assumption that the random effects occur on
a scale that is small in comparison to the scale at
which the system is viewed. Removing the infinitesi-
mal assumption, which Hairer calls “regularizing the
noise”, renders an equation that can be solved. The
resulting solution is not a solution to KPZ; rather,
it can be used as the starting point to construct a
sequence of objects that, in the limit, converges to
a solution of KPZ. And Hairer proved a crucial fact:
the limiting solution is always the same regardless
of the kind of noise regularization that is used.

Hairer’s general theory addresses other, higher-
dimensional stochastic PDEs that are not well
defined. For these equations, as with KPZ, the
main challenge is that, at very small scales, the
behavior of the solutions is very rough and irreg-
ular. If the solution were a smooth function, one
could carry out a Taylor expansion, which is a way
of approximating the function by polynomials of
increasingly higher degree. But the roughness of the
solutions means they are not well approximated by
polynomials. What Hairer did instead is to define
objects, custom-built for the equation at hand, that
approximate the behavior of the solution at small
scales. These objects then play a role similar to poly-
nomials in a Taylor expansion. At each point, the
solution will look like an infinite superposition of
these objects. The ultimate solution is then obtained
by gluing together the pointwise superpositions.
Hairer established the crucial fact that the ultimate
solution does not depend on the approximating
objects used to obtain it.

Prior to Hairer’s work, researchers had made a
good deal of progress in understanding linear sto-
chastic PDEs, but there was a fundamental block
to addressing nonlinear cases. Hairer’s new theory
goes a long way towards removing that block. What
is more, the class of equations to which the theory
applies contains several that are of central interest in
mathematics and science. In addition, his work could
open the way to understanding the phenomenon of
universality. Other equations, when rescaled, con-
verge to the KPZ equation, so there seems to be some
universal phenomenon lurking in the background.
Hairer’s work has the potential to provide rigorous
analytical tools to study this universality.

Before developing the theory of regularity struc-
tures, Hairer made other outstanding contributions.
For example, his joint work with Jonathan Mattingly
constitutes a significant advance in understanding a
stochastic version of the Navier-Stokes equation, a
nonlinear PDE that describes wave motion.

In addition to being one of the world’s top math-
ematicians, Hairer is a very good computer program-
mer. While still a school student, he created audio
editing software that he later developed and success-
fully marketed as “the Swiss army knife of sound
editing.” His mathematical work does not depend on
computers, but he does find that programming small
simulations helps develop intuition.

With his commanding technical mastery and deep
intuition about physical systems, Hairer is a leader
in the field who will doubtless make many further
significant contributions.
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Maryam Mirzakhani

Maryam Mirzakhani has made
striking and highly original
contributions to geometry
and dynamical systems. Her
work on Riemann surfaces
and their moduli spaces
bridges several mathematical
disciplines—hyperbolic geome-
try, complex analysis, topology,
and dynamics—and influences
them all in return. She gained
widespread recognition for her
early results in hyperbolic geom-
etry, and her most recent work
constitutes a major advance in
dynamical systems.

Riemann surfaces are named after the nineteenth
century mathematician Bernhard Riemann, who was
the first to understand the importance of abstract
surfaces, as opposed to surfaces arising concretely in
some ambient space. Mathematicians building on Rie-
mann’s insights understood more than 100 years ago
that such surfaces can be classified topologically, i.e.,
up to deformation, by a single number, namely, the
number of handles. This number is called the genus
of the surface. The sphere has genus zero, the surface
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of a coffee cup has genus one, and the surface of a
proper pretzel has genus three. Provided that one dis-
regards the precise geometric shape, there is exactly
one surface of genus g for every positive integer g.

A surface becomes a Riemann surface when it is
endowed with an additional geometric structure. One
can think of this geometric structure as a so-called
complex structure, which allows one to do complex
analysis on the abstract surface. Since the complex
numbers involve two real parameters, a surface,
which is two-dimensional over the real numbers,
has only one complex dimension and is sometimes
called a complex curve. The following fact links the
theory of Riemann surfaces to algebraic geometry:
Every complex curve is an algebraic curve, meaning
that the complex curve, although defined abstractly,
can be realized as a curve in a standard ambient
space, in which it is the zero set of suitably chosen
polynomials. Thus, although a Riemann surface is a
priori an analytic object defined in terms of complex
analysis on abstract surfaces, it turns out to have
an algebraic description in terms of polynomial
equations.

An alternative but equivalent way of defining a
Riemann surface is through the introduction of a
geometry that allows one to measure angles, lengths,
and areas. The most important such geometry is
hyperbolic geometry, the original example of a non-
Euclidean geometry discovered by Bolyai, Gauss,
and Lobachevsky. The equivalence between complex
algebraic and hyperbolic structures on surfaces is at
the root of the rich theory of Riemann surfaces.

Mirzakhani’s early work concerns closed geodesics
on a hyperbolic surface. These are closed curves
whose length cannot be shortened by deforming
them. A now-classic theorem proved more than
fifty years ago gives a precise way of estimating the
number of closed geodesics whose length is less
than some bound L. The number of closed geodesics
grows exponentially with L; specifically, it is asymp-
totic to eL/L for large L. This theorem is called the
“prime number theorem for geodesics,” because it
is exactly analogous to the usual “prime number
theorem” for whole numbers, which estimates the
number of primes less than a given size. (In that case
the number of primes less than eL is asymptotic to
eL/L for large L.)

Mirzakhani looked at what happens to the “prime
number theorem for geodesics” when one considers
only the closed geodesics that are simple, meaning
that they do not intersect themselves. The behavior is
very different in this case: the growth of the number
of geodesics of length at most L is no longer exponen-
tial in L but is of the order of L6g−6, where g is the
genus. Mirzakhani showed that in fact the number
is asymptotic to c · L6g−6 for large L (going to infin-
ity), where the constant c depends on the hyperbolic
structure.

While this is a statement about a single, though
arbitrary, hyperbolic structure on a surface, Mirza-
khani proved it by considering all such structures

simultaneously. The complex structures on a surface
of genus g form a continuous, or nondiscrete, space,
since they have continuous deformations. While the
underlying topological surface remains the same, its
geometric shape changes during a deformation. Rie-
mann knew that these deformations depend on 6g−6
parameters or “moduli”, meaning that the “moduli
space” of Riemann surfaces of genus g has dimen-
sion 6g − 6. However, this says nothing about the
global structure of moduli space, which is extremely
complicated and still very mysterious. Moduli space
has a very intricate geometry of its own, and different
ways of looking at Riemann surfaces lead to different
insights into its geometry and structure. For exam-
ple, thinking of Riemann surfaces as algebraic curves
leads to the conclusion that moduli space itself is an
algebraic object called an algebraic variety.

In Mirzakhani’s proof of her counting result for
simple closed geodesics, another structure on mod-
uli space enters, a so-called symplectic structure,
which, in particular, allows one to measure volumes
(though not lengths). Generalizing earlier work of
G. McShane, Mirzakhani establishes a link between
the volume calculations on moduli space and the
counting problem for simple closed geodesics on
a single surface. She calculates certain volumes in
moduli space and then deduces the counting result
for simple closed geodesics from this calculation.

This point of view led Mirzakhani to new insights
into other questions about moduli space. One conse-
quence was a new and unexpected proof of a conjec-
ture of Edward Witten (a 1990 Fields Medalist), one
of the leading figures in string theory. Moduli space
has many special loci inside it that correspond to Rie-
mann surfaces with particular properties, and these
loci can intersect. For suitably chosen loci, these in-
tersections have physical interpretations. Based on
physical intuition and calculations that were not en-
tirely rigorous, Witten made a conjecture about these
intersections that grabbed the attention of mathe-
maticians. Maxim Kontsevich (a 1998 Fields Medalist)
proved Witten’s conjecture through a direct verifica-
tion in 1992. Fifteen years later, Mirzakhani’s work
linked Witten’s deep conjecture about moduli space
to elementary counting problems of geodesics on in-
dividual surfaces.

In recent years, Mirzakhani has explored other
aspects of the geometry of moduli space. As men-
tioned before, the moduli space of Riemann surfaces
of genus g is itself a geometric object of 6g − 6 di-
mensions that has a complex, and, in fact, algebraic
structure. In addition, moduli space has a metric
whose geodesics are natural to study. Inspired by
the work of Margulis, Mirzakhani and her co-workers
have proved yet another analogue of the prime num-
ber theorem, in which they count closed geodesics
in moduli space, rather than on a single surface. She
has also studied certain dynamical systems (mean-
ing systems that evolve with time) on moduli space,
proving in particular that the system known as the
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“earthquake flow,” which was introduced by William
Thurston (a 1982 Fields Medalist), is chaotic.

Most recently, Mirzakhani, together with Alex
Eskin and, in part, Amir Mohammadi, made a major
breakthrough in understanding another dynami-
cal system on moduli space that is related to the
behavior of geodesics in moduli space. Nonclosed
geodesics in moduli space are very erratic and even
pathological, and it is hard to obtain any understand-
ing of their structure and how they change when
perturbed slightly. However, Mirzakhani et al. have
proved that complex geodesics and their closures in
moduli space are in fact surprisingly regular, rather
than irregular or fractal. It turns out that, while
complex geodesics are transcendental objects de-
fined in terms of analysis and differential geometry,
their closures are algebraic objects defined in terms
of polynomials and therefore have certain rigidity
properties.

This work has garnered accolades among re-
searchers in the area, who are working to extend
and build on the new result. One reason the work
sparked so much excitement is that the theorem
Mirzakhani and Eskin proved is analogous to a cel-
ebrated result of Marina Ratner from the 1990s.
Ratner established rigidity for dynamical systems on
homogeneous spaces—these are spaces in which the
neighborhood of any point looks just the same as
that of any other point. By contrast, moduli space is
totally inhomogeneous: Every part of it looks totally
different from every other part. It is astounding to
find that the rigidity in homogeneous spaces has an
echo in the inhomogeneous world of moduli space.

Because of its complexities and inhomogeneity,
moduli space has often seemed impossible to work
on directly. But not to Mirzakhani. She has a strong
geometric intuition that allows her to grapple di-
rectly with the geometry of moduli space. Fluent in
a remarkably diverse range of mathematical tech-
niques and disparate mathematical cultures, she
embodies a rare combination of superb technical
ability, bold ambition, far-reaching vision, and deep
curiosity. Moduli space is a world in which many
new territories await discovery. Mirzakhani is sure
to remain a leader as the explorations continue.
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