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A WORD FROM...
Louise Jakobson, AMS Development Officer1

The world is full of opportunities and problems big and small, whether at the planetary 
level, in far-flung regions of the world, or right on our doorstep. The array of environ-
mental, social, educational, scientific, and medical issues that exist is endless. But, formi-
dable as these issues are, human beings work collectively to make things better. They find 
solutions and implement them through government, industry, or business. At individual 
and group levels, they also make progress by giving and volunteering via nonprofits and 
other organizations.

Focusing on the United States, Americans have the reputation for being generous, and 
the data reflect that. The World Giving Index report for 2018 (https://www.cafonline 
.org/about-us/publications/2018-publications/caf-world-giving 
-index-2018) ranks the United States fourth worldwide (the top three countries are In-
donesia, Australia, and New Zealand; Ireland, the UK, and Singapore are close behind the 
US). According to this study, 72% of Americans helped a stranger, 61% donated money, 

and 39% volunteered.
How much do people donate and what are they supporting? Giving USA reports that Americans gave $427.71 

billion to nonprofits in 2018. Individuals account for 77% of that number (including bequests); foundations 
gave 18%, and corporations 5%. Where did donors direct their generosity? Religion (29%) received the largest 
segment, followed by Education (14%); Human Services (12%); Foundations (12%); Health (10%); Public-Society 
Benefit (7%); International Affairs (5%); Arts, Culture, and Humanities (5%); Environment/Animals (3%); and 
Individuals (2%).

There is a multitude of organizations to give to, and everyone has their own reasons for what they choose to 
support. At the AMS, donors regularly let us know why they are making their gift, large or small. In fact, one of 
the joys of working in fundraising is listening to donors share their stories! Often, they want to give back to their 
profession and support the younger generation, make opportunities available to others that they did not have 
themselves, spur important research in their field by supporting a prize, or honor a mentor or give in memory of 
an esteemed colleague or great mathematician. Each mathematics organization offers something different to the 
mathematics community. In many ways, the AMS is uniquely positioned to make an impact because of its longev-
ity, financial stability, national and international reach, and active community of mathematicians in governance 
and committees.

There are many examples of mathematicians and people in other fields striving to advance a particular area to 
help solve some of the mathematical world’s challenges. Paul Sally’s passion for education drove him to establish 
the Arnold Ross Lectures endowed fund to bring top scholars to talented high school students; Don and Jill Knuth’s 
contributions over recent years have helped Mathematical Reviews in many ways, including indexing, author dis-
ambiguation, and supporting native scripts; Joan and Joseph Birman created a Fellowship for Women Scholars to 
nurture outstanding research by mid-career women mathematicians; and many AMS donors have donated to the 
Epsilon Fund to benefit high school summer math camps. 

Others prefer to give unrestricted funds, allowing the AMS flexibility to direct resources to the area of greatest 
need, including advocacy efforts for mathematics in Washington, DC; meetings and conferences; or additional 
funds to the MathSciNet for Developing Countries Program to ensure access to the mathematical literature. On 
average, approximately half of AMS annual donors choose to make their gift unrestricted. 
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Louise Jakobson is a development officer at the AMS. Her email address is lxj@ams.org.
1The opinions expressed here are not necessarily those of the Notices or the AMS.
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As a donor, you may also want to think about when you want your gift to be used. If you want to effect change now, 
you can choose to have the AMS utilize your contribution immediately. If support for future needs and challenges is what 
is important to you, you can direct your gift to an existing endowment (meaning that the funds are invested and provide 
funding for a specified purpose for the years to come), or talk to development staff about creating a new one. The AMS 
has nineteen endowed funds supporting prizes; donors may also establish named endowed funds to support broad areas 
of need, including early career mathematicians, education, diversity, and advocacy. One such example is the Mark Green 
and Kathryn Kert Green Fund for Inclusion and Diversity; another is the Next Generation Fund, which was recently created 
to support the needs of current and future generations of early career mathematicians, an ongoing priority of the AMS. 

I was interested to learn that endowments have a much longer history than one might imagine. The earliest known 
endowed chairs were established by the Roman emperor (and Stoic philosopher) Marcus Aurelius in Athens in AD 176 
for the four major schools of philosophy, and the earliest known surviving endowed professorships were created by Lady 
Margaret Beaufort in Oxford and Cambridge in 1502 (these two funds are still in existence today!). 

Finally, a number of donors also give through charitable estate planning, taking a longer-term view of their charitable 
giving. For example, Franklin Peterson, Cathleen Synge Morawetz, and mathematical couple Steven Schot and Joanna 
Wood Schot made unrestricted bequests to the AMS, while Edmund and Nancy Tomastik have declared their bequest 
intention to establish a prize in differential equations. All of these individuals demonstrate the wish to impact math-
ematics beyond their lifetimes. It can be very gratifying to know that you will be building mathematical research and 
scholarship for the future.

I know from experience that donors care very much what happens in the organizations they support. The annual AMS 
Contributors List for the year 2019 will be published in next month’s issue of Notices. Approximately 1,400 donors a year 
support the AMS; as a development officer, I’ve had the privilege of talking with a number of these generous individuals. 
I can report that our donors care and make thoughtful and often deeply personal choices to invest in mathematics, its 
community, and its future.
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LETTERS TO THE EDITOR

*We invite readers to submit letters to the editor at notices-letters 
@ams.org.

Where does “mathematical making” 
fit in our community?
At the end of a fantastic semester of Illustrating Mathemat-
ics at the Institute for Computational and Experimental Re-
search in Mathematics (ICERM), many of the participants 
gathered to discuss the future of what we see as a growing 
movement. Where can we publish scholarly articles about 
mathematical visualization if the theorems alone might not 
justify publication? How does the mathematical commu-
nity value the creation of new ways to see and communicate 
mathematics? The extraordinary creativity sparked by our 
being brought together makes us confident that more math-
ematicians will delight in taking up this enterprise. Those 
of us who have signed the Mathematical Makers’ Manifesto 
below urge the mathematical community to support efforts 
in the same way ICERM so generously supported us this fall.

—Frank A. Farris
Santa Clara University

Letter to the Editor
Dear Colleagues, 

Many thanks for a very interesting article, “How to 
Keep Your Secrets in a Post-Quantum World,” published 
in the January 2020 issue of Notices of the AMS. This article 
describes ideas for “post-quantum cryptosystems that are 
not currently known to be breakable in polynomial time 
by a full-scale quantum computer.” These are all great 
ideas, but readers who are not very familiar with this topic 
should be informed that already in the 1980s, researchers 
had developed quantum cryptography schemes—such as 
the 1984 Bennetts’ and Brassard’s Quantum Key Distribu-
tion scheme—which are not breakable even by a quantum 
computer. These are not just purely theoretical schemes: 
according to the Wikipedia page on quantum cryptography, 
several companies already manufacture such communica-
tion schemes, and they are actively used—in particular, for 
communications over hundreds of kilometers. Of course, 
this does not mean that the problem is fully solved: the ex-
isting quantum communication schemes have limitations, 
e.g., limitations on communication speed; from this view-
point, it would be great to have faster alternative schemes, 
e.g., schemes described in the Notices article.

—Vladik Kreinovich and Luc Longpre
Department of Computer Science

University of Texas at El Paso

(Received December 20, 2019)

A human-scale model of the Weaire-Phelan foam. 
Mathematical installation by Glen Whitney.
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Mathematical Makers’ Manifesto
We are mathematical makers. We are makers because we 
make things, by which we might mean literal objects, such 
as sculptures, paintings, or fabrics, but our making includes 
creation of digital images, software, and even performance 
arts. We are mathematical makers because our creations 
require mathematical knowledge as a key ingredient. Why 
do we make these things? Our reasons are diverse, including 
education, outreach, and experimentation to investigate 
and create new mathematical understanding; we are also 
inspired to create works of art and useful crafts. We work to 
include mathematicians of many different backgrounds in 
our making, from beginning students to researchers in the 
farthest branches of mathematics. As the ultimate interdis-
ciplinary subfield of mathematics, mathematical making 
deserves support from universities, museums, governments, 
and corporations around the world.

Signed by
Aaron Abrams, Washington and Lee University

Silviana Amethyst, University of Wisconsin–Eau Claire
Roger Antonsen, University of Oslo, Norway

Pierre Arnoux, Université d’Aix-Marseille
Jayadev Athreya, University of Washington, Seattle

David Bachman, Pitzer College
Dina Buric, University of Victoria

J. Scott Carter, University of South Alabama
Arnaud Chéritat, CNRS/Université de Toulouse

Rémi Coulon, CNRS/Université de Rennes 1
Gabriel Dorfsman-Hopkins, University of California, Berkeley

David Dumas, University of Illinois at Chicago
Bernat Espigulé, Universitat de Barcelona

Frank A. Farris, Santa Clara University
Herbert Gangl, Durham University

Edmund Harriss, University of Arkansas
Alexander E. Holroyd, University of Bristol, UK

Oliver Labs, MO-Labs
Daniel Lautzenheiser, University of Nevada, Las Vegas

Samuel Lelièvre, Université Paris-Saclay
Stepan Paul, Harvard University

Alba Málaga Sabogal, ICERM, Brown University
Tashrika Sharma, University of Vienna

Martin Skrodzki, Semester Postdoc at ICERM, Brown University
Katherine E. Stange, University of Colorado, Boulder

Laura Taalman, James Madison University
Mikael Vejdemo-Johansson, CUNY College of Staten Island / 

CUNY Graduate Center
Glen Whitney, StudioInfinity.org

Carolyn Yackel, Mercer University

(Received January 23, 2020)
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The Covering Method
for Exponential Sums
and Some Applications
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Ivelisse M. Rubio
Introduction
Exponential sums over finite fields are an important tool
for solving mathematical problems and have applications
to many other areas. However, some of the methods and
proofs of the results are nonelementary. The main pur-
pose of this article is to present the covering method, an

Ivelisse M. Rubio is a professor of mathematics in the Department of Computer
Sciences at the University of Puerto Rico, Rı́o Piedras. Her email address is
ivelisse.rubio@upr.edu.

Communicated by Notices Associate Editor Emilie Purvine.

For permission to reprint this article, please contact:
reprint-permission@ams.org.

DOI: https://doi.org/10.1090/noti2073

elementary and intuitive way to estimate or compute the 𝑝-
divisibility of exponential sums, which is particularly con-
venient in the applications. The covering method allows
us to determine solvability of systems of polynomial equa-
tions, improve the search for balanced Boolean functions,
give better estimates for covering radius of codes, and has
many other applications.
Solvability of systems of polynomial equations. One of
the prominent problems in mathematics is to determine
if a polynomial equation has solutions. In 1935 Artin
conjectured that a homogeneous polynomial over a finite
field has a nontrivial zero if the number of variables is
larger than the degree. Chevalley obtained almost imme-
diately a slightly better result changing the hypothesis of
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homogeneity to the weaker one of the polynomial having
no constant term. Note that the homogeneous and the no-
constant-term conditions imply that the polynomial has
the trivial zero. The theorem guarantees additional zeros.

Warning improved Chevalley’s result by proving that if
the number of variables is larger than the sum of the de-
grees of a system of polynomials, then 𝑝, the characteristic
of the field, divides the number of common zeros. This
classical result is known as the Chevalley–Warning theo-
rem and has an elementary proof [12, 20]. By elementary
we mean that it uses only elementary results from number
theory. Note that the number of zeros could be 0, but if
the system has the trivial zero, Chevalley–Warning guaran-
tees nontrivial solutions.

There are many results improving Chevalley–Warning’s
theorem. The results presented by Ax [2], Katz
[11], Adolphson–Sperber [1], Moreno–Moreno [15], and
Moreno et al. [17] have proofs that are nonelementary
or semielementary. Other results presented by Moreno–
Moreno [13], Wan [19], and Castro et al. [6] have entirely
elementary proofs. As in the Chevalley–Warning theorem,
solvability is not guaranteed; nontrivial solutions exist if
the system has the trivial zero.

The covering method to study the 𝑝-divisibility of expo-
nential sums is an elementary method introduced in [6]
that lets us determine sufficient conditions to guarantee
solvability and allows us to construct general families of
solvable systems of polynomial equations [4,5].
Applications to cryptography and coding theory. The di-
visibility of exponential sums has been used to character-
ize and prove properties in coding theory and cryptogra-
phy [3, 7, 18]. The computation of bounds or the exact 2-
divisibility of exponential sums of Boolean functions pro-
vides information on the Hamming weight of the function
and can be used to obtain information on the covering ra-
dius and the weight distribution of certain codes. These
properties are important for the analysis of decoding algo-
rithms and are also related to cryptography, as they can
be used to study nonlinearity and to search for balanced
Boolean functions.

Exponential Sums Associated to Polynomials
We will restrict our exposition to exponential sums asso-
ciated to polynomials in 𝔽𝑝[𝑋1, … , 𝑋𝑛], where 𝑝 is a prime
number and 𝔽𝑝 is the finite field with 𝑝 elements. The defi-
nition of these exponential sums depends on 𝜁, a 𝑝th root
of unity over the 𝑝-adic field

ℚ𝑝 = {𝑎𝑟𝑝𝑟 + 𝑎𝑟+1𝑝𝑟+1 +⋯ | 𝑎𝑖 ∈ {0, … , 𝑝 − 1}, 𝑟 ∈ ℤ} .

For 𝑎𝑟 ≠ 0, define the 𝑝-adic valuation of 𝑥 = 𝑎𝑟𝑝𝑟 +
𝑎𝑟+1𝑝𝑟+1 + ⋯ ∈ ℚ𝑝 as 𝑣𝑝(𝑥) = 𝑟, the highest power of 𝑝
dividing 𝑥, 𝑣𝑝(0) = ∞. We also call 𝑣𝑝(𝑥) the 𝑝-divisibility

of 𝑥. If 𝑣𝑝(𝑥) ≠ ∞, we say that 𝑣𝑝(𝑥) is the exact 𝑝-
divisibility of 𝑥.
Example 1. Consider 𝑥 = 36 = (32)(4) ∈ ℤ. Note that we
can also represent 𝑥 as 𝑥 = 32 + 33 ∈ ℚ3. This implies that
the exact 3-divisibility of 36 is 2. That is, 𝑣3(36) = 2.

The set of 𝑝-adic integers is the local ring ℤ𝑝 =
{𝑥 ∈ ℚ𝑝 | 𝑣𝑝(𝑥) ≥ 0} with maximal ideal 𝑝ℤ𝑝 and residue
field ℤ𝑝/𝑝ℤ𝑝 ≅ 𝔽𝑝. One can use this valuation to define
the 𝑝-adic absolute value of 𝑥 by |𝑥|𝑝 = 𝑝−𝑣𝑝(𝑥) if 𝑥 ≠ 0
and |0|𝑝 = 0.

The 𝑝-adic field ℚ𝑝 is a completion of the rationals ℚ,
and its construction is similar to the construction of the
real numbersℝ fromℚ but using the 𝑝-adic absolute value.
So, ℚ𝑝 is the completion of ℚ with respect to |.|𝑝. The 𝑝-
adic numbers offer a different perspective to study prob-
lems, and thesemethods can be helpful to understand con-
cepts and prove properties that may be difficult without
them. For an accessible introduction to the beautiful the-
ory of 𝑝-adic numbers we refer the reader to [9].

For a polynomial 𝐹 ∈ 𝔽𝑝[𝐗], where 𝐗 = (𝑋1, 𝑋2, … , 𝑋𝑛),
and 𝜁 a primitive 𝑝th root of unity over ℚ𝑝, let 𝜁𝑎 =
𝜁𝑎 mod 𝑝, and define the exponential sum associated to
𝐹 as

𝑆(𝐹) = ∑
𝐱∈(𝔽𝑝)

𝑛
𝜁𝐹(𝐱) ∈ ℤ𝑝.

The explicit evaluation of the exponential sum of a poly-
nomial might be a difficult task, but for many applications
it is enough to have estimates for 𝑣𝑝(𝑆(𝐹)). For simplicity,
in some of the results in this article we consider only one
polynomial, but the results can be extended to systems of
polynomials 𝐹1, 𝐹2, … , 𝐹𝑡 ∈ 𝔽𝑝[𝐗] by adding 𝑡 extra variables
𝑌1, … , 𝑌𝑡 (one per polynomial) and constructing a new
polynomial 𝑃 = 𝑌1𝐹1 + 𝑌2𝐹2 +⋯ + 𝑌𝑡𝐹𝑡. The exponential
sum associated to the system of polynomials 𝐹1, 𝐹2, … , 𝐹𝑡
is the exponential sum associated to 𝑃. The relation be-
tween the number 𝒩 of elements (𝑥1, … , 𝑥𝑛) ∈ (𝔽𝑝)

𝑛
that

are common zeros of the system and the exponential sum
associated to the system is given by the following lemma:

Lemma 1. Let 𝒩 be the number of common zeros of
𝐹1, 𝐹2, … , 𝐹𝑡 ∈ 𝔽𝑝[𝐗]. Then

𝒩 = 𝑝−𝑡 ∑
𝐱∈(𝔽𝑝)

𝑛,𝐲∈(𝔽𝑝)
𝑡
𝜁𝑦1𝐹1(𝐱)+𝑦2𝐹2(𝐱)+⋯+𝑦𝑡𝐹𝑡(𝐱).

Since 𝒩 = 𝑝−𝑡𝑆(𝑌1𝐹1 + 𝑌2𝐹2 + ⋯ + 𝑌𝑡𝐹𝑡) = 𝑝−𝑡𝑆(𝑃),
computing the exact value of 𝒩 depends on the compu-
tation of 𝑆(𝑃), which is not easy. However, if we can get
the exact 𝑝-divisibility of 𝑆(𝑃), 𝑣𝑝(𝒩) < ∞, we know that
𝑝𝑣𝑝(𝒩)+1 ∤ 𝒩. This implies that 𝒩 ≠ 0 and the system
is solvable. Therefore, being able to compute the exact 𝑝-
divisibility of an exponential sum of a system of polyno-
mials gives a criterion for solvability of the system.
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2-Divisibility of Exponential Sums
of Boolean Functions
Most of the applications of exponential sums to coding
theory and cryptography consider Boolean functions 𝑓 ∶
(𝔽2)

𝑛 ⟶ 𝔽2. Any Boolean function 𝑓 can be identified
with a unique Boolean polynomial 𝐹 = ∑𝐞∈Supp(𝐹) 𝐗𝐞,
where Supp(𝐹) is the set of exponents of the nonzero terms,
𝐞 = (𝑒1, … , 𝑒𝑛) ∈ (𝔽2)𝑛, and 𝐗𝐞 = 𝑋𝑒1

1 𝑋
𝑒2
2 ⋯𝑋𝑒𝑛𝑛 . This

polynomial is known as the algebraic normal form of the
Boolean function. The exponential sum of a Boolean poly-
nomial 𝐹 ∈ 𝔽2[𝐗] is

𝑆(𝐹) = ∑
𝐱∈(𝔽2)𝑛

(−1)𝐹(𝐱).

The covering method for 2-divisibility. In [14], Moreno–
Moreno introduced the covering method, which provides
an elementary way to give a bound on the 2-divisibility
of exponential sums of Boolean functions. Using this
method, they gave an improvement to Ax’s theorem in
[2] for the binary case. However, the result does not give
exact 2-divisibility and cannot be used to determine solv-
ability or to find nonbalanced Boolean functions. Addi-
tional conditions have to be imposed to determine exact
2-divisibility. We now assume that any polynomial 𝐹 is
not a polynomial in some proper subset of the variables
𝑋1, … , 𝑋𝑛.
Definition 1. A set 𝐶 of monomials 𝐹𝑖1 , … , 𝐹𝑖𝑟 of a polyno-
mial 𝐹 = 𝐹1 + ⋯ + 𝐹𝑚 ∈ 𝔽2[𝐗] is called a covering of 𝐹
if every variable 𝑋𝑖 is in at least one monomial of 𝐶. The
size of a covering 𝐶 is its cardinality |𝐶|. A set 𝐶 is called
a minimal covering of 𝐹 if there is no other covering of 𝐹
of smaller size.

Note that since, for 𝑎 ≠ 0, 𝑋𝑎 = 𝑋 over 𝔽2, if we take the
product of the monomials 𝐹𝑖1 ⋯𝐹𝑖𝑟 in 𝐶 we get 𝑋1𝑋2⋯𝑋𝑛,
the monomial with all the variables. This fact will be use-
ful in the generalization of the covering to any characteris-
tic 𝑝.
Example 2. Let 𝐹 = 𝑋1 + 𝑋2 + ⋯ + 𝑋8 + 𝑋1𝑋2𝑋3𝑋4 +
𝑋3𝑋5𝑋6 + 𝑋2𝑋7𝑋8 + 𝑋4𝑋7𝑋8 ∈ 𝔽2[𝑋1, … , 𝑋8]. Then 𝐶1 =
{𝑋1, 𝑋2, … , 𝑋8}, 𝐶2 = {𝑋1𝑋2𝑋3𝑋4, 𝑋3𝑋5𝑋6, 𝑋2𝑋7𝑋8}, and
𝐶3 = {𝑋1𝑋2𝑋3𝑋4, 𝑋3𝑋5𝑋6, 𝑋4𝑋7𝑋8} are coverings of 𝐹, but
𝐶2, 𝐶3 are the only minimal coverings of 𝐹.

Moreno–Moreno used minimal coverings of a Boolean
function 𝐹 to obtain a bound on the 2-divisibility of the
exponential sum of 𝐹.
Theorem 1 ([14]). Let 𝐶 be a minimal covering of 𝐹 ∈ 𝔽2[𝐗].
Then

𝑣2(𝑆(𝐹)) ≥ |𝐶|.
One can use Theorem 1 and Lemma 1 to give a bound

on the 2-divisibility of the number of solutions 𝒩 of 𝐹.

However, a bound does not guarantee that 𝒩 ≠ 0. To de-
termine solvability one needs to obtain exact 2-divisibility.
Theorem 1 is general and tight in the sense that there
are polynomials that attain the bound and have exact 2-
divisibility |𝐶|. This implies that to determine if a polyno-
mial has exact 2-divisibility or to improve the bound, we
need to impose additional conditions. The next theorem
has simple conditions that are sufficient to obtain exact 2-
divisibility.

Theorem 2 ([7]). Let 𝐹 ∈ 𝔽2[𝐗], and let 𝐶1, … , 𝐶𝑐 be all the
minimal coverings of 𝐹. If, for each 1 ≤ 𝑖 ≤ 𝑐, each monomial
in 𝐶𝑖 has at least two variables that are not present in the other
monomials of 𝐶𝑖, then 𝑣2 (𝑆(𝐹)) = |𝐶𝑖| if 𝑐 is odd, and other-
wise 𝑣2 (𝑆(𝐹)) ≥ |𝐶𝑖| + 1, where |𝐶𝑖| is the size of a minimal
covering.

With the given conditions, the above theorem refines
Moreno–Moreno’s Theorem 1.

Example 3. The polynomial in Example 2 has exactly two
minimal coverings. Moreno–Moreno’s Theorem 1 implies
that 𝑣2(𝐹) ≥ 3, but Theorem 2 guarantees that 𝑣2(𝐹) ≥ 4.
This might seem a small improvement, but in the applica-
tions even small improvements are important.

The next example shows that even though different
Boolean functions might have the same unique minimal
covering, and hence the same 2-divisibility, there is an am-
ple spectrum for the exact value of 𝑆(𝐹).
Example 4. Consider 𝐹 = 𝑋1𝑋2𝑋3𝑋4+𝑋4𝑋5𝑋6𝑋7+𝑋7𝑋8𝑋9
and 𝐹′ = 𝑋1𝑋2𝑋3𝑋4+𝑋4𝑋5𝑋6𝑋7+𝑋7𝑋8𝑋9+𝑋1+𝑋2+⋯+𝑋9
in 𝔽2 [𝑋1, … , 𝑋9]. It can be verified that 𝑆(𝐹) = 8 ⋅ 3 ⋅ 13 and
𝑆(𝐹′) = 8.

Although, in general, it is not an easy task to find all the
minimal coverings of a given polynomial, one can easily
construct polynomials for which one knows all the mini-
mal coverings and hence knows the exact 2-divisibility. For
example, to obtain unique minimal coverings it is enough
to construct systems of polynomials with lead monomials
of degree at least 2 and of disjoint support that cover all
the variables.

Example 5. Consider the following systemof polynomials
in 13 variables, where (𝛼1, 𝛼2, 𝛼3) ∈ (𝔽2)

3:

𝐹1 + 𝐺1 = 𝑋1𝑋2𝑋3𝑋4𝑋5 +∑
𝑖
𝑋𝑖 − 𝛼1,

𝐹2 + 𝐺2 = 𝑋6𝑋7𝑋8𝑋9 +∑
𝑖<𝑗

𝑋𝑖𝑋𝑗 − 𝛼2,

𝐹3 + 𝐺3 = 𝑋10𝑋11𝑋12𝑋13 + ∑
𝑖<𝑗<𝑘

𝑋𝑖𝑋𝑗𝑋𝑘 − 𝛼3,

where 𝐹1 = 𝑋1𝑋2𝑋3𝑋4𝑋5, 𝐹2 = 𝑋6𝑋7𝑋8𝑋9, and 𝐹3 =
𝑋10𝑋11𝑋12𝑋13. Note that 𝐶 = {𝑌1𝐹1, 𝑌2𝐹2, 𝑌3𝐹3} is the
unique minimal covering of the associated polynomial
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𝑃 = 𝑌1 (𝐹1 + 𝐺1) + 𝑌2 (𝐹2 + 𝐺2) + 𝑌3 (𝐹3 + 𝐺3). This implies
that 𝑆(𝑃) has exact 2-divisibility 𝑣2 (𝑆(𝑃)) = 3.

Note that any system 𝐹′1 +𝐺′
1, … , 𝐹′𝑡 +𝐺′

𝑡 , where 𝐹′1 , … , 𝐹′𝑡
have disjoint support and deg (𝐺′

𝑖 ) < min𝑖 {deg (𝐹′𝑖 )}, will
also have an associated polynomial 𝑃 with unique mini-
mal covering, and hence 𝑆(𝑃) will have exact 2-divisibility
𝑣𝑝 (𝑆(𝑃)) = 𝑡. One can determine other conditions so
that families of “deformations” 𝐹 + 𝐺𝑖 of a polynomial
𝐹 have the same minimal coverings as 𝐹. This provides
a way to obtain the 2-divisibility of exponential sums of
polynomial deformations 𝐹 +𝐺𝑖 from the 2-divisibility of
the exponential sum of the polynomial 𝐹.

Theorem 3 ([7]). Let 𝐹, 𝐺 ∈ 𝔽2[𝐗]. Suppose that the mini-
mal coverings of 𝐹 are the minimal coverings of 𝐹+𝐺 and each
monomial in each minimal covering 𝐶𝐹 has at least two vari-
ables that are not present in the other monomials of 𝐶𝐹 . Then
𝑆(𝐹 + 𝐺) ≡ 𝑆(𝐹) (mod 2|𝐶𝐹 |+1). Moreover, if the number of
minimal coverings is odd, then 𝑣2 (𝑆(𝐹 + 𝐺)) = 𝑣2 (𝑆(𝐹)) =
|𝐶𝐹 |.

Example 6. Consider 𝐹 = 𝑋1𝑋2𝑋3 + 𝑋4𝑋5𝑋6 ∈
𝔽2[𝑋1, … , 𝑋6] and let 𝐹 + 𝐺 be any polynomial in
𝔽2[𝑋1, … , 𝑋6] with deg(𝐺) ≤ 2. Then 𝐶 = {𝑋1𝑋2𝑋3, 𝑋4𝑋5𝑋6}
is the unique minimal covering of 𝐹 and 𝐹 + 𝐺, and each
monomial in 𝐶 has three variables that are not present in
the other monomial. This implies that 𝑆(𝐹) and 𝑆(𝐹 + 𝐺)
have exact 2-divisibility 𝑣2 (𝑆(𝐹 + 𝐺))=𝑣2 (𝑆(𝐹))=|𝐶|=2.

Example 7. Consider 𝐹 = 𝑋1𝑋2𝑋3 + 𝑋4𝑋5𝑋6 + 𝑋1𝑋4𝑋5 +
𝑋2𝑋4𝑋6 + 𝑋3𝑋5𝑋6 ∈ 𝔽2[𝑋1, … , 𝑋6] and let 𝐹 + 𝐺 be any
polynomial in 𝔽2[𝑋1, … , 𝑋6] where deg(𝐺) ≤ 2. Again, 𝐶 =
{𝑋1𝑋2𝑋3, 𝑋4𝑋5𝑋6} is the unique minimal covering of 𝐹 and
𝐹 + 𝐺 and 𝑣2 (𝑆(𝐹 + 𝐺)) = 𝑣2 (𝑆(𝐹)) = 2.

Examples 6 and 7 provide families of polynomials
whose exponential sums have exact 2-divisibility. The in-
tuitive and simple condition of 𝐹 + 𝐺 and 𝐹 having the
same minimal coverings allows us to easily construct fam-
ilies of deformations with exact 2-divisibility. We will see
later that this has useful applications to the determination
of nonbalanced Boolean functions.
Solvability. As mentioned above, one of the main appli-
cations of 𝑝-divisibility of exponential sums is to obtain
information about the number of solutions of systems of
equations. Lemma 1 gives the relation between exponen-
tial sums and the number of solutions 𝒩 of a system of
polynomial equations 𝐹1 = ⋯ = 𝐹𝑡 = 0. Using Theorem 2
one could determine if𝒩 has exact 2-divisibility 𝑣2(𝒩). If
this happens, 2𝑣2(𝒩)+1 does not divide 𝒩, 𝒩 ≠ 0, and the
system is solvable.

Example 8. Consider the system

𝑋1𝑋2𝑋3𝑋4𝑋5 +∑
𝑖
𝑋𝑖 = 𝛼1,

𝑋6𝑋7𝑋8𝑋9 +∑
𝑖<𝑗

𝑋𝑖𝑋𝑗 = 𝛼2,

𝑋10𝑋11𝑋12𝑋13 + ∑
𝑖<𝑗<𝑘

𝑋𝑖𝑋𝑗𝑋𝑘 = 𝛼3.

The solutions of this system are the zeros of the system
of polynomials 𝐹1+𝐺1, 𝐹2+𝐺2, 𝐹3+𝐺3 in Example 5. Since
𝑣2 (𝑆(𝑃)) = 3, 𝑣2 (𝒩) = 0 and 2 ∤ 𝒩. This implies that𝒩 ≠
0 and the system is solvable for any (𝛼1, 𝛼2, 𝛼3) ∈ (𝔽2)

3.

Other applications. Other important applications of ex-
ponential sums are to coding theory and cryptography.
Error-correcting codes are used to protect digital informa-
tion from accidental errors that might occur during trans-
mission or storage; the aim is for the receiver to be able
to detect and correct errors that were introduced acciden-
tally and retrieve the original message that was sent. On
the other hand, cryptography is used to hide information
from intruders; the information transmitted should be un-
derstood only by its intended receiver. Coding theory and
cryptography serve different purposes, but they both share
some theoretical concepts and methods.

In the coding process an encoder adds redundancy to a
block of symbols of length 𝑘 that represents themessage𝐦
to transform it into a codeword 𝐜 of block length 𝑛 so that
when received, the decoder can detect and correct errors.
The code𝒞 is the set of all codewords. One can identify the
messageswith 𝑘-tuples of symbols from a finite field𝔽𝑞 and
give the code the structure of a vector space of dimension
𝑘 over 𝔽𝑞. The encoder is then a one-to-one linear map

ℰ𝒞 ∶ (𝔽𝑞)
𝑘 ⟶(𝔽𝑞)

𝑛
, and the linear code 𝒞 = Im (ℰ𝒞).

At first one might think that the decoder could just be
the inverse of the encoding function. But the problem is
that after the codeword 𝐜 = ℰ𝒞(𝐦) is transmitted, the re-
ceived word is 𝐫 = 𝐜 + 𝐞, where 𝐞 is an error vector. So,
ℰ−1𝒞 (𝐫) ≠ 𝐜 if 𝐞 ≠ 0. Hence we need “good” codes, coding
and decoding algorithms that allow us to detect and cor-
rect errors. The main problem in coding theory is to find

codes with large rate
𝑘
𝑛

of information symbols 𝑘 per to-
tal number of symbols 𝑛 that can correct “enough” errors,
where “large” and “enough” will depend on the transmis-
sion channel for which the code is designed.

From now on we will consider binary linear codes,
that is, linear codes over 𝔽2. The Hamming weight of
a vector 𝐱, 𝑤𝐻(𝐱), is the number of entries of 𝐱 that
are nonzero. The Hamming distance between two vec-
tors 𝐱, 𝐲, 𝑑𝐻 (𝐱, 𝐲) defines a metric and is the number
of places on which the vectors disagree; this is equiva-
lent to the Hamming weight of 𝐱 + 𝐲. The minimum dis-
tance 𝑑 of a code 𝒞 is the minimum (Hamming) distance
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between any two codewords, 𝑑 = min {𝑑𝐻 (𝐱, 𝐲) |𝐱, 𝐲 ∈ 𝒞},
and, since we are considering linear codes, this is equal to
the minimum of the Hamming weight of the codewords
𝑑 = min {𝑤𝐻(𝐱) | 𝐱 ∈ 𝒞}.

Let 𝑑 ≥ 2𝑡 + 1 be the minimum distance of a code 𝒞
and suppose that a codeword 𝐜 has been transmitted and
𝐫 = 𝐜+𝐞 has been received, where 𝐞 is an error vector with
𝑤𝐻(𝐞) ≤ 𝑡. Then, 𝐜 is the only codeword with distance
from 𝐫 less than or equal to 𝑡. Hence a possible decoding
algorithm for a received word 𝐫 is to look for the codeword
that is closest in Hamming distance to 𝐫. In practice this
would be too inefficient but guarantees that if 𝑡 or fewer
errors occur, we can always correct them. This is why a lin-
ear block code with minimum distance 𝑑 ≥ 2𝑡 + 1, block
length 𝑛, and dimension 𝑘 is called a 𝑡-error-correcting
code with parameters (𝑛, 𝑘, 𝑡). The goal of research in cod-
ing theory is to construct codes that have large 𝑑 for the

given rate
𝑘
𝑛

and to design efficient algorithms to encode
and decode them.

A cryptographic system is a set of transformations of
the set of allmessages into another space with certain prop-
erties. The message is enciphered into the ciphertext us-
ing a particular key that defines an injective mapping. Two
important principles in the design of cryptographic sys-
tems are confusion and diffusion. The principle of diffusion
makes different messages equally likely to occur; one way
to measure diffusion is to determine if the function used
to cipher is balanced. The principle of confusion measures
the complexity of the decryption process; the nonlinearity
of the functions used in the system gives ameasure for con-
fusion. Functions that are balanced and have large nonlin-
earity are desired.

Reed–Muller codes are some of the oldest and most-
studied codes; nevertheless, there are still many open prob-
lems related to them that are important in both coding and
cryptographic applications. To define a Reed–Muller code
of size 2𝑛, given a fixed ordering of (𝔽2)

𝑛, one associates a
Boolean polynomial 𝐹 ∈ 𝔽2[𝑋1, … , 𝑋𝑛] with the vector of
size 2𝑛 consisting of all the values of 𝐹(𝐱) as 𝐱 varies accord-
ing to the ordering. This is also called the truth table of 𝐹.
For example, if (𝐹2)

3 is ordered in lexicographic order with
𝑋1 > 𝑋2 > 𝑋3, the truth table for 𝐹 (𝑋1, 𝑋2, 𝑋3) = 𝑋1+𝑋2𝑋3
is (0, 0, 0, 1, 1, 1, 1, 0) ∈ (𝔽2)

8. When convenient, we will
work with this representation of 𝐹 in (𝔽2)

𝑛 instead of its
polynomial representation; we will also alternate between
calling 𝐹 a function or a polynomial. The 𝑘th order Reed–
Muller code of length 2𝑛, 𝑅(𝑘, 𝑛), is the set of truth tables
of all the Boolean polynomials in 𝑛 variables and degree
less than or equal to 𝑘. That is, 𝑅(𝑘, 𝑛) can be identified
with the set of Boolean polynomials in 𝑛 variables and de-
gree less than or equal to 𝑘.

The Reed–Muller code of order 1, 𝑅(1, 𝑛), is the set of
Boolean polynomials in 𝑛 variables with degree less than
or equal to 1. The nonlinearity of a Boolean function 𝐹 is
the Hamming distance from 𝐹 to 𝑅(1, 𝑛).

Exponential sums, Hamming weights, and nonlinearity.
The Hamming weight associated to a Boolean function
𝐹, 𝑤𝐻(𝐹), is the Hamming weight of its truth table. This is
the number of 𝐱 ∈ (𝔽2)

𝑛 such that 𝐹(𝐱) = 1. If 𝑤0(𝐹)
is the number of 𝐱 ∈ (𝔽2)

𝑛 such that 𝐹(𝐱) = 0, then
2𝑛 = 𝑤𝐻(𝐹) + 𝑤0(𝐹). Also, 𝑆(𝐹) = ∑𝐱∈(𝔽2)𝑛(−1)

𝐹(𝐱) =
𝑤0(𝐹)(−1)0 + 𝑤𝐻(𝐹)(−1)1 = 𝑤0(𝐹) − 𝑤𝐻(𝐹). This implies
that 𝑤𝐻(𝐹) = 2𝑛−1− 1

2
𝑆(𝐹) and gives a correspondence be-

tween results on exponential sums and Hamming weights
of Boolean functions. Hence, any result for exponential
sums of a Boolean function also gives a corresponding re-
sult about the Hamming weight of the function.

Defining the Hamming distance of a Boolean function
𝐹 to a vector 𝐱 as the Hamming weight of the sum of 𝐱
with the truth table of 𝐹, one can define the Hamming
distance from 𝐹 to a code 𝒞 as min𝐜∈𝒞 {𝑤𝐻 (𝐹 + 𝐜)}. This
lets us define a measure for the principle of confusion in
the cryptographic system, a sense of “how far is a Boolean
function 𝐹 from being linear.” The nonlinearity of 𝐹 is
𝑁𝑙(𝐹) = 𝑤𝐻 (𝐹 + 𝑅(1, 𝑛)), that is, the minimum Hamming
distance between 𝐹 and all the codewords in 𝑅(1, 𝑛). This
can be defined in terms of the exponential sums of cosets
of 𝑅(1, 𝑛),

𝑁𝑙(𝐹) = min𝐜∈𝑅(1,𝑛) {2𝑛−1 −
1
2𝑆(𝐹 + 𝐜)} ,

and we can use results on exponential sums of deforma-
tions of Boolean functions to study the nonlinearity of a
Boolean function 𝐹.

Covering radius of a code. The covering radius 𝜌(𝒞) is
another important parameter of a code 𝒞:

𝜌(𝒞) = max
𝐱∈(𝔽2)𝑛

{min
𝐜∈𝒞

{𝑤𝐻 (𝐱 + 𝐜)}} .

Thismeasure gives themaximumweight of a correctable er-
ror and can be used for the design of decoding algorithms.
A code of minimum distance 2𝑡 + 1 is called perfect if
𝜌(𝒞) = 𝑡 and quasi-perfect if 𝜌(𝒞) = 𝑡 + 1.

The covering radius of the Reed–Muller code of order
1, 𝜌 (𝑅(1, 𝑛)), is the maximum Hamming distance of all
𝑛-variate Boolean polynomials to 𝑅(1, 𝑛). We then have
𝑁𝑙(𝐹) ≤ 𝜌 (𝑅(1, 𝑛)). The covering radius of 𝑅(1, 𝑛) gives
a point of comparison for the nonlinearity of a Boolean
polynomial and hence a sense of “how good” the function
could be for cryptographic applications.

Results on the 2-divisibility of exponential sums have
been used in several papers [16] to give elementary direct
proofs of the covering radius of certain cyclic codes and to
prove that families of cyclic codes are quasi-perfect.
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Weight distribution. The weight distribution of a code
𝒞 counts how many codewords of each weight there are.
Much work has been done studying the weight distribu-
tion of Reed–Muller codes, but (as mentioned earlier)
many problems remain open. Many of the properties of a
Boolean function 𝐹 that are important to cryptography can
be related to the weight distribution of the coset 𝐹+𝑅(1, 𝑛)
and can be studied using exponential sums. Canteaut
[3] obtained a result that is a refinement of the Ham-
mingweight version of Katz’s theorem for the Boolean case
and used it to study the weight distribution of cosets of
first-order Reed–Muller codes. Her result is tight for the
Boolean case and can be improved only by imposing ad-
ditional conditions. The additional conditions to the cov-
ering method in Theorem 3 allowed us to obtain an im-
provement of her results [7].

Balanced functions. A Boolean function 𝐹 is said to be
balanced if the function is equal to 1 in half of the val-
ues of 𝐱 ∈ (𝔽2)

𝑛. Equivalently, an 𝑛-variate Boolean func-
tion 𝐹 is balanced if the Hamming weight of its truth ta-
ble, 𝑤𝐻(𝐹), is 2𝑛−1. This property is important in cryp-
tographic applications because it follows the principle of
diffusion: the function has no bias towards a value. The
search for balanced Boolean functions and the develop-
ment of new methods for constructing them are active ar-
eas of research.

It is easy to see that a Boolean function 𝐹 is balanced if
and only if 𝑆(𝐹) = 0. If 𝑆(𝐹) has exact 2-divisibility, then
𝑝𝑣𝑝(𝑆(𝐹))+1 ∤ 𝑆(𝐹), 𝑆(𝐹) ≠ 0, and 𝐹 is not balanced. Hence,
if one can describe families of Boolean functions with
exact 2-divisibility, one is describing families of Boolean
functions that are not balanced, and this can reduce the
search for balanced Boolean functions.

In [10] Hou used the action of the group GL(𝑛, 2) on
quotients of Reed–Muller codes 𝑅(𝑘, 𝑛)/𝑅(𝑘−1, 𝑛) to count
the number of balanced polynomials in the cosets of
𝑅(𝑘−1, 𝑛). Note that the number of balanced polynomials
in a coset of 𝑅(𝑘 − 1, 𝑛) is included in the weight distribu-
tion of the coset. Cosets of 𝑅(𝑘 − 1, 𝑛) belonging to the
same orbit under this action have the same weight distri-
bution and hence the same number of balanced polyno-
mials. This implies that to know the number of balanced
polynomials of all the cosets in an orbit, it is enough to
study a coset representative for the orbit. Cosets of Reed–
Muller codes 𝐹+𝑅(𝑘−1, 𝑛) are sets of deformations of the
polynomial 𝐹, and one can use Theorem 3 to determine
nonbalanced polynomials a priori and improve the search
for balanced functions.

Example 9. Consider the cosets of𝑅(3, 6)/𝑅(2, 6), 𝑋1𝑋2𝑋3+
𝑋4𝑋5𝑋6+𝑅(2, 6), and 𝑋1𝑋2𝑋3+𝑋4𝑋5𝑋6+𝑋1𝑋4𝑋5+𝑋2𝑋4𝑋6+
𝑋3𝑋5𝑋6 + 𝑅(2, 6). The polynomials in these cosets satisfy
the conditions in Examples 6 and 7 and hence have exact

2-divisibility. Therefore all the polynomials in these cosets
are nonbalanced.

Hou presented representatives for each of the different
orbits in 𝑅(𝑘, 𝑛)/𝑅(𝑘 − 1, 𝑛) for 𝑘 = 3, 𝑛 = 6, 7, 8. Exam-
ple 9 shows two of the six cosets of 𝑅(3, 6)/𝑅(2, 6). Cu-
sick and Cheon noticed in [8] the uneven distribution of
the balanced functions in the table of balanced functions
in the cosets of 𝑅(3, 6)/𝑅(2, 6). Two of the six cosets, the
two cosets of Examples 6, 7, and 9, have zero balanced
functions compared to more than 1.5 million in each of
the other four cosets. The covering method gives a simple
explanation for this phenomenon: as was seen in the ex-
amples, for any 𝐺 ∈ 𝑅(2, 6), 𝐹 and 𝐹 + 𝐺 have the same
unique minimal covering {𝑋1𝑋2𝑋3, 𝑋4𝑋5𝑋6}, where each
monomial has three variables not contained in the other
monomial, and hence 𝐹 + 𝐺 is not balanced.

It is not difficult to find sufficient conditions that can
be used to determine a priori cosets of Reed–Muller codes
that do not contain any balanced function, saving com-
putational time. For example, we can use the covering
method to identify by inspection 15 coset representatives
(out of 32) in 𝑅(3, 8)/𝑅(2, 8) for which at least half of the
functions in each coset are not balanced and provide con-
structions for these nonbalanced functions [7, 10]. This
can be used to determine a priori types of polynomials to
avoid in the search for balanced functions.

𝑝-Divisibility of Exponential Sums
As mentioned above, the proof of most of the improve-
ments and extensions of the Chevalley–Warning theorem
are nonelementary. Ax and Katz used estimates on the 𝑝-
divisibility of exponential sums to improve the Chevalley–
Warning theorem. Katz [11] obtained that 𝒩, the number
of common zeros of polynomials 𝐹1, … , 𝐹𝑡 in 𝔽𝑞[𝑋1, … , 𝑋𝑛]
of degree 𝑑1, … , 𝑑𝑡, is divisible by 𝑞𝜇, where 𝜇 is the small-
est nonnegative integer 𝜇 ≥ 𝜇0:

𝜇0 =
𝑛 −∑𝑡

𝑖=1 𝑑𝑖
max {𝑑𝑖}

.

Note that the theorem gives information on the 𝑝-
divisibility of 𝒩 only if there are “enough variables” 𝑛;
if 𝑛 < ∑𝑡

𝑖=1 𝑑𝑖, 𝜇 = 0, the conclusion is that 1|𝒩, and
the theorem does not give any information. Adolphson–
Sperber [1] improved Katz’s result using a Newton polyhe-
dra approach, and Moreno–Moreno gave an improvement
by using the 𝑝-weight degree of the polynomials instead of
their regular degree. The 𝑝-weight degree of a polynomial
𝐹, 𝑤𝑝(𝐹) is the maximal 𝑝-weight degree of its monomials.
The 𝑝-weight degree of the monomial 𝐗𝐞 = 𝑋𝑒1

1 ⋯𝑋𝑒𝑛𝑛 is

𝑤𝑝 (𝐗𝐞) = 𝜎𝑝(𝑒1) +⋯+ 𝜎𝑝(𝑒𝑛),
where for 𝑎 = 𝑎0 + 𝑎1𝑝 +⋯ + 𝑎𝑟𝑝𝑟, 𝜎𝑝(𝑎) = ∑𝑟

𝑖=0 𝑎𝑖. For
𝑞 = 𝑝𝑓, Moreno–Moreno [13] found that𝒩 is divisible by
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𝑝𝜇, where 𝜇 is the smallest nonnegative integer 𝜇 ≥ 𝜇0,

𝜇0 = 𝑓
𝑛 −∑𝑡

𝑖=1𝑤𝑝(𝐹𝑖)
max {𝑤𝑝(𝐹𝑖)}

.

Again, note that the theorem gives information on the 𝑝-
divisibility of 𝒩 only if there are “enough variables”; if
the number of variables is less than or equal to the sum
of the 𝑝-weight degree of the polynomials, 𝜇 = 0 and the
theorem does not give any information. A tight bound
for the 𝑝-divisibility of exponential sums was given by
Moreno et al. in [17]. That and Adolphson–Sperber’s re-
sults use the exponents 𝐞1, … , 𝐞𝑚 of all the monomials in
the polynomial 𝐹(𝐗) = ∑𝑚

𝑖=1 𝑎𝑖𝑋
𝑒1𝑖
1 ⋯𝑋𝑒𝑛𝑖𝑛 in contrast to

the Chevalley–Warning, Ax–Katz, andMoreno–Moreno re-
sults that use only the degree or the 𝑝-weight degree of the
polynomial. In this sense the result in [17] resembles the
covering method for Boolean polynomials. None of these
results can be used to determine if the exponential sumhas
exact 𝑝-divisibility, and solvability cannot be determined.
The covering method for 𝑝-divisibility. In [6], Castro et
al. introduced a generalization to any prime field of the
covering method introduced in [14] for characteristic 2.
With it they proved the prime field case of the theorem
on the 𝑝-divisibility of exponential sums presented in [17].
The new proof was entirely elementary, and, as a conse-
quence, elementary proofs and improvements of previous
results on the 𝑝-divisibility of exponential sums were ob-
tained.

For the case 𝑞 = 𝑝, the tight bound in [17] relies on find-
ing aminimal solution (𝑠1, … , 𝑠𝑚) to a system of 𝑛modular
equations 𝑒𝑗1𝑠1+𝑒𝑗2𝑠2+⋯+𝑒𝑗𝑚𝑠𝑚 ≡ 0 (mod 𝑝−1), asso-
ciated to the exponents of each variable in the polynomial
𝐹(𝐗) = ∑𝑚

𝑖=1 𝑎𝑖𝑋
𝑒1𝑖
1 ⋯𝑋𝑒𝑛𝑖𝑛 . That is, one needs to find solu-

tions to a system

⎧
⎨
⎩

𝑒11𝑠1 + 𝑒12𝑠2 +⋯+ 𝑒1𝑚𝑠𝑚 = 𝜆1(𝑝 − 1)
⋮ ⋮

𝑒𝑛1𝑠1 + 𝑒𝑛2𝑠2 +⋯+ 𝑒𝑛𝑚𝑠𝑚 = 𝜆𝑛(𝑝 − 1),

𝜆𝑖 ∈ ℕ, where each column corresponds to a term and each
row to a variable, that are minimal in terms of 𝐿 = ∑𝑚

𝑖=1 𝑠𝑖.
In this case, 𝑣𝑝(𝑆(𝐹)) ≥

𝐿
𝑝−1

.

If the system is rewritten as

⎛
⎜
⎜
⎝

𝑒11
𝑒21
⋮
𝑒𝑛1

⎞
⎟
⎟
⎠

𝑠1 +⋯+
⎛
⎜
⎜
⎝

𝑒1𝑚
𝑒2𝑚
⋮
𝑒𝑛𝑚

⎞
⎟
⎟
⎠

𝑠𝑚 =
⎛
⎜
⎜
⎝

𝜆1
𝜆2
⋮
𝜆𝑛

⎞
⎟
⎟
⎠

(𝑝 − 1), (1)

one sees that the solutions that one is looking for are ex-
ponents 𝑠𝑖 for the monomials 𝐹𝑖 = 𝑋𝑒1𝑖

1 ⋯𝑋𝑒𝑛𝑖𝑛 in 𝐹 such
that

𝐹𝑠11 𝐹𝑠22 ⋯𝐹𝑠𝑚𝑚 = 𝑋𝜆1(𝑝−1)
1 ⋯𝑋𝜆𝑛(𝑝−1)𝑛 ,

for 𝜆1, … , 𝜆𝑛 ≥ 1, and such that 𝑠1 + ⋯ + 𝑠𝑚 is as small
as possible [4]. If 𝑝 = 2, then 𝐶 = {𝐹𝑠11 , 𝐹𝑠22 , … , 𝐹𝑠𝑚𝑚 } is a
covering for 𝐹, as some of the 𝑠𝑖 could be zero. This is the
motivation for the definition of a minimal (𝑝−1)-covering
below. Note that the solutions do not depend on the co-
efficients of the polynomial 𝐹.

Definition 2. Let 𝐹(𝐗) = 𝑎1𝐹1+𝑎2𝐹2+⋯+𝑎𝑚𝐹𝑚. A set𝐶 =
{𝐹𝑠11 , … , 𝐹𝑠𝑚𝑚 } of powers of themonomials in𝐹 is aminimal

(𝑝 − 1)-covering of 𝐹 if 𝐹𝑠11 ⋯𝐹𝑠𝑚𝑚 = 𝑋𝜆1(𝑝−1)
1 ⋯𝑋𝜆𝑛(𝑝−1)𝑛

with 𝜆𝑖 ≥ 1 and its size, ∑𝑚
𝑖=1 𝑠𝑖, is minimal.

A (𝑝−1)-covering need not use all the 𝐹𝑖’s, and therefore
some of the 𝑠𝑖’s could be equal to 0.

Example 10. Let 𝐹(𝐗) = 𝑋2
1𝑋3

2 + 𝑋2
1 + 𝑋3

2 ∈ 𝔽7 [𝑋1, 𝑋2].
Then 𝐶1 = {(𝑋2

1𝑋3
2 )

6} , 𝐶2 = {(𝑋2
1 )

3 , (𝑋3
2 )

2}, and 𝐶3 =
{(𝑋2

1𝑋3
2 )

2 , (𝑋2
1 )

1} are 6-coverings of 𝐹, and 𝐶3 is the unique
minimal 6-covering of 𝐹 (of size 3).

A minimal (𝑝 − 1)-covering of a polynomial 𝐹 might
not be unique, and the concept is independent of the coef-
ficients of 𝐹. However, the exact 𝑝-divisibility of 𝑆(𝐹) and
the solvability of equations involving 𝐹 depend on both
the minimal (𝑝 − 1)-coverings and the relation among the
coefficients. Also, if there are powers of the monomials
in 𝐹 that cover some (but not all) of the variables and are
minimal in some sense, it is very hard to determine the
exact 𝑝-divisibility. In Theorem 4 we avoid polynomials
with this type of minimal partial (𝑝 − 1)-covering.

Definition 3. Let 𝐹(𝐗) = 𝑎1𝐹1+𝑎2𝐹2+⋯+𝑎𝑚𝐹𝑚. A set𝐶 =
{𝐹𝑠11 , … , 𝐹𝑠𝑚𝑚 } of powers of the monomials in 𝐹 is a partial

(𝑝 − 1)-covering of 𝐹 if 𝐹𝑠11 ⋯𝐹𝑠𝑚𝑚 = 𝑋𝜆1(𝑝−1)
1 ⋯𝑋𝜆𝑛(𝑝−1)𝑛

with 𝜆𝑖 ≥ 0. The set 𝐶 is aminimal partial (𝑝−1)-covering
of 𝐹 if its size ∑𝑚

𝑖=1 𝑠𝑖 + 𝑠(𝑝 − 1), where 𝑠 is the number of
variables missing, is the size of a minimal (𝑝− 1)-covering
of 𝐹.

Note that instead of requiring each exponent 𝜆𝑖(𝑝 − 1)
of 𝑋𝑖 to be a positive multiple of 𝑝−1, in the definition of
a partial (𝑝−1)-covering, 𝜆𝑖 could be equal to 0, and there-
fore some variables could be missing. If 𝑠 = 0, there are
no variables missing, and we have the previous definition
of the (𝑝 − 1)-covering.

Example 11. Let 𝐹(𝐗) = 𝑋2
1𝑋3

2+𝑋2
1+𝑋3

2 ∈ 𝔽7 [𝑋1, 𝑋2] be the

polynomial of Example 10. Then 𝐶4 = {(𝑋3
2 )

2} is a partial
6-covering of 𝐹 of size 2 + 6 = 8. In Example 10 we saw
that the minimal 6-coverings have size 3, and therefore 𝐶4
is not a minimal partial 6-covering of 𝐹.

By avoiding minimal partial (𝑝 − 1)-coverings we can
improve previous results by computing exact 𝑝-divisibility
of exponential sums or improving previous bounds. The
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next result [4] is a generalization of Theorem 2 to any char-
acteristic.

Theorem 4. Let 𝐶1, … , 𝐶𝑐 be all the minimal (𝑝 − 1)-
coverings of size 𝐿 of a polynomial 𝐹 = 𝑎1𝐹1 + ⋯ + 𝑎𝑚𝐹𝑚,
𝐶𝑖 = {𝐹𝑠𝑖11 , … , 𝐹𝑠𝑖𝑚𝑚 }, and suppose that any minimal partial

(𝑝 − 1)-covering is one of the 𝐶𝑖’s. Then, 𝑣𝑝 (𝑆(𝐹)) =
𝐿

𝑝−1

if ∑𝑐
𝑖=1

𝑎𝑠𝑖11 ⋯𝑎𝑠𝑖𝑚𝑚
𝑠𝑖1!⋯𝑠𝑖𝑚!

≢ 0 (mod 𝑝), and otherwise 𝑣𝑝 (𝑆(𝐹)) ≥
𝐿

𝑝−1
+ 1.

The condition ∑𝑐
𝑖=1

𝑎𝑠𝑖11 ⋯𝑎𝑠𝑖𝑚𝑚
𝑠𝑖1!⋯𝑠𝑖𝑚!

≢ 0 (mod 𝑝) is the gener-

alization of the number 𝑐 of minimal coverings being odd
in the case of 𝑝 = 2. The condition of the minimal par-
tial (𝑝−1)-coverings being one of the 𝐶𝑖’s implies that any
minimal partial (𝑝 − 1)-covering does not have a missing
variable. Similarly to the case where 𝑝 = 2, a sufficient
condition for not having minimal partial (𝑝−1)-coverings
withmissing variables is to require that for each of themin-
imal (𝑝−1)-coverings 𝐶𝑖, each monomial in 𝐶𝑖 has at least
two variables that are not present in the other monomials
of 𝐶𝑖. This simple condition provides families of polyno-
mials for which the “greater than or equal to” relation ob-
tained in the classical results on 𝑝-divisibility is replaced
by either equality or strict inequality.

Theorem 4, when applied to the number of solutions
of systems of polynomial equations, gives refinements to
the prime field case of many of the known results by giving
precise conditions for when the system is solvable or the
bound on the 𝑝-divisibility of the number of solutions 𝒩
is improved. Moreover, it can also give information on
the solvability or 𝑝-divisibility of 𝒩 for cases that are not
covered by previous theorems.

Example 12. Let 𝑝 ≠ 2 and consider the system

𝑋2
1𝑋4

2 + 𝑋6
3𝑋2

4 + 𝑋1 + 𝑋2 + 𝑋6 + 𝑋7 = 𝛼,
𝑋2
5𝑋2

6 + 𝑋6
7𝑋2

8 + 𝑋3 + 𝑋5 + 𝑋8 = 𝛽

over 𝔽∗𝑝. Note that the system has 8 variables and the sum
of the degree of the polynomials is 16; hence Ax–Katz’s
theorem does not give any information on solvability nor
𝑝-divisibility of 𝒩. For 𝑝 = 3, 5 and 𝑝 > 5 the sum of
the 𝑝-weight degree of the polynomials is 8, 10, and 16,
respectively; hence Moreno–Moreno’s theorem does not
give any information either.

To use the covering method, we first compute the poly-
nomial associated to this system:

𝑃 = 𝑌1 (𝑋2
1𝑋4

2 + 𝑋6
3𝑋2

4 + 𝑋1 + 𝑋2 + 𝑋6 + 𝑋7 − 𝛼)

+ 𝑌2 (𝑋2
5𝑋2

6 + 𝑋6
7𝑋2

8 + 𝑋3 + 𝑋5 + 𝑋8 − 𝛽) .
It is easy to see that the unique minimal (𝑝 − 1)-covering

for 𝑃 is

𝐶 = {(𝑌1𝑋2
1𝑋4

2 )
𝑝−1
2 , (𝑌1𝑋6

3𝑋2
4)

𝑝−1
2 ,

(𝑌2𝑋2
5𝑋2

6 )
𝑝−1
2 , (𝑌2𝑋6

7𝑋2
8 )

𝑝−1
2 } ,

there are nominimal partial (𝑝−1)-coverings withmissing

variables, and
𝑎𝑠11 ⋯𝑎𝑠44
𝑠1!⋯𝑠4!

≢ 0 (mod 𝑝). This implies that the

exact 𝑝-divisibility of𝒩 is 𝑣𝑝(𝒩) = 4 (𝑝−1
2
) /(𝑝−1)−2 = 0.

Therefore, 𝑝 ∤ 𝒩, 𝒩 ≠ 0, and the system is solvable for any
𝛼, 𝛽 ∈ 𝔽∗𝑝.

By imposing conditions on polynomials𝐺 so that 𝐹+𝐺
and 𝐹 have the same minimal (𝑝 − 1)-coverings, one can
extend known results on the 𝑝-divisibility of 𝑆(𝐹) to results
on 𝑆(𝐹 + 𝐺) for deformations of 𝐹.
Example 13. Let𝒩 be the number of solutions of the sys-
tem

𝑎𝑋𝑝−1
1 +⋯+ 𝑎𝑋𝑝−1

𝑝 + 𝐺 = 0,
𝑏1𝑋1 +⋯+ 𝑏𝑝𝑋𝑝 + 𝛼 = 0, (2)

where 𝑎, 𝑏𝑖 ∈ 𝔽𝑝∗, 𝛼 ∈ 𝔽𝑝, 𝐺 ∈ 𝔽𝑝[𝐗], and deg 𝐺 < 𝑝 − 1.
This system has 𝑝 variables, and sum of the degree and

of the 𝑝-weight degree of the polynomials is also 𝑝. Hence
Ax–Katz and Moreno–Moreno’s theorems do not give any
information on solvability or the 𝑝-divisibility of𝒩. There
are 𝑝 different minimal (𝑝 − 1)-coverings with form

{𝑌1𝑋𝑝−1
𝑖1 , … , 𝑌1𝑋𝑝−1

𝑖𝑝−1 , (𝑌2𝑋𝑖𝑝)
𝑝−1

}

and size 𝐿 = 2(𝑝 − 1). Since ∑𝑝
𝑖=1

𝑎𝑝−1𝑏𝑝−1𝑖
(𝑝−1)!

= 𝑝
(𝑝−1)!

, we

have 𝑣𝑝(𝒩) = −2+ 𝑣𝑝 (𝑆(𝑃)) > −2+ 2(𝑝−1)
𝑝−1

= 0. The result

does not give information about solvability but gives some
information about the 𝑝-divisibility of 𝒩.

Conclusions
The covering method is an elementary method to obtain
information about the 𝑝-divisibility of exponential sums.
It provides an intuitive approach to the computation of
exact 𝑝-divisibility that can be exploited in applications.
It also gives a simple way to construct families of systems
of polynomial equations that are solvable, determine 𝑝-
divisibility of the number of solutions of systems for cases
where previous results do not give information, and can
be applied to answer questions in coding theory and cryp-
tography.
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Higgs Bundles—
Recent Applications

Laura P. Schaposnik
Introduction
This note is dedicated to introducing Higgs bundles and
theHitchin fibration, with a view towards their appearance
within different branches of mathematics and physics, fo-
cusing in particular on the role played by the integrable
system structure carried by their moduli spaces. On a com-
pact Riemann surface Σ of genus 𝑔 ≥ 2, Higgs bundles are
pairs (𝐸, Φ) where

• 𝐸 is a holomorphic vector bundle on Σ, and
• the Higgs field Φ ∶ 𝐸 → 𝐸 ⊗ 𝐾 is a holomorphic

map for 𝐾 ≔ 𝑇∗Σ.
Since their origin in the late 1980s in work of Hitchin

and Simpson, Higgs bundles manifest as fundamental ob-
jects that are ubiquitous in contemporary mathematics
and closely related to theoretical physics. For 𝐺ℂ a com-
plex semisimple Lie group, the Dolbeault moduli space of
𝐺ℂ-Higgs bundles ℳ𝐺ℂ has a hyperkähler structure, and
via different complex structures it can be seen as different
moduli spaces:
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• Via the nonabelian Hodge correspondence de-
veloped by Corlette, Donaldson, Simpson, and
Hitchin and in the spirit of Uhlenbeck–Yau’s work
for compact groups, the moduli space is analyti-
cally isomorphic as a real manifold to the de Rahm
moduli spaceℳ𝑑𝑅 of flat connections on a smooth
complex bundle.

• Via the Riemann–Hilbert correspondence there is
a complex analytic isomorphism between the de
Rham space and the Betti moduli space ℳ𝐵 of sur-
face group representations 𝜋1(Σ) → 𝐺ℂ.

Some prominent examples where these moduli spaces ap-
pear in mathematics and physics are:

• Through the Hitchin fibration, ℳ𝐺ℂ gives exam-
ples of hyperkähler manifolds that are integrable
systems, leading to remarkable applications in
physics, which we shall discuss later on.

• Building on the work of Hausel and Thaddeus re-
lating Higgs bundles to Langlands duality, Donagi
and Pantev presented ℳ𝐺ℂ as a fundamental ex-
ample of mirror symmetry.

• Within the work of Kapustin and Witten, Higgs
bundles were used to obtain a physical derivation
of the geometric Langlands correspondence through
mirror symmetry. Soon after, Ngô found Higgs
bundles to be key ingredients when proving the
fundamental lemma of the Langlands program,
which led him to the Fields Medal a decade ago.

Higgs bundles and the corresponding Hitchin inte-
grable systems have been an increasingly vibrant area, and
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thus there are several expository articles, some of which we
shall refer to: from the Notices article “What is... a Higgs
bundle?” [3], to several graduate notes on Higgs bundles
(e.g., the author’s recent [18]), to more advanced reviews
such as Ngô’s 2010 ICM Proceedings article [4]. Hoping
to avoid repeating material nicely covered in other reviews
whilst still attempting to inspire the reader to learn more
about the subject, we shall take this opportunity to focus
on some of the recent work done by leading young mem-
bers of the community.1

Higgs Bundles
Higgs bundles arise as solutions to self-dual Yang–Mills
equations, a nonabelian generalization of Maxwell’s equa-
tions that recurs through much of modern physics. Solu-
tions to Yang–Mills self-duality equations in Euclidean 4D
space are called instantons, and when these equations are
reduced to Euclidean 3D space by imposing translational
invariance in one dimension, one obtains monopoles as
solutions. Higgs bundles were introduced by Hitchin in
[10] as solutions of the so-called Hitchin equations, the 2-
dimensional reduction of the Yang–Mills self-duality equa-
tions given by

𝐹𝐴 + [Φ,Φ∗] = 0, 𝜕𝐴Φ = 0, (1)

where 𝐹𝐴 is the curvature of a unitary connection ∇𝐴 =
𝜕𝐴 + 𝜕𝐴 associated to a Dolbeault operator 𝜕𝐴 on a holo-
morphic principal 𝐺ℂ bundle 𝑃. The equations give a flat
connection

∇𝐴 + Φ + Φ∗ (2)

and express the harmonicity condition for a metric in the
resulting flat bundle. Concretely, principal 𝐺ℂ-Higgs bun-
dles are pairs (𝑃, Φ) where

• 𝑃 is a principal 𝐺ℂ-bundle, and
• Φ is a holomorphic section of ad(𝑃) ⊗ 𝐾.

We shall refer to classical Higgs bundles as those described
in the introduction and consider𝐺ℂ-Higgs bundles in their
vector bundle representation: seen as classical Higgs bun-
dles satisfying some extra conditions reflecting the nature
of 𝐺ℂ, dictated by the need for the (projectively) flat con-
nection to have holonomy in 𝐺ℂ. For instance, when
𝐺ℂ = SL(𝑛, ℂ), a 𝐺ℂ-Higgs bundle (𝐸, Φ) is composed of
a holomorphic rank 𝑛 vector bundle 𝐸 with trivial deter-
minant Λ𝑛𝐸 ≅ 𝒪 and a Higgs field satisfying Tr(Φ) = 0,
for which we shall write Φ ∈ 𝐻0(Σ, End0(𝐸) ⊗ 𝐾).

Example 1. Choosing a square root of 𝐾, consider the
vector bundle 𝐸 = 𝐾1/2 ⊕ 𝐾−1/2. Then, a family of

1As in other similar reviews, the number of references is limited to twenty, and
thus we shall refer the reader mostly to survey articles where precise references
can be found.

SL(2, ℂ)-Higgs bundles (𝐸, Φ𝑎) parametrized by quadratic
differentials 𝑎 ∈ 𝐻0(Σ, 𝐾2) is given by

(𝐸 = 𝐾1/2 ⊕𝐾−1/2, Φ𝑎 = ( 0 𝑎
1 0 )) . (3)

One may also consider 𝐺-Higgs bundles for 𝐺 a real
form of 𝐺ℂ, which in turn correspond to the Betti moduli
space of representations 𝜋1(Σ) → 𝐺. For example, SL(2, ℝ)-
Higgs bundles are pairs (𝐸 = 𝐿⊕𝐿∗, Φ) for 𝐿 a line bundle
and Φ off diagonal, a family of which is described in Ex-
ample 1.

In order to define a Hausdorff moduli space of Higgs
bundles, one needs to incorporate the notion of stability.
For this, recall that holomorphic vector bundles 𝐸 on Σ
are topologically classified by their rank 𝑟𝑘(𝐸) and their
degree deg(𝐸), through which one may define their slope
as 𝜇(𝐸) ≔ deg(𝐸)/𝑟𝑘(𝐸). Then, a vector bundle 𝐸 is stable
(or semistable) if for any proper subbundle 𝐹 ⊂ 𝐸 one has
that 𝜇(𝐹) < 𝜇(𝐸) (or 𝜇(𝐹) ≤ 𝜇(𝐸)). It is polystable if it is a
direct sum of stable bundles whose slope is 𝜇(𝐸).

One can generalize the stability condition to Higgs bun-
dles (𝐸, Φ) by considering Φ-invariant subbundles 𝐹 of 𝐸,
vector subbundles 𝐹 ⊂ 𝐸 for which Φ(𝐹) ⊂ 𝐹⊗𝐾. A Higgs
bundle (𝐸, Φ) is said to be stable (semistable) if for each
proper Φ-invariant 𝐹 ⊂ 𝐸 one has 𝜇(𝐹) < 𝜇(𝐸) (equiv. ≤).
Then, by imposing stability conditions, one can construct
the moduli space ℳ𝐺ℂ of stable 𝐺ℂ-Higgs bundles up to
holomorphic automorphisms of the pairs (also denoted
ℳ𝐷𝑜𝑙). Going back to Hitchin’s equations, one of the
most important characterizations of stable Higgs bundles
is given in the work of Hitchin and Simpson and which
carries through to more general settings: If a Higgs bun-
dle (𝐸, Φ) is stable and deg 𝐸 = 0, then there is a unique
unitary connection ∇𝐴 on 𝐸, compatible with the holo-
morphic structure, satisfying (1).

Finally, Hitchin showed that the underlying smooth
manifold of solutions to (1) is a hyperkähler manifold,
with a natural symplectic form 𝜔 defined on the infinitesi-
mal deformations ( ̇𝐴, Φ̇) of a Higgs bundle (𝐸, Φ) by

𝜔(( ̇𝐴1, Φ̇1), ( ̇𝐴2, Φ̇2)) = ∫
Σ
tr( ̇𝐴1Φ̇2 − ̇𝐴2Φ̇1), (4)

where ̇𝐴 ∈ Ω0,1(End0𝐸) and Φ̇ ∈ Ω1,0(End0𝐸). Moreover,
he presented a natural way of studying the moduli spaces
ℳ𝐺ℂ of 𝐺ℂ-Higgs bundles through what is now called the
Hitchin fibration, which we shall consider next.

Integrable Systems
Given a homogeneous basis {𝑝1, … , 𝑝𝑘} for the ring of in-
variant polynomials on the Lie algebra 𝔤ℂ of𝐺ℂ, we denote
by 𝑑𝑖 the degree of 𝑝𝑖. The Hitchin fibration, introduced in
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[11], is then given by

ℎ ∶ ℳ𝐺ℂ ⟶ 𝒜𝐺ℂ ≔
𝑘

⨁
𝑖=1

𝐻0(Σ, 𝐾𝑑𝑖 ),

(𝐸, Φ) ↦ (𝑝1(Φ), … , 𝑝𝑘(Φ)).
The map ℎ is referred to as the Hitchin map: it is a proper
map for any choice of basis and makes the moduli space
into an integrable system whose base and fibres have di-
mension dim(ℳ𝐺ℂ)/2. In what follows we shall restrict
our attention to GL(𝑛, ℂ)-Higgs bundles, which are those
Higgs bundles introduced in the first paragraph of these
notes and whose Hitchin fibration in low dimension is de-
picted in Figure 1.

Figure 1. An example of a Hitchin fibration.

The generic or regular fibre of the Hitchin fibration—
appearing in violet in Figure 1—is an abelian variety,
leading to what is referred to as the abelianization of the
moduli space of Higgs bundles and which can be seen ge-
ometrically by considering eigenvalues and eigenspaces of
the Higgs field. Indeed, a Higgs bundle (𝐸, Φ) defines a
ramified cover 𝜋 ∶ 𝑆 → Σ of the Riemann surface given
by its eigenvalues and obtained through its characteristic
equation,

𝑆 = {det(Φ − 𝜂) = 0} ⊂ Tot𝐾, (5)

for 𝜂 the tautological section of 𝜋∗𝐾. This cover allows one
to construct the spectral data associated to generic (𝐸, Φ)
given by:

• the spectral curve 𝑆 from (5), generically smooth,
defining a generic point in the Hitchin base, since
the coefficients of {det(Φ − 𝜂) = 0} give a basis of
invariant polynomials, and

• a line bundle on 𝑆, defining a point in the Hitchin
fibre and obtained as the eigenspace of Φ.

For classical Higgs bundles, the smooth fibres are Jacobian
varieties Jac(𝑆), and one recovers (𝐸, Φ) up to isomorphism
from the data (𝑆, 𝐿 ∈ Jac(𝑆)) by taking the direct images
𝐸 = 𝜋∗𝐿 and Φ = 𝜋∗𝜂.

When considering 𝐺ℂ-Higgs bundles, one has to re-
quire appropriate conditions on the spectral curve and

the line bundle reflecting the nature of 𝐺ℂ. This ap-
proach originates in the work of Hitchin and of Beauville,
Narasimhan, and Ramanan (see [18] for references), and
we shall describe here an example to illustrate the setting.
For SL(𝑛, ℂ)-Higgs bundles, the linear term in (5) vanishes
since Tr(Φ) = 0, and the generic fibres are isomorphic to
Prym varieties Prym(𝑆, Σ) since Λ𝑛𝐸 ≅ 𝒪.

Example 2. For rank two Higgs bundles, we return to Ex-
ample 1 in which the Hitchin fibration is over 𝐻0(Σ, 𝐾2)
and the Hitchin map is ℎ ∶ (𝐸, Φ) ↦ −det(Φ). The family
(𝐸, Φ𝑎) gives a section of the Hitchin fibration: a smooth
map from the Hitchin base to the fibres, known as the
Hitchin section. Moreover, this comprises a whole compo-
nent of the moduli space of real SL(2, ℝ)-Higgs bundles in-
sideℳ𝐺ℂ , whichHitchin identifiedwith Teichmüller space
and which is now referred to as a Hitchin component or Te-
ichmüller component. Recall that the Teichmüller space𝒯(𝑆)
of the underlying surface 𝑆 of Σ is the space of marked con-
formal classes of Riemannian metrics on 𝑆.

In the early 1990s Hitchin showed that for any split
group 𝐺, e.g., for the split form SL(𝑛, ℝ) of SL(𝑛, ℂ), the
above components are homeomorphic to a vector space
of dimension dim(𝐺)(2𝑔 − 2) and conjectured that they
should parametrize geometric structures. These spaces pre-
sented the first family of higher Teichmüller spaceswithin the
Betti moduli space of reductive surface group representa-
tionsℳ𝐵(𝐺), which leads us to applications of Higgs bun-
dles within higher Teichmüller theory for real forms 𝐺 of 𝐺ℂ.

Higher Teichmüller Theory
The moduli spaces of 𝐺-Higgs bundles have several con-
nected components. For a split real form 𝐺 of 𝐺ℂ, the
Hitchin component of 𝐺-Higgs bundles, or equivalently
of surface group representations, can be defined as the
connected component of the Betti moduli space ℳ𝐵(𝐺)
containing Fuchsian representations in 𝐺, which are rep-
resentations obtained by composing a discrete and faith-
ful representation 𝜌 ∶ 𝜋1(Σ) → SL(2, ℝ) (classically called
Fuchsian) with the unique (up to conjugation) irreducible
representation SL(2, ℝ) → 𝐺. Moreover, as mentioned be-
fore, these representations, called Hitchin representations,
are considered the first example of higher Teichmüller
space for surfaces: a component of the set of representa-
tions of discrete groups into Lie groups of higher ranks
consisting entirely of discrete and faithful elements. In
order to give a geometric description of Hitchin represen-
tations and motivated by dynamical properties, Labourie
introduced the notion of Anosov representations, which can
be thought of as a generalization of convex-cocompact rep-
resentations to Lie groups 𝐺 of higher real rank.2

2For example, for representations in SL(2, ℂ), these are quasi-Fuchsian
representations.
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As beautifully described in Wienhard’s ICM Proceed-
ings article [20], building on Labourie’s work, higher
Teichmüller theory recently emerged as a new field in
mathematics, closely related to Higgs bundles (see also
[5, 13]). There are two known families of higher Teich-
müller spaces, giving the only known examples of compo-
nents that consist entirely of Anosov representations for
surfaces:

(I) the space of Hitchin representations into a real
split simple Lie group 𝐺 and

(II) the space of maximal representations into a Her-
mitian Lie group 𝐺.

A representation 𝜌 ∶ 𝜋1(Σ) → 𝐺 is maximal if it maximizes
the Toledo invariant 𝑇(𝜌), a topological invariant defined
for any simple Lie group 𝐺 of Hermitian type as

1
2𝜋 ∫

Σ
𝑓∗𝜔 (6)

for 𝜔 the invariant Kähler form on the Riemannian sym-
metric space, and 𝑓 ∶ Σ̃ → 𝑋 any 𝜌-equivariant smooth
map.

Example 3. The Toledo invariant can be expressed in
terms of Higgs bundles. For example, for SL(2, ℝ)-Higgs
bundles (𝐿 ⊕ 𝐿∗, Φ), the Toledo invariant is 2 deg(𝐿) and
satisfies 0 ≤ |2 deg(𝐿)| ≤ 2𝑔 − 2. Hence, the family (𝐸, Φ𝑎)
from Example 1 is maximal.

The existence of spaces other than those in (I) and (II)
with similar properties to Teichmüller space is a topic of
significant investigation. Expected candidates are spaces
of 𝜃-positive representations conjectured by Guichard–
Wienhard, some of which were shown to exist via Higgs
bundles [1].

Whilst Anosov representations give a clear link be-
tween discrete and faithful representations and geometric
structures, there is no known Higgs bundle characteriza-
tion of Anosov representations, and very little is known
about which explicit geometric structures correspond to
these spaces. For instance, work of Choi and Goldman
shows that the holonomy representations of convex pro-
jective structures are theHitchin representations when𝐺 =
PSL(3, ℝ).

Whilst there is no Higgs bundle characterization of
Anosov representations,3 Higgs bundles have been an ef-
fective tool for describing these structures. This brings
us to one of the fundamental problems in modern ge-
ometry: the classification of geometric structures admit-
ted by a manifold 𝑀. Recall that a model geometry is a
pair (𝐺, 𝑋) where 𝑋 is a manifold (model space) and 𝐺 is
a Lie group acting transitively on 𝑋 (group of symmetries).
A (𝐺, 𝑋)-structure on a manifold 𝑀 is a maximal atlas of

3Anosov representations are holonomy representations of geometric structures
on certain closed manifolds.

coordinate charts on𝑀 with values in 𝑋 such that the tran-
sition maps are given by elements of 𝐺. Higgs bundles
have played a key role in describing the closed manifold
on which (𝐺, 𝑋)-structures live. For example, Higgs bun-
dles were used to show that maximal representations to
𝑃𝑂(2, 3) give rise to (𝐺, 𝑋)-manifolds when 𝑋 is the space
of null geodesics (photons) in particular Einstein mani-
folds and when 𝑋 = ℙ(ℝ5) (e.g., see [5]). For an excellent
review of geometric structures, see Kassel’s ICM Proceed-
ings [13].

Harmonic Metrics
Equivariant harmonic maps play an important role in
the nonabelian Hodge correspondence mentioned before
(and beautifully reviewed in [3]), and thus we shall devote
this section to some of the advances made in this direc-
tion. In our setting, from the work of Corlette and Don-
aldson, any reductive representation 𝜌 ∶ 𝜋1(Σ) → 𝐺ℂ has
associated a 𝜌-equivariant harmonic map 𝑓 from the uni-
versal cover Σ̃ of Σ to the corresponding symmetric space
of 𝐺ℂ, which in turn defines a Higgs bundle (𝐸, Φ). Re-
call that a map 𝑓 ∶ Σ̃ → 𝑀 is called 𝜌-equivariant if
𝑓(𝛾 ⋅ 𝑥) = 𝜌(𝛾) ⋅ 𝑓(𝑥) for all 𝑥 ∈ Σ̃ and 𝛾 ∈ 𝜋1(Σ). Moreover,
through a choice of metric on Σ, one may define the energy
density

𝑒(𝑓) = 1
2⟨𝑑𝑓, 𝑑𝑓⟩ ∶ Σ̃ → ℝ, (7)

which is 𝜌-invariant and descends to Σ. Then, the energy of
𝑓 is defined as

𝐸(𝑓) = ∫
Σ
𝑒(𝑓)𝑑Vol. (8)

It depends only on the conformal class and is finite since
Σ is compact. The map 𝑓 is harmonic if it is a critical point
of the energy functional 𝐸(𝑓) in (8).

Conversely, through the work of Hitchin and Simpson,
a polystable Higgs bundle admits a Hermitian metric ℎ
on the bundle such that the associated Chern connection
𝐴 solves the Hitchin equations (1), and such a metric is
called harmonic. Moreover, the harmonic metric induces
a completely reducible representation 𝜌 ∶ 𝜋1(Σ) → 𝐺ℂ
and a 𝜌-equivariant harmonic map into the correspond-
ing symmetric space. These two directions together give
the celebrated nonabelian Hodge correspondence.

Understanding the geometric and analytic properties of
the harmonic maps arising from Hitchin’s equations (1)
is of significant importance. For instance, one may ask
how these metrics behave at the boundaries of the mod-
uli space or how the energy densities of the corresponding
harmonic maps at different points of the Hitchin fibration
relate to each other (the reader may be interested in the
reviews [15] and [7] and references therein).
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From Hitchin’s work, the moduli space of Higgs bun-
dles has a natural ℂ∗-action 𝜆 ⋅ (𝐸, Φ) = (𝐸, 𝜆Φ), whose
fixed point sets allow one to study different aspects of the
topology and the geometry of the space, as done in [11]
(see also [5, 16]). Moreover, as shown by Simpson, the
fixed points of this action are complex variations of Hodge
structure (VHS). Recall that a VHS is a ℂ∞ vector bundle
𝑉 with a Hodge decomposition 𝑉 = ⨁𝑝+𝑞 𝑉𝑝,𝑞, a ratio-
nal structure, and a flat connection satisfying the axioms
of Griffiths transversality and existence of a polarization.

From the above, one may ask how the energy density of
harmonic maps changes along the ℂ∗-flow on the moduli
space of Higgs bundles. Whilst this remains a challenging
open question in the area, a better understanding might
come from the following conjectural picture of Dai–Li de-
scribed in Figure 2 and through which the harmonic map
of a fixed point set of the ℂ∗ action on ℳ𝐺ℂ gives rise to
two other related harmonic maps.

Figure 2. The nilpotent cone in red over the 0 and the points
𝐴, 𝐵, and 𝐶 lying over the ℂ∗-flow and over the Hitchin section,
respectively.

A point 𝐴 within the Hitchin fibration naturally deter-
mines two other points: the point 𝐵, which is the limit of
the ℂ∗-flow 𝜆 ⋅ 𝐴 as 𝜆 → 0 in the nilpotent cone, and the
point 𝐶, which is the intersection point of the Hitchin fi-
bre containing 𝐴 and the Hitchin section. Then Dai–Li’s
conjecture states that the energy densities defined as in (7)
of the corresponding harmonic maps 𝑓𝐴, 𝑓𝐵, 𝑓𝐶 satisfy

𝑒(𝑓𝐵) < 𝑒(𝑓𝐴) < 𝑒(𝑓𝐶). (9)

As evidence for the above conjecture, one can consider the
integral version (through (8)) for which Hitchin showed
that 𝐸(𝑓𝐵) < 𝐸(𝑓𝐴), but where the other corresponding
inequality in (9) remains open.

Limiting Structures
The study of 𝜌-equivariant harmonic metrics and higher
Teichmüller theory through Higgs bundles has received
much attention in recent years and brings us to one of
the most important conjectures in the area. This conjec-
ture, due to Labourie, states that for each Hitchin repre-
sentation 𝜌 there is a unique conformal structure 𝑋𝜌 on the

underlying surface 𝑆 in which the 𝜌-equivariant harmonic
metric is a minimal immersion. In particular, Labourie
showed that for all Anosov representations such a con-
formal structure exists, but the difficulty lies in proving
uniqueness; the conjecture has been established only for
Lie groups of rank two ([5,14]). To understand this prob-
lem, one may consider the study of deformations of con-
formal structures on surfaces and the corresponding har-
monic metric.

Some of these deformations can be seen through the hy-
perkähler structure of the moduli space, by virtue of which
it has a ℂℙ1-worth of complex structures labelled by a pa-
rameter 𝜉. Indeed, we can think of a hyperkähler mani-
fold as a manifold whose tangent space admits an action
of three complex structures 𝐼, 𝐽, and𝐾 satisfying the quater-
nionic equations and compatible with a single metric. In
our case, 𝐼 arises from the complex structure on the Rie-
mann surface Σ, while 𝐽 is from the complex structure on
the group𝐺ℂ. In this setting, one has the followingmoduli
spaces:

• for 𝜉 = 0 the space of Higgs bundles,
• for 𝜉 ∈ ℂ× the space of flat connections4

∇𝜉 = 𝜉−1Φ + ̄𝜕𝐴 + 𝜕𝐴 + 𝜉Φ∗ , (10)

• for 𝜉 = ∞ the space of “anti-Higgs bundles.”

The hyperkähler metric on Hitchin moduli space is ex-
pected to be of type “quasi-ALG,” which is some expected
generalization of ALG. A far-reaching open question is the
understanding of the behavior of the metrics at the bound-
aries of the space, for instance along a path in the Hitchin
base via the limit

lim
𝑡→∞

( ̄𝜕𝐴, 𝑡Φ).
Almost a decade ago Gaiotto–Moore–Neitzke gave a

conjectural description of the hyperkähler metric on ℳ𝐺ℂ
near infinity, which surprisingly suggests that much of the
asymptotic geometry of the moduli space can be derived
from the abelian spectral data. Recent progress has been
made by Mazzeo–Swoboda–Weiss–Witt, Dumas–Neitzke,
and Fredrickson, but the global picture remains open (see
[7]).

Finally, one further type of limiting structure we would
like to mention is that of opers, appearing as certain limits
of Higgs bundles in the Hitchin components. To see this,
note that for a solution of (1) in the SL(𝑛, ℂ)-Hitchin sec-
tion, one can add a real parameter 𝑅 > 0 to (10) to obtain
a natural family of connections5

∇(𝜉, 𝑅) ≔ 𝜉−1𝑅Φ + ̄𝜕𝐴 + 𝜕𝐴 + 𝜉𝑅Φ∗ . (11)

Gaiotto conjectured that the space of opers (a gener-
alization of projective structures that, like the Hitchin

4In particular, for 𝜉 = 1 we recover (2).
5Note that 𝜕𝐴 and Φ∗ depend on the scaling parameter 𝑅. Indeed, one needs to
use the metric solving the Hitchin equation for 𝑅Φ to get a flat connection.
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section, is parametrized by the Hitchin base) should
be obtained as the ℏ-conformal limit of the Hitchin
section: taking 𝑅 → 0 and 𝜉 → 0 simultaneously
while holding the ratio ℏ = 𝜉/𝑅 fixed. The con-
jecture was recently established for general simple Lie
groups by Dumistrescu–Fredrickson–Kydonakis–Mazzeo–
Mulase–Neitzke, who also conjectured that this oper is
the quantum curve in the sense of Dumitrescu–Mulase, a
quantization of the spectral curve 𝑆 of the corresponding
Higgs bundle by topological recursion (see [6]). More re-
cently, Collier–Wentworth showed that the above confor-
mal limit exists in much more generality and gives a cor-
respondence between (Lagrangian) strata for every stable
VHS—and not only the Hitchin components. Specifically,
they constructed a generalization of the Hitchin section
by considering stable manifolds 𝒲0(𝐸0, Φ0) arising from
each VHS (𝐸0, Φ0) given by

{(𝐸, 𝜙) ∈ ℳ𝐺ℂ | lim𝑡→0
𝑡 ⋅ (𝐸, Φ) = (𝐸0, Φ0)}. (12)

The analog of the Hitchin section is then obtained by pa-
rameterizing 𝒲0(𝐸0, Φ0) with a slice in the space of Higgs
bundles through a global slice theorem, analogous to the
definition of the Hitchin section.

Correspondences
The appearance of Higgs bundles as parameter spaces for
geometric structures is an example of the study of corre-
spondences between solutions to Hitchin’s equations (1)
and different mathematical objects. In what follows we
shall restrict our attention to a few correspondences be-
tween Higgs bundles and two classes of mathematical ob-
jects: quiver varieties and hyperpolygons (e.g., see refer-
ences in [12,16]).

Recall that a quiver 𝑄 = (𝑉, 𝐴, ℎ, 𝑡) is an oriented graph
consisting of a finite vertex set 𝑉 , a finite arrow set 𝐴, and
head and tail maps ℎ, 𝑡 ∶ 𝐴 → 𝑉 . A Nakajima repre-
sentation of a quiver 𝑄 can be written as families 𝑊 ≔
((𝑊𝑣), 𝜙𝑎, 𝜓𝑎) for 𝑎 ∈ 𝐴 and 𝑣 ∈ 𝑉 , where 𝑊𝑣 is a finite-
dimensional vector space, the map 𝜙𝑎 ∶ 𝑊𝑡(𝑎) →𝑊ℎ(𝑎) is a
linear map for all 𝑎 ∈ 𝐴, and 𝜓𝑎 is in the cotangent space
to Hom(𝑊𝑡(𝑎),𝑊ℎ(𝑎)) at 𝜙𝑎. In particular, a hyperpolygon is
a representation of the star-shaped quiver, an example of
which appears in Figure 3.

For the star-shaped quiver in Figure 3, for which the di-
mensions of𝑊𝑣 are indicated in each vertex, the cotangent
space 𝑇∗Rep(𝑄) of representations of 𝑄 is

𝑇∗ (
𝑛

⨁
𝑖=1

Hom(ℂ,ℂ𝑟)) = 𝑇∗ (Hom(ℂ𝑛, ℂ𝑟)) .

Konno showed that hyperpolygon spaces are hyper-
kähler analogs of polygon spaces, which are representa-
tion spaces of the star-shaped quivers with simple arrows.
Moreover, through the work of Fisher–Rayan, the space of

Figure 3. A star-shaped quiver.

hyperpolygons as in Figure 3may be identifiedwith amod-
uli space of certain rank 𝑟 parabolic Higgs bundles on ℙ1.

In this setting, one has to puncture ℙ1 along a positive
divisor𝐷 and then regard theHiggs field as being valued in
𝒪(𝑞) = 𝐾⊗𝒪(𝐷), with poles along𝐷 and satisfying certain
conditions on its residues at the poles. This takes us to a
generalization of Higgs bundles on higher genus surfaces
obtained by allowing the Higgs field to have poles, leading
to the moduli spaces of tame or parabolic Higgs bundles
(for logarithmic singularities) initiated by Simpson [19] or
of wild Higgs bundles (for higher order poles) initiated by
Boalch and Biquard; see references in [2] to learn more
about these other settings. Understanding the more gen-
eral appearance of parabolic (and wild) Higgs bundles on
higher genus Riemann surfaces in terms of hyperpolygons
remains an open question.

In a different direction, given a fixed Riemann sur-
face Σ and a homomorphism between two Lie groups
Ψ ∶ 𝐺ℂ → 𝐺′

ℂ, there is a naturally induced map between
the Betti moduli spaces of representations

Ψ ∶ ℳ𝐵(𝐺ℂ) → ℳ𝐵(𝐺′
ℂ).

It follows that theremust be a corresponding inducedmap
between the Higgs bundle moduli spaces, but this does
not transfer readily to the induced map on the Hitchin fi-
brations, in particular since the image might be over the
singular locus of the base. When the maps arise through
isogenies, together with Bradlow and Branco, the author
obtained a description of themap for spectral data in terms
of fibre products of spectral curves [18], but of much in-
terest is the understanding of other maps arising in this
manner.

Figure 4. A degeneration of the Riemann surface.

Finally, when considering compactifications of the
moduli space, one may ask how the moduli spaces trans-
form when the base Riemann surface Σ changes (for in-
stance, when degenerating the surface Σ as in Figure 4), a
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question closely related to the relation between Higgs bun-
dles and singular geometry, which we shan’t touch upon
here; see [2] for a survey and open problems in this direc-
tion.

Mirror Symmetry and Branes
One of the most interesting correspondences of Hitchin
systems arises through mirror symmetry. For 𝐿𝐺ℂ the Lang-
lands dual group of 𝐺ℂ, there is an identification of the
Hitchin bases 𝒜𝐺ℂ ≃ 𝒜𝐿𝐺ℂ . The two moduli spaces ℳ𝐺ℂ
and ℳ𝐿𝐺ℂ are then torus fibrations over a common base,
and through the famous SYZ conjecture, mirror symmetry
should manifest as a duality between the spaces of Higgs
bundles for Langlands dual groups fibred over the same
base via the Hitchin fibration. As first observed by Hausel–
Thaddeus for SL(𝑛, ℂ) and PGL(𝑛, ℂ)-Higgs bundles and
shown by Donagi and Pantev for general pairs of Lang-
lands dual reductive groups, the nonsingular fibres are in-
deed dual abelian varieties. Kapustin and Witten gave a
physical interpretation of this in terms of S-duality, using it
as the basis for their approach to the geometric Langlands
program.

The appearance of Higgs bundles (and flat connections)
within string theory and the geometric Langlands program
has led researchers to study the derived category of coherent
sheaves (𝐵-model) and the Fukaya category (𝐴-model) of
these moduli spaces. It then becomes fundamental to un-
derstand Lagrangian submanifolds ofℳ𝐺ℂ (the support of
𝐴-branes), and their dual objects (the support of𝐵-branes).
By considering the support of branes, we shall refer to a
submanifold of a hyperkähler manifold as being of type 𝐴
or 𝐵 with respect to each of the complex structures (𝐼, 𝐽, 𝐾).
Hence one may study branes of the four possible types:
(𝐵, 𝐵, 𝐵), (𝐵, 𝐴, 𝐴), (𝐴, 𝐵, 𝐴), and (𝐴, 𝐴, 𝐵), whose dual part-
ner is predicted by Kontsevich’s homological mirror sym-
metry to be

(𝐵, 𝐴, 𝐴)⟷ (𝐵, 𝐵, 𝐵), (13)

(𝐴, 𝐴, 𝐵)⟷ (𝐴,𝐴, 𝐵), (14)

(𝐴, 𝐵, 𝐴)⟷ (𝐴, 𝐵, 𝐴). (15)

In view of the SYZ conjecture, it is crucial to obtain
the duality between branes within the Hitchin fibration.
In particular, understanding the correspondence between
branes contained completely within the irregular fibres has
remained a very fruitful direction of research for decades.
In 2006 Gukov, Kapustin, and Witten introduced the first
studies of branes of Higgs bundles in relation to the geo-
metric Langlands program and electromagnetic duality
where the (𝐵, 𝐴, 𝐴)-branes of real 𝐺-Higgs bundles were
considered. These branes, which correspond to surface
group representations into the real Lie group 𝐺, may in-
tersect the regular fibres of the Hitchin fibration in very
different ways (see [17,18] for references):

• Abelianization—zero-dimensional intersection.
When 𝐺 is a split real form, the author showed
that the (𝐵, 𝐴, 𝐴)-brane intersects theHitchin fibra-
tion in torsion two points.

• Abelianization—positive dimensional intersection.
Moreover, we can also show that for other real
groups such as SU(𝑛, 𝑛), the intersection has pos-
itive dimension but may still be described solely
in terms of abelian data.

• Cayley/Langlands type correspondences.
Surprisingly, many spaces of Higgs bundles cor-
responding to nonabelian real gauge theories
do admit abelian parametrizations via auxiliary
spectral curves, as shown with Baraglia through
Cayley/Langlands type correspondences for the
groups 𝐺 = SO(𝑝 + 𝑞, 𝑝) and 𝐺 = Sp(2𝑝 + 2𝑞, 2𝑝).

• Nonabelianization.
Together with Hitchin we initiated the study
of branes that don’t intersect the regular lo-
cus through the nonabelianization of Higgs bun-
dles, which characterized the branes for 𝐺 =
SL(𝑛, ℍ), SO(𝑛, ℍ), and Sp(𝑛, 𝑛) in terms of non-
abelian data given by spaces of rank two vector
bundles on the spectral curves.

Moreover, it has been conjectured (Baraglia–Schapos-
nik) that the Langlands dual in (13) to the above (𝐵, 𝐴, 𝐴)-
branes should correspond to the (𝐵, 𝐵, 𝐵)-branes of Higgs
bundles with structure group the Nadler group [17]. More
generally, branes of Higgs bundles have proven notori-
ously difficult to compute in practice, and very few broad
classes of examples are known; e.g., see [18] for a partial
list of examples. We shall next describe a family of branes
defined by the author and Baraglia, obtained by imposing
symmetries to the solutions of (1); see [17] and references
therein.

Higgs Bundles and 3-Manifolds
By considering actions on the Riemann surface Σ and on
the Lie group 𝐺ℂ, one can induce actions on the moduli
space of Higgs bundles and on the Hitchin fibration and
study their fixed point sets. Indeed, for 𝜌 the compact struc-
ture of 𝐺ℂ and 𝜎 a real form of 𝐺ℂ, together with Baraglia
we defined the following:

(i) Through the Cartan involution 𝜃 of a real form 𝐺
of 𝐺ℂ one obtains 𝑖1( ̄𝜕𝐴, Φ) = (𝜃( ̄𝜕𝐴), −𝜃(Φ)).

(ii) A real structure 𝑓 ∶ Σ → Σ on Σ induces
𝑖2( ̄𝜕𝐴, Φ) = (𝑓∗(𝜌( ̄𝜕𝐴)), −𝑓∗(𝜌(Φ))).

(iii) Lastly, by looking at 𝑖3 = 𝑖1 ∘ 𝑖2, one obtains
𝑖3( ̄𝜕𝐴, Φ) = (𝑓∗𝜎( ̄𝜕𝐴), 𝑓∗𝜎(Φ)).

The fixed point sets of 𝑖1, 𝑖2, 𝑖3 are branes of
type (𝐵, 𝐴, 𝐴), (𝐴, 𝐵, 𝐴), and (𝐴, 𝐴, 𝐵), respectively. The
topological invariants can be described using 𝐾𝑂, 𝐾𝑅, and
equivariant𝐾-theory [17]. In particular, the fixed points of
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𝑖1 give the (𝐵, 𝐴, 𝐴)-brane of 𝐺-Higgs bundles mentioned
in the previous section, an example of which appears in
Figure 5 and which one can study via the monodromy ac-
tion on the Hitchin fibration (e.g., see [18]).

Figure 5. A real slice fixed by 𝑖1 of the moduli space of
SL(2, ℂ)-Higgs bundles, from two different angles, obtained
through Hausel’s 3D prints of slices of ℳ𝐺ℂ .

The fixed points of 𝑖3 are pseudo-real Higgs bundles. To
describe the fixed points of the involution 𝑖2, note that a
real structure (or anticonformal map) on a compact con-
nected Riemann surface Σ is an antiholomorphic involu-
tion 𝑓 ∶ Σ → Σ. The classification of real structures on
compact Riemann surfaces is a classical result of Klein,
who showed that all such involutions on Σ may be char-
acterized by two integer invariants (𝑛, 𝑎): the number 𝑛 of
disjoint union of copies of the circle embedded in Σ fixed
by 𝑓 and 𝑎 ∈ ℤ2 determining whether the complement of
the fixed point set has one (𝑎 = 1) or two (𝑎 = 0) compo-
nents; e.g., see Figure 6.

Figure 6. A genus 2 Riemann surface and its fixed point sets
under an antiholomorphic involution with invariants
(𝑛, 𝑎) = (3, 0).

A real structure 𝑓 on the Riemann surface Σ induces in-
volutions on the moduli space of representations 𝜋1(Σ) →
𝐺ℂ of flat connections and of 𝐺ℂ-Higgs bundles on Σ, and
the fixed point sets define the (𝐴, 𝐵, 𝐴)-branes of Higgs
bundles in (ii). These branes can be shown to be real in-
tegrable systems, given by (possibly singular) Lagrangian
fibrations.

From a representation theoretic point of view, one may
ask which interesting representations these branes corre-
spond to, a question closely related to the understanding
of which representations of 𝜋1(Σ) extend to 𝜋1(𝑀) for 𝑀 a 3-
manifold whose boundary is Σ. Whilst this question in its
full generality remains an important open problem, we
can consider some particular cases in which the answer be-
comes clear from the perspective of Higgs bundles. For
this, as seen in [17] and references therein, we considered

the 3-manifolds

𝑀 = Σ × [−1, 1]
(𝑥, 𝑡) ↦ (𝑓(𝑥), −𝑡) , (16)

for which 𝜕𝑀 = Σ (e.g., a handle body). In this setting,
together with Baraglia, we were able to show that a connec-
tion solving the Hitchin equations (1) on Σ extends over
𝑀 given in (16) as a flat connection if and only if the Higgs
bundle (𝐸, Φ) is fixed by 𝑖2 and the class [𝐸] ∈ ̃𝐾0

ℤ2(Σ) in
reduced equivariant 𝐾-theory is trivial. That is, the Higgs
bundles that will extend are only those whose vector bun-
dle is preserved by the lift of the involution 𝑖2 and for
which the action of 𝑖2 over the fibres of 𝐸 is trivial when
restricted to each fixed circle.

Global Topology
The computation of topological invariants ofHiggs bundle
moduli spaces has received vast attention from researchers
who have tackled this problem with a diverse set of mathe-
matical tools (see references in [9,16]). One of the central
questions considered for Higgs bundles and their general-
izations is what the Poincaré polynomial of the space is. A
useful fact is that the total space of theHitchin fibration de-
formation retracts onto the nilpotent cone ℎ−1(0) via the
gradient flow of the moment map of the ℂ∗-action intro-
duced in the harmonic metrics section. The cohomology
ring localizes to the fixed-point locus inside ℎ−1(0): as first
seen by Morse-theoretic methods in the work of Hitchin,
the Poincaré series that generates the Betti numbers of the
rational cohomology𝐻•(ℳ𝐺ℂ , ℚ) is a weighted sum of the
Poincaré series of the connected components of the fixed-
point locus.

Example 4. As shown by Hitchin, for the family of
SL(2, ℂ)-Higgs bundles in Example 1, when the genus of
Σ is 𝑔 = 2, the Poincaré series is

1 + 𝑡2 + 4𝑡3 + 2𝑡4 + 34𝑡5 + 2𝑡6. (17)

Using Morse theory, it has been possible to compute
Poincaré polynomials only for low rank groups, and ex-
tending this to higher rank has been a challenging open
problem for some time. More recently, interesting alterna-
tive techniques have been used to access the higher-rank
Poincaré polynomials by Mozgovoy, Schiffmann, Mellit,
and others. One may further ask about the structure of
the ring 𝐻•(ℳ𝐺ℂ , ℚ) itself: for instance, Heinloth recently
proved that the intersection pairing in the middle dimen-
sion for the smooth moduli space vanishes in all dimen-
sions for 𝐺ℂ = PGL(𝑛, ℂ), and Cliff–Nevins–Shen proved
that the Kirwan map from the cohomology of the mod-
uli stack of 𝐺-bundles to the moduli stack of semistable
𝐺-Higgs bundles fails to be surjective.

One of the most important cohomological conjec-
tures in the area is de Cataldo–Hausel–Migliorini’s P=W
conjecture, which gives a correspondence between the
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weight filtration and the perverse filtration on the coho-
mology of ℳ𝐵 and ℳ𝐷𝑜𝑙, respectively, obtained via non-
abelian Hodge theory. Only certain special cases are
known, e.g., for rank two Higgs bundles, shown by de
Cataldo–Hausel–Migliorini (see [9]), and for certain mod-
uli spaces of wild Higgs bundles, proven recently by Shen–
Zhang and Szabo.

Inspired by the SYZ conjecture mentioned before,
Hausel–Thaddeus conjectured that mirror moduli spaces
of Higgs bundles present an agreement of appropriately
defined Hodge numbers:

ℎ𝑝,𝑞(ℳ𝐺ℂ) = ℎ𝑝,𝑞(ℳ𝐿𝐺ℂ). (18)

Very recently, the first proof of this conjecture was estab-
lished for the moduli spaces of SL(𝑛, ℂ) and PGL(𝑛, ℂ)-
Higgs bundles by Groechenig–Wyss–Ziegler in [8], where
they established the equality of stringy Hodge numbers us-
ing 𝑝-adic integration relative to the fibres of the Hitchin
fibration and interpreted canonical gerbes present on these
moduli spaces as characters on the Hitchin fibres.

Further combinatorial properties of ℳ𝐺ℂ can be
glimpsed through their twisted version, consisting of
Higgs bundles (𝐸, Φ) on Σ with Φ ∶ 𝐸 → 𝐸 ⊗ ℒ, where
Σ now has any genus, 𝐿 is a line bundle with deg(𝐿) >
deg(𝐾), but without any punctures or residues being fixed.
The correspondingmoduli spaces carry a naturalℂ∗-action
but are not hyperkähler, and there is no immediate rela-
tionship to a character variety. Hence, there is no obvi-
ous reason for the Betti numbers to be invariant with re-
gard to the choice of deg(𝐸), which in the classical setting
would follow from nonabelian Hodge theory. However,
the independence holds in direct calculations of the Betti
numbers in low rank and was recently shown for GL(𝑛, ℂ)
and SL(𝑛, ℂ)-Higgs bundles by Groechenig–Wyss–Ziegler
in [8]. This suggests that some topological properties of
Hitchin systems are independent of the hyperkähler geom-
etry (see references in [9,16] for more details).

Finally, it should be mentioned that an alternative de-
scription of the Hitchin fibration can be given through
cameral data, as introduced by Donagi and Gaitsgory, and
this perspective presents many advantages, in particular
when considering correspondences arising from mirror
symmetry and Langlands duality, as those mentioned in
previous sections studied by Donagi–Pantev.
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Can You Pave the Plane
with Identical Tiles?

Chuanming Zong
Everybody knows that identical regular triangles or squares
can tile the whole plane. Many people know that identi-
cal regular hexagons can tile the plane properly as well. In
fact, even the bees know and use this fact! Is there any
other convex domain that can tile the Euclidean plane? Of
course, there is a long list of them! To find the list and
to show the completeness of the list is a unique drama
in mathematics which has lasted for more than one cen-
tury, and the completeness of the list has been mistakenly
announced more than once! Up to now, the list consists
of triangles, quadrilaterals, fifteen types of pentagons, and
three types of hexagons. In 2017, Michaël Rao announced
a computer proof for the completeness of the list. Mean-
while, Qi Yang and Chuanming Zong made a series of un-
expected discoveries in multiple tilings in the Euclidean
plane. For example, besides parallelograms and centrally
symmetric hexagons, there is no other convex domain that
can form any two-, three-, or fourfold translative tiling
in the plane. However, there are two types of octagons
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and one type of decagon that can form nontrivial fivefold
translative tilings. In fact, parallelograms, centrally sym-
metric hexagons, and these three types of polygons are
the only convex polygons that can form fivefold transla-
tive tilings. This paper reviews the dramatic progress.

Introduction
Tiling the plane is an ancient subject in our civilization. It
has been considered in the arts by craftsmen since antiq-
uity. According to Gardner [4], the ancient Greeks knew
that, among the regular polygons, only the triangle, the
square, and the hexagon can tile the plane. Aristotle ap-
parently knew this fact, since he made a similar claim in
the space: Among the five Platonic solids, only the tetrahedron
and the cube can tile the space. Unfortunately, he was wrong:
Identical regular tetrahedra cannot tile the whole space!

The first recorded scientific investigation into tilings was
made by Kepler. Assume that 𝒯 is a tiling of the Euclidean
plane 𝔼2 by regular convex polygons. If the polygons are
identical (congruent), the answer was already known to
the ancient Greeks. When different polygons are allowed,
the situation becomes more complicated and more inter-
esting. In particular, an edge-to-edge tiling 𝒯 by regular
polygons is said to be of type (𝑛1, 𝑛2, … , 𝑛𝑟) if each ver-
tex 𝐯 of 𝒯 is surrounded by an 𝑛1-gon, an 𝑛2-gon, and
so on in a cyclic order, where edge-to-edge means that
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every pair of neighbors shares an entire common edge.
Usually, they are known as Archimedean tilings. In
1619, Kepler enumerated all such tilings as (3, 3, 3, 3, 3, 3),
(3, 3, 3, 3, 6), (3, 3, 3, 4, 4), (3, 3, 4, 3, 4), (3, 4, 6, 4), (3, 6, 3, 6),
(3, 12, 12), (4, 4, 4, 4), (4, 6, 12), (4, 8, 8), and (6, 6, 6). Beau-
tiful illustrations of the Archimedean tilings can be found
in many references.

If 𝐚1, 𝐚2, … , 𝐚𝑛 are 𝑛 linearly independent vectors in the
𝑛-dimensional Euclidean space 𝔼𝑛, then the set

Λ = {∑𝑧𝑖𝐚𝑖 ∶ 𝑧𝑖 ∈ ℤ}

is an 𝑛-dimensional lattice. Clearly, lattices are the most nat-
ural periodic discrete sets in the plane and space. There-
fore, many pioneering scientists like Kepler, Huygens,
Haüy, and Seeber took lattice packings and lattice tilings
as the scientific foundation for crystals. In 1885, the fa-
mous crystallographer Fedorov [3] discovered that A con-
vex domain can form a lattice tiling of 𝔼2 if and only if it is a
parallelogram or a centrally symmetric hexagon; a convex body
can form a lattice tiling in 𝔼3 if and only if it is a parallelotope,
a hexagonal prism, a rhombic dodecahedron, an elongated oc-
tahedron, or a truncated octahedron.

Usually, tilings allow very general settings without re-
striction on the shapes of the tiles and the number of the
different shapes. However, to avoid complexity and confu-
sion, in this paper we deal only with the tilings by identical
convex polygon tiles. In other words, all the tiles are con-
gruent to one convex polygon. In particular, we call it a
translative tiling if all the tiles are translates of one another
and call it a lattice tiling if it is a translative tiling and all
the translative vectors together form a lattice.

In 1900, Hilbert [8] proposed a list of mathematical
problems in his ICM lecture in Paris. As a generalized in-
verse of Fedorov’s discovery, he wrote in the second part
of his 18th problem that a fundamental region of each group
of motions, together with the congruent regions arising from the
group, evidently fills up space completely. The question arises:
whether polyhedra also exist which do not appear as fundamen-
tal regions of groups of motions, by means of which nevertheless
by a suitable juxtaposition of congruent copies a complete filling
up of all space is possible. Here Hilbert did not restrict to
convex ones.

Hilbert proposed his problem in the space; perhaps he
believed that there is no such domain in the plane. When
Reinhardt started his doctoral thesis at Frankfurt am Main
in the 1910s, Bieberbach (see [14]) suggested that he de-
termine all the convex domains which can tile the whole plane
and to verify in this way that Hilbert’s problem indeed has
a positive answer in the plane. This is the origin of the
following natural problem:

Bieberbach’s Problem. To determine all the two-dimen-
sional convex tiles.

In 1917 Reinhardt was an assistant of Hilbert’s at Göttin-
gen and likely discussed this problemwith him. It is worth
mentioning that in 1911, Bieberbach himself solved the
first part ofHilbert’s 18th problem: Is there in 𝑛-dimensional
Euclidean space also only a finite number of essentially different
kinds of groups of motions with a fundamental region?

Reinhardt’s List
In 1918, Reinhardt received his doctoral degree under the
supervision of Bieberbach at Frankfurt amMain with a the-
sis “On Partitioning the Plane into Polygons” (Über die
Zerlegung der Ebene in Polygone). This is the first ap-
proach to characterizing all the convex domains that can
tile the whole plane. First, he studied the tiling networks
(the vertices, edges, and faces of the tilings) and obtained
an expression for the mean of the number of vertices over
faces. As a corollary of the formula, he obtained the fol-
lowing result.

Theorem 1 (Reinhardt [14]). A convex 𝑚-gon can tile the
whole plane 𝔼2 by identical copies only if

𝑚 ≤ 6.

In fact, as Reinhardt and several other authors pointed
out (see [4,10,12,14]), this theorem can be easily deduced
by Euler’s formula

𝑣 − 𝑒 + 𝑓 = 1, (1)
where 𝑣, 𝑒, and 𝑓 stand for the numbers of vertices, edges,
and faces of a polygonal division of a finite polygon.

Let 𝒯 = {𝑇1, 𝑇2, 𝑇3, …} be a tiling of 𝔼2 such that all tiles
𝑇𝑖 are congruent to a convex 𝑚-gon 𝑃𝑚, and let 𝐻ℓ be a
regular hexagon of edge length ℓ centered at the origin of
𝔼2. Assume that 𝐻ℓ contains 𝑓(ℓ) tiles 𝑇1, 𝑇2, … , 𝑇𝑓(ℓ) of 𝒯
and the boundary of 𝐻ℓ intersects 𝑔(ℓ) tiles 𝑇 ′

1 , 𝑇 ′
2 , … , 𝑇 ′

𝑔(ℓ)
of 𝒯, and let 𝑢𝑖 denote the number of vertices of the tiling
network on the boundary of 𝑇𝑖. Clearly we have 𝑢𝑖 ≥ 𝑚
and

lim
ℓ→∞

𝑔(ℓ)
𝑓(ℓ) = 0. (2)

Applying Euler’s formula to 𝒯 ∩ 𝐻ℓ, when ℓ is sufficiently
large we get

𝑓 ≤ 𝑓(ℓ) + 𝑔(ℓ) ≲ 𝑓(ℓ), (3)

𝑒 ≥ 1
2
𝑓(ℓ)
∑
𝑖=1

𝑢𝑖 ≥
𝑚
2 ⋅ 𝑓(ℓ), (4)

𝑣 ≲ 1
3
𝑓(ℓ)
∑
𝑖=1

𝑢𝑖 ≲
𝑚
3 ⋅ 𝑓(ℓ), (5)

𝑣 − 𝑒 + 𝑓 ≲ (1 − 𝑚
6 ) 𝑓(ℓ), (6)

and therefore

𝑚 ≤ 6, (7)
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where 𝑔(ℓ) ≲ 𝑐𝑓(ℓ) means

lim
ℓ→∞

𝑔(ℓ)
𝑓(ℓ) ≤ 𝑐.

Figure 1. Two quadrilaterals make a centrally symmetric
hexagon.

Apparently, two identical triangles canmake a parallelo-
gram and two identical quadrilaterals can make a centrally
symmetric hexagon (see Figure 1). Thus, by Fedorov’s the-
orem, identical triangles or quadrilaterals can always tile
the plane nicely. However, it is easy to see that identical
regular pentagons or some particular hexagons cannot tile
the plane. Then, Bieberbach’s problem can be reformu-
lated as:

What kind of convex pentagons or hexagons can tile the
plane?

Let 𝑃𝑛 denote a convex 𝑛-gon with vertices 𝐯1, 𝐯2, … , 𝐯𝑛
in an anti-clock order, let𝐺𝑖 denote the edgewith ends 𝐯𝑖−1
and 𝐯𝑖, where 𝐯0 = 𝐯𝑛, let ℓ𝑖 denote the length of 𝐺𝑖, and
let 𝛼𝑖 denote the inner angle of 𝑃𝑛 at 𝐯𝑖.

Reinhardt’s thesis obtained the following solution to
the hexagon case of Bieberbach’s problem.

Theorem 2 (Reinhardt [14]). A convex hexagon 𝑃6 can tile
the whole plane 𝔼2 by identical copies if and only if it satisfies
one of the three groups of conditions:

(1) 𝛼1 + 𝛼2 + 𝛼3 = 2𝜋, and ℓ1 = ℓ4.
(2) 𝛼1 + 𝛼2 + 𝛼4 = 2𝜋, ℓ1 = ℓ4, and ℓ3 = ℓ5.
(3) 𝛼1 = 𝛼3 = 𝛼5 =

2
3
𝜋, ℓ1 = ℓ2, ℓ3 = ℓ4, and ℓ5 = ℓ6.

The “if” part of this theorem is relatively simple. It is
illustrated by Figure 2. However, the “only if” part is much
more complicated. Reinhardt deduced the only if part by
considering six cases with respect to howmany edges of the
considered hexagon are equal. His proof was very sketchy
and difficult to understand and check. It seems that he
considered only the edge-to-edge tilings.

Fortunately, this theorem has been verified by several
other authors. For example, without knowledge of Rein-
hardt’s thesis, in 1963 Bollobás made the following sur-
prising observation, which guarantees the sufficiency of
Reinhardt’s consideration.

Lemma 1 (Bollobás [2]). If 𝒯 is a tiling of the plane by iden-
tical convex hexagons and ℓ is any given positive number, there

v1

v2

v3v4

v5

v6

Type 1.

v1

v2

v3

v4

v5

v6

Type 2.

v1

v2

v3

v4

v5

v6

Type 3.

Figure 2. Reinhardt’s hexagonal tiles and their local tilings.

is a square of edge length ℓ in which the tiling is edge-to-edge
and every vertex is surrounded by three hexagons.

Let 𝑆 be a big square of edge length ℓ centered at the
origin of the plane and consider the network of 𝑁 = 𝒯 ∩
𝑆. Let 𝑛1 denote the number of vertices in 𝑁 that appear
also in the relative interior of some edges, let 𝑛2 denote
the number of vertices in 𝑁 at which three hexagons join
properly at their vertices, and let 𝑛3 denote the number of
all other vertices of𝑁. Lemma 1 can be proved by studying
the quotients

𝑛2
𝑛1 + 𝑛3

for 𝑆 and its subsquares for sufficiently large ℓ. It is in-
teresting to notice that there are hexagon tilings in which
𝑛3 ≠ 0.

For the pentagon tilings, by considering five cases with
respect to how many edges are equal, Reinhardt obtained
the following result.

Theorem 3 (Reinhardt [14]). A convex pentagon 𝑃5 can tile
the whole plane 𝔼2 by identical copies if it satisfies one of the
five groups of conditions:
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(1) 𝛼1 + 𝛼2 + 𝛼3 = 2𝜋.
(2) 𝛼1 + 𝛼2 + 𝛼4 = 2𝜋, and ℓ1 = ℓ4.
(3) 𝛼1 = 𝛼3 = 𝛼4 =

2
3
𝜋, ℓ1 = ℓ2, and ℓ4 = ℓ3 + ℓ5.

(4) 𝛼1 = 𝛼3 =
1
2
𝜋, ℓ1 = ℓ2, and ℓ3 = ℓ4.

(5) 𝛼1 =
1
3
𝜋, 𝛼3 =

2
3
𝜋, ℓ1 = ℓ2, and ℓ3 = ℓ4.

Figuring out the list is nontrivial. However, as shown
in Figure 3, it is easy to check that all the pentagons listed
in Theorem 3 indeed can tile the plane. Reinhardt him-
self did not claim the completeness of the pentagon tile
list. However, according to Gardner [4] it is quite clear that
Reinhardt and everyone else in the field thought that the Rein-
hardt pentagon list was probably complete.

As observed by Reinhardt [14], all triangles, quadrilat-
erals, the three types of hexagons listed in Theorem 2, and
the five classes of pentagons listed in Theorem 3 are indeed
fundamental domains of some groups ofmotions. Hilbert
and Bieberbach would have been happy to know this.

In 1928, Reinhardt discovered a (nonconvex) three-
dimensional polytope that can form a tiling in the space
but is not the fundamental domain of any group of mo-
tions! This is the first counterexample to the second part
of Hilbert’s 18th problem.

Inspired by Reinhardt’s discovery, in 1935 Heesch [7]
obtained a two-dimensional nonconvex counterexample
to Hilbert’s problem. In other words, there exists a non-
convex polygon that can tile the whole plane; however, it
is not the fundamental region of any group of motions.

Thirty years later, Heesch and Kienzle presented a
rather detailed treatment of plane tilings in a book enti-
tled Flächenschluß: System der Formen lückenlos aneinander-
schliessender Flachteile, including nonconvex tiles. No new
convex tile was discovered. It was claimed that their treat-
ment was complete.

An End, or a New Start
In 1968, fifty years after Reinhardt’s pioneering thesis, Ker-
shner surprisingly discovered three new classes of pen-
tagons that can pave the whole plane without gaps or over-
lapping.

Theorem 4 (Kershner [10]). A convex pentagon 𝑃5 can tile
the whole plane 𝔼2 by identical copies if it satisfies one of the
three groups of conditions:

(6) 𝛼1+𝛼2+𝛼4 = 2𝜋, 𝛼1 = 2𝛼3, ℓ1 = ℓ2 = ℓ5, and ℓ3 = ℓ4.
(7) 2𝛼2 + 𝛼3 = 2𝛼4 + 𝛼1 = 2𝜋, and ℓ1 = ℓ2 = ℓ3 = ℓ4.
(8) 2𝛼1 + 𝛼2 = 2𝛼4 + 𝛼3 = 2𝜋, and ℓ1 = ℓ2 = ℓ3 = ℓ4.

According to Kershner, having been intrigued by this prob-
lem for some 35 years, he finally discovered a method of classify-
ing the possibilities for pentagons in a more convenient way than
Reinhardt’s to yield an approach that was humanly possible to
carry to completion. Unfortunately, Kershner’s paper con-
tains no hint of his method. Of course, the three classes
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Figure 3. Reinhardt’s pentagonal tiles and their local tilings.

Figure 4. Heesch’s counterexample to Hilbert’s problem.

of new pentagon tiles were indeed surprising, though ver-
ifications are simple (see Figure 5).
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Figure 5. Kershner’s pentagonal tiles and their local tilings.

Remark 1. Kershner’s discovery was unexpected. Even
more surprising was that all the pentagons of Types 6–8
are counterexamples to the second part of Hilbert’s 18th
problem! In other words, they can tile the whole plane;
nevertheless they are not the fundamental regions of any
group ofmotions. Hilbert, Bieberbach, Reinhardt, Heesch,
and others would have been surprised by Kershner’s ele-
gant examples! Kershner himself did not mention this
fact in his papers. Perhaps he overlooked it. This fact
has been mentioned in many books and survey papers
(see [6]). Inductively, 𝑛-dimensional counterexamples to
Hilbert’s problem can be constructed as cylinders over
(𝑛 − 1)-dimensional ones. For example, if 𝐷 is a domain
of Type 6 and 𝐻 is the cylinder of height one over 𝐷, then
𝐻 is a counterexample to the second part of Hilbert’s 18th
problem in 𝔼3.

In 1975, Reinhardt and Kershner’s discoveries were in-
troduced and popularized by Martin Gardner, a famous
scientific writer, in the “Mathematical Games” column of
the Scientific American magazine. Since then, the tiling
problem has stimulated many amateurs who went on to
make significant contributions to this problem.

Soon after Gardner’s popular paper, based on the
known Archimedean tiling (4, 8, 8) by octagons and
squares together, as shown in Figure 6, a computer scien-
tist, Richard James III, discovered a class of new tiles.

Figure 6. The Archimedean tiling of (4, 8, 8) type.

Theorem 5 (James [9]). A convex pentagon 𝑃5 can tile the
whole plane 𝔼2 by identical copies if it satisfies the following
group of conditions:

(9) 𝛼5 =
𝜋
2
, 𝛼1 + 𝛼4 = 𝜋, 2𝛼2 − 𝛼4 = 2𝛼3 + 𝛼4 = 𝜋, and

ℓ1 = ℓ2 + ℓ4 = ℓ5.

This result can be easily verified by argument based on
Figure 7. In principle, Lemma 1 guarantees that every
hexagon tiling is edge-to-edge. However, James’s discovery
shows that this is no longer true in some pentagon tilings.
Theorem5 also served to point out that Kershner had taken
edge-to-edge as a hidden assumption in his consideration.

v1

v2

v3
v4

v5

Type 9.

Figure 7. James’s pentagonal tile and its local tiling.

Meanwhile, mathematical amateur Marjorie Rice made
some truly astonishing discoveries that made the news.
She was a true amateur. According to Schattschneider [15],
Rice had no mathematical training beyond “the bare min-
imum they required...in high school over 35 years ago.”
Even so she was able to consider the problem with a sys-
tematic method based on the possible local structures of
the pentagon tilings at a given vertex. By dealingwithmore
than sixty cases, she discovered four types of new pentagon
tiles!

Theorem 6 (Rice [15]). A convex pentagon 𝑃5 can tile the
whole plane 𝔼2 by identical copies if it satisfies one of the four
groups of conditions:

(10) 𝛼2 + 2𝛼5 = 2𝜋, 𝛼3 + 2𝛼4 = 2𝜋, and ℓ1 = ℓ2 = ℓ3 = ℓ4.
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(11) 𝛼1 =
𝜋
2
, 𝛼3 + 𝛼5 = 𝜋, 2𝛼2 + 𝛼3 = 2𝜋, and 2ℓ1 + ℓ3 =

ℓ4 = ℓ5.
(12) 𝛼1 =

𝜋
2
, 𝛼3+𝛼5 = 𝜋, 2𝛼2+𝛼3 = 2𝜋, and 2ℓ1 = ℓ3+ℓ5 =

ℓ4.
(13) 𝛼1 = 𝛼3 =

𝜋
2
, 2𝛼2 + 𝛼4 = 2𝛼5 + 𝛼4 = 2𝜋, ℓ3 = ℓ4, and

2ℓ3 = ℓ5.

It is routine to verify this theorem based on Figure 8.
Nevertheless, it is rather surprising to notice that the tilings
produced by the pentagons of Type 10 are edge-to-edge, a
fact that was missed by both Reinhardt and Kershner. It
is even more surprising that all the pentagons of Types 9–
13 are counterexamples to Hilbert’s problem as well (see
[6]). In other words, they can tile the whole plane; how-
ever, they are not the fundamental domains of any group
of motions.

Marjorie Rice died on July 2, 2017, at the age of 94. A
lobby floor of the Mathematical Association of America in
Washington is paved with one of Rice’s pentagon tiles in
her honor. On July 11, 2017, Quanta Magazine published
an article in her memory.

Rice’s method was systematic, in the sense that it was
based on a geometric principle. In any case, the method
was not strong enough to guarantee the completeness of
the list. In 1985, Rolf Stein reported another one.

Theorem 7 (Stein [16]). A convex pentagon 𝑃5 can tile the
whole plane 𝔼2 by identical copies if it satisfies the following
conditions:

(14) 𝛼1 =
𝜋
2
, 2𝛼2 + 𝛼3 = 2𝜋, 𝛼3 + 𝛼5 = 𝜋, and 2ℓ1 = 2ℓ3 =

ℓ4 = ℓ5.

Fifteen, and Only Fifteen
Let𝒯 denote a tiling of 𝔼2 with congruent tiles. A symmetry
of𝒯 is an isometry of 𝔼2 that maps the tiles of𝒯 onto tiles
of 𝒯, and the symmetry group 𝒢 of 𝒯 is the collection of all
such symmetries associated with isometry multiplications.
Two tiles, 𝑇1 and 𝑇2 of 𝒯, are said to be equivalent if there
is a symmetry 𝜎 ∈ 𝒢 such that 𝜎(𝑇1) = 𝑇2. If all the tiles
of 𝒯 are equivalent to one tile 𝑇, the tiling 𝒯 is said to
be transitive (or isohedral) and 𝑇 is called a transitive tile.
Then, the second part of Hilbert’s 18th problem can be
reformulated as:

Is every polytope that can tile the whole space a transitive
tile?

A tiling 𝒯 of 𝔼2 by identical convex pentagons is called
an 𝑛-block transitive tiling if it has a block 𝐵 consisting of 𝑛
(minimum) connected tiles such that𝒯 is a transitive tiling
of 𝐵. If a convex pentagon 𝑇 can form an 𝑛-block transitive
tiling but not an 𝑚-block transitive tiling for any 𝑚 < 𝑛,
then we call it an 𝑛-block transitive tile. Clearly, all the tiles
of Types 1–5 are one-block transitive. In other words, they
are transitive tiles. According to [12, 15], all the tiles of
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Figure 8. Rice’s pentagonal tiles and their local tilings.
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Figure 9. Stein’s pentagonal tile and its local tiling.

Types 5–14 except Type 9 are two-block transitive, and the
tiles of Type 9 are three-block transitive.

From the intuitive point of view, it is reasonable to
believe that periodic structure is inevitable in pentagon
tilings and the period cannot be too large. Based on this
belief, Mann, McLoud-Mann, and Von Derau [12] devel-
oped an algorithm for enumerating all the 𝑛-block tran-
sitive pentagon tiles. When they checked the three-block
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case, surprisingly, they discovered a new type of pentagon
tiles.

Theorem 8 (Mann, McLoud-Mann, and Von Derau [12]).
A convex pentagon 𝑃5 can tile the whole plane 𝔼2 by identical
copies if it satisfies the following conditions:

(15) 𝛼1 = 𝜋
3
, 𝛼2 = 3𝜋

3
, 𝛼3 = 7𝜋

12
, 𝛼4 = 𝜋

2
, 𝛼5 = 5𝜋

6
, and

ℓ1 = 2ℓ2 = 2ℓ4 = 2ℓ5.

v1

v2

v3
v4

v5

Type 15.

Figure 10. Mann, McLoud-Mann, and Von Derau’s pentagonal
tile and its local tiling.

Remark 2. It was shown byMann, McLoud-Mann, and Von
Derau [12] that there is no other 𝑛-block transitive penta-
gon tile with 𝑛 ≤ 4. The completeness of the list emerges
again.

Since Hales’s computer proof for the Kepler conjecture,
more and more geometers have turned to computers for
help when their mathematical problems can be reduced
into a large number of cases. Characterizing all the penta-
gon tiles seems to be a perfect candidate for such purpose.

In 2017, one century after Bieberbach proposed the
characterization problem, Michaël Rao announced a com-
puter proof for the completeness of the known pentagon
tile list. Rao’s approach is based on a graph expression.
First he proved that if a pentagon tiles the plane, then it
can form a tiling such that every vertex type has positive
density. Clearly, this is a weak version of the periodic tiling.
Second, it was shown that there are only a finite number of
possible vertex types in the modified pentagon tiling. In
fact, he reduced them to 371 types. Then, by testing the
371 cases, Rao announced the following theorem.

Theorem 9 (Rao [13]). A convex pentagon 𝑃5 can tile the
whole plane 𝔼2 by identical copies if and only if it belongs to
one of the fifteen types listed in Theorems 3–8.

Computer proofs are still not as acceptable as transpar-
ent logical proofs within the mathematical community.
However, we have to admit that the complexity of the

mathematical problems ranges from zero to infinity, and
there indeed exist problems that have no transparent logi-
cal proofs.

In 1980, Grünbaum and Shephard [6] made the follow-
ing comment when they wrote about the tiling problems:
Current fashions in mathematics applaud abstraction for its own
sake, regarding it as the highest intellectual activity—whether
or not it is, in any sense, useful or related to other endeavors.
Mathematicians frequently regard it as demeaning to work on
problems related to “elementary geometry” in Euclidean space
of two or three dimensions. In fact, we believe that many are
unable, both by inclination and training, to make meaningful
contributions to this more “concrete” type of mathematics; yet
it is precisely these and similar considerations that include the
results and techniques needed by workers in other disciplines.
Clearly, the proof history of Bieberbach’s problem indeed
confirms their comment.

Multiple Tilings
Intuitively speaking, tiling the plane is to pave the whole
plane flat with identical tiles. As one can see from previous
sections, only a few types of polygons are qualified for the
job. However, if multiple layers are permitted, wewill have
many more choices for the shape of the tile.

Let 𝐾 denote an 𝑛-dimensional convex body with inte-
rior int(𝐾) and boundary 𝜕(𝐾). In particular, let 𝐷 denote
a two-dimensional convex domain.

Assume that ℱ = {𝐾1, 𝐾2, 𝐾3, …} is a family of convex
bodies in 𝔼𝑛 and 𝑘 is a positive integer. We call ℱ a 𝑘-fold
tiling of 𝔼𝑛 if every point 𝐱 ∈ 𝔼𝑛 belongs to at least 𝑘 of
these convex bodies and every point 𝐱 ∈ 𝔼𝑛 belongs to
at most 𝑘 of the int(𝐾𝑖). In other words, a 𝑘-fold tiling of
𝔼𝑛 is both a 𝑘-fold packing and a 𝑘-fold covering in 𝔼𝑛. In
particular, we call a 𝑘-fold tiling of 𝔼𝑛 a 𝑘-fold congruent
tiling, a 𝑘-fold translative tiling, or a 𝑘-fold lattice tiling if all
𝐾𝑖 are congruent to 𝐾1, all 𝐾𝑖 are translates of 𝐾1, or all
𝐾𝑖 are translates of 𝐾1 and the translative vectors form a
lattice in 𝔼𝑛, respectively. In these particular cases, we call
𝐾1 a 𝑘-fold congruent tile, a 𝑘-fold translative tile, or a 𝑘-fold
lattice tile, respectively. Clearly, a 𝑘-fold translative tiling
of the plane 𝔼2 is a nice pavement with identical copies.
In other words, it covers every point of the plane with the
same multiplicity, excepting the boundary points of the
tiles.

For a fixed convex body 𝐾, we define 𝜏•(𝐾) to be the
smallest integer 𝑘 such that 𝐾 can form a 𝑘-fold congru-
ent tiling in 𝔼𝑛, 𝜏(𝐾) to be the smallest integer 𝑘 such that
𝐾 can form a 𝑘-fold translative tiling in 𝔼𝑛, and 𝜏∗(𝐾) to
be the smallest integer 𝑘 such that 𝐾 can form a 𝑘-fold
lattice tiling in 𝔼𝑛. For convenience, if 𝐾 cannot form
any multiple congruent tiling, translative tiling, or lattice
tiling, we will define 𝜏•(𝐾) = ∞, 𝜏(𝐾) = ∞, or 𝜏∗(𝐾) = ∞,
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respectively. Clearly, for every convex body 𝐾 we have

𝜏•(𝐾) ≤ 𝜏(𝐾) ≤ 𝜏∗(𝐾). (8)
By looking at the separating hyperplanes between tangent
neighbors, it is obvious that a convex body can form amul-
tiple tiling only if it is a polytope.

If 𝜎 is a nonsingular affine linear transformation from
𝔼𝑛 to 𝔼𝑛, then ℱ = {𝐾1, 𝐾2, 𝐾3, …} forms a 𝑘-fold tiling of
𝔼𝑛 if and only if ℱ′ = {𝜎(𝐾1), 𝜎(𝐾2), 𝜎(𝐾3), …} forms a 𝑘-
fold tiling of 𝔼𝑛. Consequently, for any 𝑛-dimensional
convex body 𝐾 and any nonsingular affine linear transfor-
mation 𝜎 we have both

𝜏(𝜎(𝐾)) = 𝜏(𝐾) (9)
and

𝜏∗(𝜎(𝐾)) = 𝜏∗(𝐾). (10)
Unfortunately, 𝜏•(𝐾) is not an invariant for the linear trans-
formation group.

Clearly, onefold tilings are the usual tilings. In the
plane, we have

𝜏(𝐷) = 𝜏∗(𝐷) = 1 (11)
if and only if 𝐷 is a parallelogram or a centrally symmetric
hexagon, and

𝜏•(𝐷) = 1 (12)
if and only if 𝐷 is a triangle, a quadrilateral, a pentagon
belonging to one of the fifteen types listed in Theorems 3–
8, or a hexagon belonging to one of the three types listed
in Theorem 2.

Taking a usual tiling and stacking it on top of itself 𝑘
times forms a 𝑘-fold tiling. Similarly, by stacking 𝑗 copies
of a 𝑘-fold tiling on top of each other, we get a 𝑗𝑘-fold
tiling. However, we are interested in the nontrivial multi-
ple tilings.

Since 1936, multiple tilings have been studied by
P. Furtwängler, G. Hajós, R. M. Robinson, U. Bolle,
N. Gravin, M. N. Kolountzakis, S. Robins, D. Shiryaev, and
many others. Nevertheless, many natural problems are
still open. In the forthcoming sections we will introduce
some fascinating new results about multiple tilings in the
plane.

Multiple Lattice Tilings
In 1994, Bolle studied the two-dimensional lattice multi-
ple tilings. Let 𝐷 be a convex domain, let Λ be a lattice,
and assume that 𝐷 + Λ is a 𝑘-fold lattice tiling of 𝔼2. It is
easy to see that 𝐷 must be a polygon. Let 𝐸 be an edge of
𝐷, let 𝐿 be the straight line containing 𝐸, let 𝐻1 and 𝐻2 de-
note the two closed half-planes with 𝐿 as their boundary,
and for a general point 𝐩 ∈ int(𝐸) define

𝑛𝑖(𝐩) = ♯{𝐠 ∶ 𝐠 ∈ Λ, 𝐷 + 𝐠 ∈ 𝐻𝑖, 𝐩 ∈ 𝜕(𝐷) + 𝐠}. (13)
By studying 𝑛1(𝐩) and 𝑛2(𝐩) for general 𝐩 ∈ int(𝐸), Bolle
proved the following criterion:

Lemma 2 (Bolle [1]). A convex polygon 𝐷 is a 𝑘-fold lattice
tile for a lattice Λ and some positive integer 𝑘 if and only if the
following conditions are satisfied:

(1) It is centrally symmetric.
(2) When 𝐷 is centered at the origin, the relative interior

of each edge 𝐺 of 𝐷 contains a point of
1
2
Λ.

(3) If the midpoint of 𝐺 is not in
1
2
Λ, then 𝐺 is a lattice

vector of Λ.

Based on Bolle’s criterion, Gravin, Robins, and Shiryaev
[5] discovered the following example.

Example 1. Let Λ denote the two-dimensional integer
lattice ℤ2 and let 𝑃8 denote the octagon with vertices 𝐯1 =
( 1
2
, − 3

2
), 𝐯2 = ( 3

2
, − 1

2
), 𝐯3 = ( 3

2
, 1
2
), 𝐯4 = ( 1

2
, 3
2
), 𝐯5 = −𝐯1,

𝐯6 = −𝐯2, 𝐯7 = −𝐯3, and 𝐯8 = −𝐯4, as shown in Figure 11.
Then 𝑃8 + Λ is a sevenfold lattice tiling of 𝔼2.
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o

Figure 11. Gravin, Robins, and Shiryaev’s octagonal sevenfold
lattice tile.

Let 𝒟 denote the family of all two-dimensional convex
domains and let 𝒫2𝑚 denote the family of all centrally sym-
metric convex 2𝑚-gons. Since the octagon of Example 1 is
the simplest centrally symmetric polygon (except parallel-
ograms and hexagons) satisfying the criterion of Lemma 2,
one may conjecture that

min
𝐷∈𝒟⧵{𝒫4∪𝒫6}

𝜏∗(𝐷) ≥ 7.

However, based on the known results on multiple lattice
packings by V. C. Dumir, R. J. Hans-Gill, and G. Fejes Tóth
(see Zong [19]), in 2017 Yang and Zong discovered the fol-
lowing unexpected result.

Theorem 10 (Yang and Zong [17]). If 𝐷 is a two-
dimensional convex domain that is neither a parallelogram nor
a centrally symmetric hexagon, then we have

𝜏∗(𝐷) ≥ 5,
where the equality holds at some particular decagons.
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Figure 12. Yang and Zong’s decagonal fivefold lattice tile.

Let Λ be the integer lattice ℤ2 and let 𝑃10 denote a
decagon whose edge midpoints are 𝐮1 = (0, −1), 𝐮2 =
(1, − 1

2
), 𝐮3 = ( 3

2
, 0), 𝐮4 = ( 3

2
, 1
2
), 𝐮5 = (1, 1), 𝐮6 = −𝐮1,

𝐮7 = −𝐮2, 𝐮8 = −𝐮3, 𝐮9 = −𝐮4, and 𝐮10 = −𝐮5, as shown
in Figure 12. By Lemma 2, it can be easily verified that
𝑃10 + Λ is indeed a fivefold lattice tiling of 𝔼2.

Even more unexpected, by studying lattice polygons, all
the fivefold lattice tiles can be nicely characterized. There
are two classes of octagons and one class of decagons
besides the parallelograms and the centrally symmetric
hexagons.

Theorem 11 (Zong [20]). A convex domain 𝐷 can form a
fivefold lattice tiling of the Euclidean plane if and only if 𝐷 is
a parallelogram or centrally symmetric hexagon or, up to affine
linear transformation, 𝐷 is a centrally symmetric octagon with
vertices 𝐯1 = (−𝛼,− 3

2
), 𝐯2 = (1 − 𝛼,− 3

2
), 𝐯3 = (1 + 𝛼,− 1

2
),

𝐯4 = (1 − 𝛼, 1
2
), 𝐯5 = −𝐯1, 𝐯6 = −𝐯2, 𝐯7 = −𝐯3, and

𝐯8 = −𝐯4, where 0 < 𝛼 < 1
4
, or with vertices 𝐯1 = (𝛽,−2),

𝐯2 = (1 + 𝛽,−2), 𝐯3 = (1 − 𝛽, 0), 𝐯4 = (𝛽, 1), 𝐯5 = −𝐯1,
𝐯6 = −𝐯2, 𝐯7 = −𝐯3, 𝐯8 = −𝐯4, where

1
4
< 𝛽 < 1

3
, or

a centrally symmetric decagon whose edge midpoints are 𝐮1 =
(0, −1), 𝐮2 = (1, − 1

2
), 𝐮3 = ( 3

2
, 0), 𝐮4 = ( 3

2
, 1
2
), 𝐮5 = (1, 1),

𝐮6 = −𝐮1, 𝐮7 = −𝐮2, 𝐮8 = −𝐮3, 𝐮9 = −𝐮4, and 𝐮10 = −𝐮5.

Let 𝑃2𝑚 be a centrally symmetric convex 2𝑚-gon cen-
tered at the origin 𝐨 of 𝔼2. It is reasonable to believe that
𝜏∗(𝑃2𝑚) is big when𝑚 is sufficiently large. In fact, by study-
ing the local structure of amultiple tiling (see next section),
Yang and Zong [18] proved that

𝜏∗(𝑃2𝑚) ≥ { 𝑚 − 1 if 𝑚 is even,
𝑚 − 2 if 𝑚 is odd. (14)

Furthermore, by detailed geometric analysis based on
Lemma 2, Lemma 4, and Pick’s theorem, Zong [20] proved
that

𝜏∗(𝑃14) ≥ 6, (15)

𝜏∗(𝑃12) ≥ 6, (16)

𝜏∗(𝑃10) ≥ 5, (17)
where equality in (17) holds if and only if (after a suit-
able affine linear transformation) 𝑃10 is a centrally sym-
metric decagon whose edge midpoints are 𝐮1 = (0, −1),
𝐮2 = (1, − 1

2
), 𝐮3 = ( 3

2
, 0), 𝐮4 = ( 3

2
, 1
2
), 𝐮5 = (1, 1),

𝐮6 = −𝐮1, 𝐮7 = −𝐮2, 𝐮8 = −𝐮3, 𝐮9 = −𝐮4, and 𝐮10 = −𝐮5
(as shown by Figure 12), and

𝜏∗(𝑃8) ≥ 5, (18)

where the equality holds if and only if (after a suitable
affine linear transformation) 𝑃8 is either a centrally sym-
metric octagon 𝑃8(𝛼) (see Figure 13, top) with vertices 𝐯1 =
(−𝛼,− 3

2
), 𝐯2 = (1−𝛼,− 3

2
), 𝐯3 = (1+𝛼,− 1

2
), 𝐯4 = (1−𝛼, 1

2
),

𝐯5 = −𝐯1, 𝐯6 = −𝐯2, 𝐯7 = −𝐯3, and 𝐯8 = −𝐯4, where
0 < 𝛼 < 1

4
, or a centrally symmetric octagon 𝑃8(𝛽) (see Fig-

ure 13, bottom) with vertices 𝐯1 = (𝛽,−2), 𝐯2 = (1+𝛽,−2),
𝐯3 = (1 − 𝛽, 0), 𝐯4 = (𝛽, 1), 𝐯5 = −𝐯1, 𝐯6 = −𝐯2, 𝐯7 = −𝐯3,
𝐯8 = −𝐯4, where

1
4
< 𝛽 < 1

3
. Let Λ be the integer lattice

ℤ2; it can be verified that both 𝑃8(𝛼) + Λ and 𝑃8(𝛽) + Λ are
indeed fivefold lattice tilings of 𝔼2.

v1 v2

v3

v5

v4

v6

v7

v8

P8(α) o

v1 v2

v3

v4

v5v6

v7

v8

P8(β)

o

Figure 13. Zong’s octagonal fivefold lattice tiles.
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Clearly, Theorem 11 follows from (14)–(18). The
proofs of these inequalities are complicated, in particular
(17) and (18). Their proofs rely on carefully designed area
estimations by dealing with many cases. Nevertheless, un-
like Rao’s proof for Theorem 9, computer checking is not
necessary here.

To describe the structure of the decagon in Theorem 11
more explicitly we have the following theorem.

Theorem 12 (Zong [20]). Let 𝑊 denote the quadrilateral
with vertices 𝐰1 = (− 1

2
, 1), 𝐰2 = (− 1

2
, 3
4
), 𝐰3 = (− 2

3
, 2
3
),

and 𝐰4 = (− 3
4
, 3
4
). A centrally symmetric convex decagon can

take 𝐮1 = (0, −1), 𝐮2 = (1, − 1
2
), 𝐮3 = ( 3

2
, 0), 𝐮4 = ( 3

2
, 1
2
),

𝐮5 = (1, 1), 𝐮6 = −𝐮1, 𝐮7 = −𝐮2, 𝐮8 = −𝐮3, 𝐮9 = −𝐮4, and
𝐮10 = −𝐮5 as the middle points of its edges if and only if one
of its vertices is an interior point of 𝑊 .

Similarly, the sixfold lattice tiles can be characterized as
follows:

Theorem 13 (Zong [20]). A convex domain 𝐷 can form a
sixfold lattice tiling of the Euclidean plane if and only if 𝐷 is
a parallelogram or centrally symmetric hexagon or, up to affine
linear transformation, 𝐷 is a centrally symmetric octagon with
vertices 𝐯1 = (𝛼 − 1, 2), 𝐯2 = (𝛼, 2), 𝐯3 = (1 − 𝛼, 0), 𝐯4 =
(1 + 𝛼,−1), 𝐯5 = −𝐯1, 𝐯6 = −𝐯2, 𝐯7 = −𝐯3, and 𝐯8 = −𝐯4,
where 0 < 𝛼 < 1

6
, a centrally symmetric decagon whose edge

midpoints are 𝐮1 = (−1, 1
2
), 𝐮2 = ( 1

2
, 1), 𝐮3 = ( 3

2
, 1), 𝐮4 =

(2, 1
2
), 𝐮5 = (2, 0), 𝐮6 = −𝐮1, 𝐮7 = −𝐮2, 𝐮8 = −𝐮3, 𝐮9 =

−𝐮4, and 𝐮10 = −𝐮5, or a centrally symmetric decagon whose
edge midpoints are 𝐮1 = (− 1

2
, 1), 𝐮2 = ( 1

2
, 1), 𝐮3 = ( 3

2
, 1
2
),

𝐮4 = (2, 0), 𝐮5 = ( 3
2
, − 1

2
), 𝐮6 = −𝐮1, 𝐮7 = −𝐮2, 𝐮8 = −𝐮3,

𝐮9 = −𝐮4, and 𝐮10 = −𝐮5.

Theorem 14 (Zong [20]). Let𝑄 denote the quadrilateral with
vertices 𝐪1 = (0, 1), 𝐪2 = (0, 5

6
), 𝐪3 = (− 1

4
, 3
4
), and 𝐪4 =

(− 1
3
, 5
6
). A centrally symmetric convex decagon 𝑃10 can take

𝐮1 = (−1, 1
2
), 𝐮2 = ( 1

2
, 1), 𝐮3 = ( 3

2
, 1), 𝐮4 = (2, 1

2
), 𝐮5 =

(2, 0), 𝐮6 = −𝐮1, 𝐮7 = −𝐮2, 𝐮8 = −𝐮3, 𝐮9 = −𝐮4, and
𝐮10 = −𝐮5 as the middle points of its edges if and only if one
of its vertices is an interior point of 𝑄.

Let 𝑄∗ denote the quadrilateral with vertices 𝐪1 = (0, 5
4
),

𝐪2 = ( 1
6
, 7
6
), 𝐪3 = (0, 1), and 𝐪4 = (− 1

6
, 7
6
). A centrally

symmetric convex decagon 𝑃∗10 can take 𝐮1 = ( 1
2
, −1), 𝐮2 =

( 3
2
, − 1

2
), 𝐮3 = (2, 0), 𝐮4 = ( 3

2
, 1
2
), 𝐮5 = ( 1

2
, 1), 𝐮6 = −𝐮1,

𝐮7 = −𝐮2, 𝐮8 = −𝐮3, 𝐮9 = −𝐮4, and 𝐮10 = −𝐮5 as the
middle points of their edges if and only if one of its vertices is
an interior point of 𝑄∗.
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Figure 14. Zong’s sixfold lattice tiles, one class of octagons
and two classes of decagons.

Multiple Translative Tilings
In 2012, Gravin, Robins, and Shiryaev [5] proved that an 𝑛-
dimensional convex body can form a multiple translative
tiling of the space only if it is a centrally symmetric poly-
tope with centrally symmetric facets. Therefore, to study
multiple translative tilings in the plane, we need to deal
only with the centrally symmetric polygons.

Let 𝑃2𝑚 denote a centrally symmetric convex 2𝑚-gon
centered at the origin, with vertices 𝐯1, 𝐯2, … , 𝐯2𝑚 enumer-
ated in the clock-order, and write 𝑉 = {𝐯1, 𝐯2, … , 𝐯2𝑚}. As-
sume that 𝑃2𝑚 + 𝑋 is a 𝜏(𝑃2𝑚)-fold translative tiling in 𝔼2,
where 𝑋 = {𝐱1, 𝐱2, 𝐱3, …} is a discrete multiset with 𝐱1 = 𝐨.
By studying the local structure of 𝑃2𝑚 + 𝑋 at the vertices
𝐯 ∈ 𝑉 + 𝑋 , Yang and Zong [18] discovered some fascinat-
ing results.
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Theorem 15 (Yang and Zong [18]). If 𝐷 is a two-
dimensional convex domain that is neither a parallelogram nor
a centrally symmetric hexagon, then we have

𝜏(𝐷) ≥ 5,
where the equality holds if 𝐷 is some particular centrally sym-
metric octagon or some particular centrally symmetric decagon.

Remark 3. It is known that

𝜏(𝐷) ≤ 𝜏∗(𝐷)
holds for every convex domain 𝐷. Therefore, Theorem 15
implies Theorem 10.

At this point, it is natural to ask for a characterization of
all fivefold translative tiles and in particular to determine
if these are just the known fivefold lattice tiles.

Theorem 16 (Yang and Zong [18]). A convex domain 𝐷 can
form a fivefold translative tiling of the Euclidean plane if and
only if 𝐷 is a parallelogram or centrally symmetric hexagon or,
up to affine linear transformation, 𝐷 is a centrally symmetric

octagon with vertices 𝐯1 = ( 3
2
− 5𝛼

4
, −2), 𝐯2 = (− 1

2
− 5𝛼

4
, −2),

𝐯3 = (𝛼
4
− 3

2
, 0), 𝐯4 = (𝛼

4
− 3

2
, 1), 𝐯5 = −𝐯1, 𝐯6 = −𝐯2,

𝐯7 = −𝐯3, and 𝐯8 = −𝐯4, where 0 < 𝛼 < 2
3
, or with vertices

𝐯1 = (2−𝛽,−3), 𝐯2 = (−𝛽,−3), 𝐯3 = (−2,−1), 𝐯4 = (−2, 1),
𝐯5 = −𝐯1, 𝐯6 = −𝐯2, 𝐯7 = −𝐯3, and 𝐯8 = −𝐯4, where 0 <
𝛽 ≤ 1, or a centrally symmetric decagon whose edge midpoints
are 𝐮1 = (0, −1), 𝐮2 = (1, − 1

2
), 𝐮3 = ( 3

2
, 0), 𝐮4 = ( 3

2
, 1
2
),

𝐮5 = (1, 1), 𝐮6 = −𝐮1, 𝐮7 = −𝐮2, 𝐮8 = −𝐮3, 𝐮9 = −𝐮4, and
𝐮10 = −𝐮5.

The proofs for Theorems 15 and 16 are extremely com-
plicated. They consist of a series of lemmas showing that

𝜏(𝑃2𝑚) ≥ { 𝑚 − 1 if 𝑚 is even,
𝑚 − 2 if 𝑚 is odd, (19)

𝜏(𝑃14) ≥ 6, (20)
𝜏(𝑃12) ≥ 6, (21)
𝜏(𝑃10) ≥ 5, (22)

where in (22) equality holds if and only if 𝑃10 is a centrally
symmetric decagon that can form a fivefold lattice tiling of
𝔼2, and

𝜏(𝑃8) ≥ 5, (23)
where the equality holds if and only if (after a suitable
affine linear transformation) 𝑃8 is either a centrally sym-
metric octagon 𝑃′8 (𝛼) (see Figure 15, top) with vertices

𝐯1 = ( 3
2
− 5𝛼

4
, −2), 𝐯2 = (− 1

2
− 5𝛼

4
, −2), 𝐯3 = (𝛼

4
− 3

2
, 0),

𝐯4 = (𝛼
4
− 3

2
, 1), 𝐯5 = −𝐯1, 𝐯6 = −𝐯2, 𝐯7 = −𝐯3, and

𝐯8 = −𝐯4, where 0 < 𝛼 < 2
3
, or a centrally symmet-

ric octagon 𝑃′8 (𝛽) (see Figure 15, bottom) with vertices
𝐯1 = (2−𝛽,−3), 𝐯2 = (−𝛽,−3), 𝐯3 = (−2,−1), 𝐯4 = (−2, 1),
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v4

v5 v6

v7

v8
P ′

8(α)

o

v1v2

v3

v4

v5 v6

v7

v8

P ′
8(β)

o

Figure 15. Yang and Zong’s octagonal fivefold translative tiles.

𝐯5 = −𝐯1, 𝐯6 = −𝐯2, 𝐯7 = −𝐯3, and 𝐯8 = −𝐯4, where
0 < 𝛽 ≤ 1.

Clearly, Theorems 15 and 16 follow by (19)–(23) and
(17).

Though the statements (19)–(23) are more or less iden-
tical to (14)–(18), their proofs are very different. While
the lattice case was based on lattice polygon checking, the
translative case is based on combinatorial analysis.

In fact, the two classes 𝑃8(𝛼) and 𝑃′8 (𝛽) shown in Figures
13 and 15, respectively, are equivalent under suitable lin-
ear transformations, as well as the two classes 𝑃8(𝛽) and
𝑃′8 (𝛼). Therefore, we have the following theorem.

Theorem 17 (Yang and Zong [18]). A convex domain can
form a fivefold translative tiling of the Euclidean plane if and
only if it can form a fivefold lattice tiling in 𝔼2.

Open Problems
To end this paper, let us list three open problems about
multiple tilings that are closely related to the known re-
sults.

Problem 1. Is there a two-dimensional convex domain 𝐷
satisfying 𝜏(𝐷) ≠ 𝜏∗(𝐷)?

In 2000, Kolountzakis [11] proved that if a convex
polygon that is not a parallelogram can form a multiple
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translative tiling of the plane, then the translative set must
be a finite union of translated lattices. To improve this
result and to answer a question of Gravin, Robins, and
Shiryaev [5], B. Liu andQ. Yang independently proved that
if a convex domain 𝐷 can form a multiple translative tiling
of the plane, then it also can form a multiple lattice tiling
of the plane. However, we do not know if 𝜏(𝐷) = 𝜏∗(𝐷)
holds for every convex domain 𝐷.

Problem 2. Is there an integer 𝑘 ≥ 6 such that 𝜏(𝐷) ≠ 𝑘
(or 𝜏∗(𝐷) ≠ 𝑘) holds for all the two-dimensional convex
domains 𝐷?

As noticed by Yang and Zong [17], based on the two-
dimensional examples, for any 𝑛 ≥ 3 one can construct
𝑛-dimensional centrally symmetric polytopes 𝑃 satisfying

2 ≤ 𝜏∗(𝑃) ≤ 5

and

2 ≤ 𝜏(𝑃) ≤ 5.
Then, we have the following natural problem.

Problem 3. Assume that 𝑘 = 2, 3, or 4, and 𝑛 ≥ 3. Is
there an 𝑛-dimensional polytope 𝑃 satisfying 𝜏(𝑃) = 𝑘 (or
𝜏∗(𝑃) = 𝑘)?

Besides these results and open problems for 𝜏∗(𝑃) and
𝜏(𝑃), analogous problems for 𝜏•(𝑃) are interesting and
worth studying as well.
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Finding Solitons

Jorge Lauret
1. Introduction
The concept of soliton provides a useful way to find or
discover elements in a given set that are somehow distin-
guished. Heuristically, only three ingredients are needed
to define a soliton:

• A set Γ endowed with some kind of tangent space or
space of directions 𝑇𝛾Γ at each 𝛾 ∈ Γ.

• An equivalence relation ≃ on Γ collecting in each
equivalence class [𝛾] all the elements that cannot be
distinguished from 𝛾 in relation to the question to be
studied.

• An optimal or preferred direction at each point, 𝑞(𝛾) ∈
𝑇𝛾Γ, viewed as a “direction of improvement” in some
sense.

In that case, 𝛾 ∈ Γ is called a soliton if

𝑞(𝛾) ∈ 𝑇𝛾[𝛾]; (1)

that is, 𝛾 is in a way nice enough that it cannot be improved
toward 𝑞(𝛾) (see Figure 1). The relation ≃ is typically de-
fined by the action of a group 𝐻, and if 𝑞 is 𝐻-equivariant,
then 𝛾 is a soliton if and only if the whole class [𝛾] consists
of solitons.

By assuming enough differentiability in the situation,
we may consider the evolution differential equation de-
fined by 𝑞 on Γ,

𝜕
𝜕𝑡
𝛾(𝑡) = 𝑞(𝛾(𝑡)), 𝛾(0) = 𝛾.
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researcher of CIEM, CONICET (Argentina). His email address is lauret
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𝑞(𝛾)

Γ

𝛾
[𝛾]

soliton

Figure 1. Solitons are not actually improved toward the
“direction of improvement.”

The existence of solutions is not guaranteed. Solitons are
not in general fixed points of this evolution flow (i.e., ze-
roes of 𝑞). However, 𝛾 is a soliton if and only if 𝛾(𝑡) ∈ [𝛾]
for all 𝑡, called a self-similar solution (see Figure 1 and the
opener image on the left). In other words, solitons are not
improved by the flow, and so their existence is not that wel-
comed if one is hoping to use the flow to find a fixed point
in Γ. Indeed, an element may be attracted or stopped in
its way to a fixed point by a soliton.

On the other hand, the existence of solitons is great
news for the search for canonical or distinguished ele-
ments in Γ beyond the zeroes of 𝑞.

We note that if 𝑞(𝛾) = −grad(𝐹)|𝛾 for some functional
𝐹 ∶ Γ → ℝ that is constant on equivalence classes (or
𝐻-invariant), then 𝛾 is a soliton if and only if 𝑞(𝛾) = 0;
that is, solitons are precisely the critical points of 𝐹 or the
fixed points of the corresponding flow. Most interesting
phenomena occur when this is not the case.
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The evocative word soliton first appeared in PDE the-
ory in the context of the Korteweg–de Vries equation to
name certain solutions resembling solitary water waves
that evolve only by translation without losing their shape.
More generally, in the study of geometric flows, solitons re-
fer to geometric structures that evolve along symmetries of
the flow (i.e., self-similar solutions). The use of the word
soliton was initiated by Hamilton in the 1980s in the con-
text of Ricci flow to name Ricci solitons (see [8]) and nowa-
days is spread over the fields of differential geometry and
geometric analysis.

In this article we discuss and find solitons in many dif-
ferent contexts, including matrices, polynomials, plane
curves, Lie group representations (momentmaps), and the
variety of Lie algebras, as well as in the context of geomet-
ric structures (Riemannian, Hermitian, almost-Kähler, and
𝐺2) and their homogeneous versions on Lie groups.1

2. Matrices
Consider Γ = 𝔤𝔩𝑛, the vector space of all real 𝑛 × 𝑛 matri-
ces. As is well known, a matrix is semisimple (i.e., diago-
nalizable over ℂ) if and only if it is conjugate to a normal
matrix (i.e., [𝐴, 𝐴𝑡] = 0). The subset of normal matrices
is invariant under scaling and the action of the orthogo-
nal group O(𝑛) by conjugation, and there is exactly one
O(𝑛)-orbit of normal matrices in each semisimple conju-
gacy class. With the aim of finding distinguished matrices
other than normal matrices, we consider orthogonal con-
jugation and scaling as the equivalence relation, that is,

[𝐴] ≔ 𝐻⋅𝐴 = {𝑐ℎ𝐴ℎ−1 ∶𝑐 ∈ ℝ∗, ℎ ∈ O(𝑛)}, 𝐻 ≔ ℝ∗O(𝑛).

It is easy to see that the tangent space at a matrix 𝐴 of its
conjugacy class GL𝑛 ⋅ 𝐴 is given by 𝑇𝐴GL𝑛 ⋅ 𝐴 = [𝐴, 𝔤𝔩𝑛],
where GL𝑛 is the group of all invertible real 𝑛×𝑛matrices,
so the simplest preferred direction that will make normal
matrices solitons is

𝑞(𝐴) ≔ [𝐴, [𝐴, 𝐴𝑡]].

According to (1), a matrix 𝐴 is a soliton if and only if

[𝐴, [𝐴, 𝐴𝑡]] = 𝑐𝐴 + [𝐴, 𝐵] ∈ 𝑇𝐴[𝐴], 𝑐 ∈ ℝ, 𝐵 ∈ 𝔰𝔬(𝑛),

where 𝔰𝔬(𝑛) denotes the space of skew-symmetric matrices.
Since [𝐴, 𝐵] ⟂ 𝐴,𝐴𝑡 (relative to the usual inner product
tr 𝑋𝑌 𝑡), we obtain that 𝐴 is a soliton if and only if either 𝐴
is normal (𝑐 = 0 implies −|[𝐴, 𝐴𝑡]|2 = ⟨[𝐴, [𝐴, 𝐴𝑡]], 𝐴⟩ = 0)
or 𝐴 is nilpotent (𝑐 ≠ 0 implies tr 𝐴𝑘 = 0 for any 𝑘) and
satisfies the following matrix equation:

[𝐴, [𝐴, 𝐴𝑡]] = − |[𝐴,𝐴𝑡]|2

|𝐴|2
𝐴.

1In order to limit the number of references to twenty, most citations have been
omitted, and mainly survey articles where the precise references can be found
have been included.

Remark 2.1. Arguing as above, one obtains that the even
simpler possibility 𝑞(𝐴) = [𝐴, 𝐴𝑡] gives that only normal
matrices are solitons.

Besides normal matrices, it is straightforward to check
that the following nilpotent matrices are also solitons:

[ 01 0 ] , [
0
√2 0
0 √2 0

] , [
0
√3 0
0 2 0
0 0 √3 0

] ,

[
0
2 0
0 √6 0
0 0 √6 0
0 0 0 2 0

] , ⋯ , [
0
𝑎1 0

⋱ ⋱
𝑎𝑘−1 0

] ,
(2)

where 𝑎𝑖 ≔ √𝑖(𝑘 − 𝑖) (rather than the expected matrices
with 𝑎𝑖 = 1 for all 𝑖). Any nilpotent matrix is therefore
conjugate to a soliton by using the Jordan canonical form.

An easy computation gives that actually 𝑞(𝐴) ≔
− 1
4
grad(E)|𝐴, where E ∶ 𝔤𝔩𝑛 → ℝ is the functional E(𝐵) ≔

|[𝐵, 𝐵𝑡]|2 measuring how far a matrix is from being normal.
Note that E is not constant on [𝐴] due to scaling, but it is
easy to see that 𝐴 is a soliton if and only if it is a critical
point of the normalized functional E(𝐵) ≔ E(𝐵)/|𝐵|4.

An interesting characterization of normal matrices, per-
haps less known, is that they have minimal norm among
their conjugacy classes. Also, it is not hard to show that
if 𝐴 = 𝑆 + 𝑁, where 𝑆 is semisimple, 𝑁 nilpotent, and
[𝑆, 𝑁] = 0, then 𝑆 ∈ GL𝑛 ⋅ 𝐴. In particular, if a conju-
gacy class GL𝑛 ⋅ 𝐴 is closed, then 𝐴 is necessarily semisim-
ple (also note that 0 ∈ GL𝑛 ⋅ 𝑁 for any nilpotent matrix
𝑁). The following nice properties of soliton matrices fol-
low from well-known results in geometric invariant theory
(GIT for short) and the fact that the moment map (to be
defined later) for the GL𝑛-action on 𝔤𝔩𝑛 by conjugation is
precisely m(𝐴) = [𝐴, 𝐴𝑡]:
• For any nilpotent matrix 𝐴, there is exactly one
ℝ∗O(𝑛)-orbit of solitons in its conjugacy class GL𝑛 ⋅ 𝐴.

• Any soliton 𝐴 is a minimum of E restricted to GL𝑛 ⋅
𝐴; that is, a nilpotent soliton is in a sense the matrix
closest to being normal in its conjugacy class.

• A conjugacy class GL𝑛 ⋅ 𝐴 is closed if and only if 𝐴 is
semisimple, if and only if GL𝑛 ⋅ 𝐴 contains a matrix of
minimal norm (or normal matrix).

• The negative gradient flow solution 𝐴(𝑡) of the func-
tional E starting at 𝐴 stays in the conjugacy class
GL𝑛 ⋅ 𝐴, and if 𝐴 = 𝑆 + 𝑁 as above, then 𝐴(𝑡) con-
verges as 𝑡 → ∞ to either a normal matrix in the con-
jugacy class of 𝑆 or, in the case 𝑆 = 0, to a soliton in
the conjugacy class of 𝑁.

3. Polynomials
The space Γ is now given by 𝑃𝑛,𝑑, the vector space of all
homogeneous polynomials of degree 𝑑 in 𝑛 variables with
coefficients inℝ (e.g., quadratic (𝑑 = 2) and binary (𝑛 = 2)
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forms). There is a natural left GL𝑛-action on 𝑃𝑛,𝑑 given by
ℎ ⋅ 𝑓 ≔ 𝑓 ∘ ℎ−1 and the inner product for which the basis
of monomials

{𝑥𝐷 ≔ 𝑥𝑑11 ⋯𝑥𝑑𝑛𝑛 ∶ 𝑑1 +⋯+ 𝑑𝑛 = 𝑑} , 𝐷 ≔ (𝑑1, … , 𝑑𝑛),

is orthogonal and ||𝑥𝐷||2 ≔ 𝑑1!⋯𝑑𝑛! /𝑑! is O(𝑛)-invariant.
The role of normal matrices in the previous section is
played here by the renowned harmonic polynomials, i.e.,
Δ𝑓 = 0, where Δ is the Laplace operator defined by

Δ ∶ 𝑃𝑛,𝑑 ⟶𝑃𝑛,𝑑−2, Δ ≔ 𝜕2

𝜕𝑥21
+⋯+ 𝜕2

𝜕𝑥2𝑛
.

Δ is O(𝑛)-equivariant, and so the subspace ℋ𝑛,𝑑 ⊂ 𝑃𝑛,𝑑 of
all harmonic polynomials is invariant under scalings and
orthogonal maps. Moreover, ℋ𝑛,𝑑 is known to be O(𝑛)-
irreducible (i.e., the only O(𝑛)-invariant subspaces are {0}
and ℋ𝑛,𝑑).

It is therefore natural to consider the equivalence de-
fined by 𝐻 = ℝ∗O(𝑛) ⊂ GL𝑛 and as a preferred direction
at 𝑓 ∈ 𝑃𝑛,𝑑,

𝑞(𝑓) ≔ −𝑟2Δ𝑓 ∈ 𝑃𝑛,𝑑 = 𝑇𝑓𝑃𝑛,𝑑,

where

𝑟2 ≔ 𝑥21 +⋯+ 𝑥2𝑛 ∈ 𝑃𝑛,2.
Note that harmonic polynomials are the fixed points of
the corresponding flow. A polynomial 𝑓 is a soliton (see
(1)) if and only if

𝑟2Δ𝑓 = 𝑐𝑓 + 𝜃(𝐴)𝑓 ∈ 𝑇𝑓(𝐻 ⋅ 𝑓), 𝑐 ∈ ℝ, 𝐴 ∈ 𝔰𝔬(𝑛),

where 𝜃(𝐴)𝑓 ≔ 𝑑
𝑑𝑡
||0 𝑒

𝑡𝐴 ⋅ 𝑓. Are there solitons other than

harmonic polynomials?
We first note that

𝑃𝑛,𝑑 = ℋ𝑛,𝑑 ⊕ 𝑟2ℋ𝑛,𝑑−2 ⊕ 𝑟4ℋ𝑛,𝑑−4 ⊕⋯ (3)

is a decomposition of 𝑃𝑛,𝑑 in irreducible O(𝑛)-invariant
subspaces2 (note that 𝑟𝑘 is fixed by O(𝑛) for any 𝑘 ∈ ℕ).
This is suggesting candidates for solitons. For instance, a
straightforward computation gives that if 𝑓 = 𝑟2𝑘𝑔 with
𝑔 ∈ ℋ𝑛,𝑑−2𝑘, then

𝑟2Δ𝑓 = 𝜆𝑘𝑓, where 𝜆𝑘 ≔ 2𝑘(2𝑑 − 2𝑘 + 𝑛 − 2), (4)

and thus 𝑓 is a soliton.3 Moreover, by writing any poly-
nomial according to (3) and using that 𝜆0 < 𝜆1 < 𝜆2 < ⋯
and 𝜃(𝔰𝔬(𝑛))𝑓 ⟂ 𝑓 for any 𝑓 ∈ 𝑃𝑛,𝑑, it is easy to see that any
soliton is actually of this form. Thus the subset of solitons
is precisely the union of the O(𝑛)-irreducible subspaces in
decomposition (3).

2Since 𝑟2𝑃𝑛,𝑑−2 is the orthogonal complement of ℋ𝑛,𝑑 in 𝑃𝑛,𝑑 , which is
straightforward to check, and hence Δ𝑃𝑛,𝑑 = 𝑃𝑛,𝑑−2.
3This is strongly related to the fact that 𝑑(𝑑 + 𝑛 − 2) is precisely the 𝑑th eigen-
value of the Laplace–Beltrami operator on the sphere 𝑆𝑛−1 with eigenspace
ℋ𝑛,𝑑 |𝑆𝑛−1 .

𝛾″(𝑡)

𝛾

Figure 2. Curvature of a plane curve.

Concerning evolution, given 𝑓 = 𝑓𝑗 + 𝑓𝑗+1 + ⋯ + 𝑓𝑘,
𝑓𝑗 , 𝑓𝑘 ≠ 0, 𝑗 < 𝑘, relative to decomposition (3) (i.e., 𝑓𝑖 ∈
𝑟2𝑖ℋ𝑛,𝑑−2𝑖), the solution to the corresponding flow

𝑑
𝑑𝑡
𝑓(𝑡) = −𝑟2Δ𝑓(𝑡), 𝑓(0) = 𝑓,

is given by 𝑓(𝑡) = 𝑒−𝑡𝜆𝑗𝑓𝑗 +⋯+ 𝑒−𝑡𝜆𝑘𝑓𝑘. This implies that

lim
𝑡→∞

1
|𝑓(𝑡)|

𝑓(𝑡) = 1
|𝑓𝑗 |

𝑓𝑗 ,

and so each polynomial in the open and dense subset of
𝑃𝑛,𝑑 defined by 𝑓0 ≠ 0 flows to some harmonic polynomial.
On the contrary, any polynomial 𝑓 with 𝑓0 = 0 will be
stopped in its way to ℋ𝑛,𝑑 by a soliton.

4. Plane Curves
Plane curves naturally flow according to their curvature,
and this may be considered as the gene of all geometric
flows.

Let Γ be the space of all regular plane curves,

Γ ≔ {𝛾 ∶ ℝ⟶ ℝ2 ∶ 𝛾 is differentiable}.
Two curves are considered equivalent if their traces coin-
cide up to rotations, translations, and scaling. We note
that an element of 𝑇𝛾Γ consists of a vector field along the
curve 𝛾 or, in other words, a smooth family of vectors, one
at each point of the trace of the curve (see Figure 2). After
assuming that 𝛾 is parametrized by arc length (i.e., |𝛾′| ≡ 1),
the most natural preferred or optimal direction is its “cur-
vature,”

𝑞(𝛾) ≔ 𝛾″.
Being a measure of how sensitive your constant velocity
car 𝛾′ is to passing through the point 𝛾(𝑠), 𝛾″(𝑠) certainly
provides a good perception of how curved the trace of 𝛾 is
at that point (see Figure 2).

The evolution equation defined by this preferred direc-
tion is called the curve shortening flow (CSF for short); the
following are just a few of its several wonderful properties:

• Each of the following kinds of curves is invariant un-
der the flow: embedded, closed, simple, and convex.
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Figure 3. The unique translating soliton is the Grim Reaper
found by Calabi, given by the graph of the function
𝑦 = − log(cos 𝑥). Its curvature produces the precise gentle
breeze needed to move it up without losing its shape.

• For closed curves, the CSF is precisely the negative gra-
dient flow of the length; that is, 𝑞(𝛾) = 𝛾″ is the op-
timal direction to shorten a closed curve, explaining
the name of the flow.

• Grayson proved that under CSF, any simple curve be-
comes convex (cf. Figure 2 and the opener image on
the right), and Gage–Hamilton showed that once it is
convex, it converges toward a round point (i.e., asymp-
totically becoming a circle), collapsing in finite time.

We note that according to the equivalence relation on
Γ considered above, a curve is a soliton if and only if it
evolves under CSF without losing its shape, i.e., by only a
combination of rotations, translations, and scalings (pos-
sibly expanding or shrinking). It is therefore easy to con-
vince ourselves that a circle 𝛾 is a soliton; indeed, 𝑞(𝛾) is
in the appropriate sense tangent to the subset of all circles
with the same center as 𝛾. It is not so easy, however, to fig-
ure out what would be another example of soliton, other
than straight lines, which are the trivial solitons with 𝑞 = 0.

The complete classification of CSF-solitons was ob-
tained by Halldorsson in [7]. We give in Figures 3, 4, 5,
and 6 examples of all the behaviors that appear. Note that
in particular solitons that translate and are scaled at the
same time do not exist.

Figure 4. Three shrinking solitons from the infinite discrete
family obtained in the classification by Abresch–Langer. Their
evolution consists of the very same flower, just reducing its
size.

1 x
1

y

1 x
1

y

Figure 5. Three expanding solitons (left) and one rotating
soliton (right).

1 x
1

y

1 x

1

y

Figure 6. Rotating and expanding soliton (left) and rotating
and shrinking soliton (right).

5. Lie Group Representations
As a massive generalization of the matrices example given
above, we may consider any linear action of a Lie group4 𝐺
on a real vector space 𝑉 . Thus Γ = 𝑉 , and a natural ques-
tion arises: What would be a distinguished vector 𝑣 ∈ 𝑉
analogous to a normal matrix? If we endow 𝑉 with an in-
ner product, then natural candidates are minimal vectors;
i.e., |𝑣| ≤ |ℎ ⋅ 𝑣| for any ℎ ∈ 𝐺 (recall the characteriza-
tion of normal matrices as minimal vectors in their conju-
gacy classes). Note that any closed 𝐺-orbit contains a min-
imal vector. The next question, more intriguing, is, What
should the other solitons be, playing the role of nilpotent
soliton matrices (see (2)) in this much more general con-
text?

Motivated by the following equation satisfied in the
case of matrices,

⟨[𝐴, 𝐴𝑡], 𝐵⟩ = 1
2

𝑑
𝑑𝑡
||𝑡=0

||𝑒𝑡𝐵𝐴𝑒−𝑡𝐵||2 ,

we fix inner products on the Lie algebra 𝔤 of 𝐺 and on
𝑉 and consider for each 𝑣 ∈ 𝑉 the element m(𝑣) ∈ 𝔤
implicitly defined by

⟨m(𝑣), 𝑋⟩ = 1
2

𝑑
𝑑𝑡
||𝑡=0 |exp 𝑡𝑋 ⋅ 𝑣|2 = ⟨𝜃(𝑋)𝑣, 𝑣⟩ ∀𝑋 ∈ 𝔤,

(5)

4A group that is also, compatibly, a differentiable manifold.
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where 𝜃 ∶ 𝔤 → 𝔤𝔩(𝑉) is the corresponding Lie algebra rep-

resentation (i.e., 𝜃(𝑋)𝑣 ≔ 𝑑
𝑑𝑡
||0 exp 𝑡𝑋 ⋅ 𝑣 ∈ 𝑇𝑣(𝐺 ⋅ 𝑣)). Thus

m(𝑣) encodes the behavior of the norm of vectors inside
the orbit 𝐺 ⋅ 𝑣 in a neighborhood of 𝑣. Moreover, by (5),
−𝜃(m(𝑣))𝑣 ∈ 𝑇𝑣(𝐺 ⋅ 𝑣) is the direction of fastest norm de-
creasing tangent to the orbit 𝐺 ⋅ 𝑣 at 𝑣, in the sense that

𝑑
𝑑𝑡
||0 | exp (−𝑡m(𝑣)) ⋅ 𝑣|

2 = −2⟨𝜃(m(𝑣))𝑣, 𝑣⟩ = −2|m(𝑣)|2

≤ 2⟨m(𝑣), 𝑋⟩ = ⟨2𝜃(𝑋)𝑣, 𝑣⟩

= 𝑑
𝑑𝑡
||0 | exp 𝑡𝑋 ⋅ 𝑣|2,

for any 𝑋 ∈ 𝔤 such that |𝑋| = |m(𝑣)|, where equality holds
if and only if 𝑋 = −m(𝑣) (note that any minimal vector 𝑣
satisfies m(𝑣) = 0).

We assume from now on that the following conditions
on the 𝐺-action on 𝑉 hold. If

𝔨 ≔ {𝑋 ∈ 𝔤 ∶ 𝜃(𝑋)𝑡 = −𝜃(𝑋)},
𝔭 ≔ {𝑋 ∈ 𝔤 ∶ 𝜃(𝑋)𝑡 = 𝜃(𝑋)},

then 𝔤 = 𝔨 ⊕ 𝔭 and 𝐺 = 𝐾 exp 𝔭, where 𝐾 ≔ {ℎ ∈ 𝐺 ∶
𝑣 ↦ ℎ ⋅ 𝑣 is orthogonal}. It follows that 𝔤 is reductive
(i.e., semisimple modulo an abelian factor), 𝔤 = 𝔨 ⊕ 𝔭
is a Cartan decomposition (i.e., [𝔨, 𝔨] ⊂ 𝔨, [𝔨, 𝔭] ⊂ 𝔭, and
[𝔭, 𝔭] ⊂ 𝔨), 𝐾 is a maximal compact subgroup of𝐺 with Lie
algebra 𝔨, and the function 𝐾 × 𝔭 → 𝐺, (ℎ, 𝑋) ↦ ℎ exp𝑋
is a diffeomorphism. By (5), m(𝑣) ∈ 𝔭 for any 𝑣 ∈ 𝑉 , and
the function m ∶ 𝑉 → 𝔭, called in GIT the moment map5

(or 𝐺-gradient map) for the action, is 𝐾-equivariant.
Similarly to matrices, we consider Γ = 𝑉 , [𝑣] = 𝐾 ⋅ 𝑣,

and as the preferred direction,

𝑞(𝑣) ≔ −grad(E)|𝑣, where E ∶ 𝑉 ⧵ {0} → ℝ,

E(𝑣) ≔ |m(𝑣)|2
|𝑣|2 ,

is the 𝐾-invariant functional measuring how far 𝑣 is from
being a minimal vector. Therefore, solitons are precisely

the critical points of E (i.e., 𝑞(𝑣) = 0), and 𝑑
𝑑𝑡
𝑣(𝑡) = 𝑞(𝑣(𝑡))

is the negative gradient flow of the functional E. A straight-
forward computation gives that

grad(E)|𝑣 =
4
|𝑣|2

(𝜃(m(𝑣))𝑣 − |m(𝑣)|2𝑣) ;

hence 𝑣 is a soliton if and only if

𝜃(m(𝑣))𝑣 ∈ ℝ𝑣. (6)

This suggests that, as in the case of matrices, there may be
solitons other than minimal vectors, probably having non-
closed 𝐺-orbits (see examples below). The following are
nice and important results from real GIT (see [3,9]):

5The suggestive name comes from the fact that if we complexify everything, then
m is precisely the moment map for the Hamiltonian action of 𝐾 on the complex
projective space 𝑃(𝑉ℂ).

• A 𝐺-orbit is closed if and only if it contains a minimal
vector. The closure of any𝐺-orbit contains exactly one
𝐾-orbit of minimal vectors.

• The subset of solitons of a given 𝐺-orbit is either
empty or consists of exactly one 𝐾-orbit (up to scal-
ing).

• Every soliton 𝑣 is a minimum of the functional E re-
stricted to 𝐺 ⋅ 𝑣. Solitons are therefore the vectors
closest to being a minimal vector in their 𝐺-orbit in
a sense.

• The negative gradient flow solution of E starting at any
𝑣 ∈ 𝑉 stays in 𝐺 ⋅ 𝑣 and converges as 𝑡 → ∞ to a
soliton 𝑤 ∈ 𝐺 ⋅ 𝑣. Moreover, there is exactly one 𝐾-
orbit (up to scaling) of solitons 𝑧 ∈ 𝐺 ⋅ 𝑣 such that
m(𝑧) ∈ 𝐾 ⋅m(𝑤), which is the limit set towards which
the whole orbit 𝐺 ⋅ 𝑣 is flowing.

In what follows, we analyze the existence of solitons on
some particular examples of representations.
Ternary cubics. Consider 𝐺 = SL3 acting on 𝑉 = 𝑃3,3, the
vector space of all homogeneous polynomials of degree 3
on 3 variables with real coefficients. It follows that 𝔤 =
𝔰𝔩3, 𝐾 = SO(3), 𝔨 = 𝔰𝔬(3), and 𝔭 = sym0(3), the space of
traceless symmetric 3 × 3 matrices. It is easy to compute
that the moment map m ∶ 𝑃3,3 → sym0(3) is given by

m(𝑓) = 𝐼 − 1
|𝑓|2

[⟨𝑥𝑗
𝜕𝑓
𝜕𝑥𝑖

, 𝑓⟩] .

Thusm(𝑥𝐷) = Diag(1−𝑑1, 1−𝑑2, 1−𝑑3) for anymonomial
𝑥𝐷, 𝐷 = (𝑑1, 𝑑2, 𝑑3), and so any monomial is a soliton by
(6)with critical valueE(𝑥𝐷) = −1+∑𝑑2𝑖 (this holds on any
𝑃𝑛,𝑑). It also easily follows that E(𝑝) = 0 for 𝑝 ≔ 𝑥1𝑥2𝑥3;
that is, 𝑝 is a minimal vector and its SL3-orbit is therefore
closed. On the other hand, the polynomials

𝑔 = 𝑥21𝑥3 + 𝑥1𝑥22 and 𝑓 = 𝑥21𝑥3 + ( 5
27
)
1
2 𝑥32

are both solitons with critical values E(𝑔) = 1
2
and E(𝑓) =

155
49

− 3 < 1
2
, respectively, which in particular implies that

𝑓 ∉ SL3 ⋅ 𝑔.
Algebras. We consider the vector space

𝑉 = 𝒜 ≔ {𝜇 ∶ ℝ𝑛 × ℝ𝑛 → ℝ𝑛 ∶ 𝜇 is bilinear},

parametrizing the set of all 𝑛-dimensional algebras over ℝ.
Note that isomorphism classes of algebras are precisely 𝐺-
orbits, where𝐺 = GL𝑛, relative to the standardGL𝑛-action
on 𝑉 given by ℎ ⋅ 𝜇 ≔ ℎ𝜇(ℎ−1⋅, ℎ−1⋅). The corresponding
representation,

𝜃(𝐴)𝜇 = 𝐴𝜇− 𝜇(𝐴⋅, ⋅) − 𝜇(⋅, 𝐴⋅) ∀𝐴 ∈ 𝔤𝔩𝑛, 𝜇 ∈ 𝒜, (7)

measures how far 𝐴 is from being a derivation of the al-
gebra 𝜇. Thus 𝔨 = 𝔰𝔬(𝑛), 𝔭 = sym(𝑛), 𝐾 = O(𝑛), and it
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is straightforward to see that the moment map m ∶ 𝒜 →
sym(𝑛) is given by

⟨m(𝜇)𝑋, 𝑋⟩ = − 1
2
∑⟨𝜇(𝑒𝑖, 𝑒𝑗), 𝑋⟩2 (8)

+ 1
8
∑⟨𝜇(𝑋, 𝑒𝑖), 𝑒𝑗⟩2

+ 1
8
∑⟨𝜇(𝑒𝑖, 𝑋), 𝑒𝑗⟩2 ∀𝑋 ∈ ℝ𝑛.

Since trm(𝜇) = −|𝜇|2 by (5) and (7), the only minimal
vector is the trivial algebra 𝜇 = 0, which is also the only
closed GL𝑛-orbit (note that actually 0 ∈ GL𝑛 ⋅ 𝜇 for any
𝜇 ∈ 𝒜). However, there are closed SL𝑛-orbits and SL𝑛-
minimal vectors.

According to (6), an algebra product 𝜇 ∈ 𝒜 is a soliton
if and only if the following nice compatibility condition
between 𝜇 and the fixed inner product ⟨⋅, ⋅⟩ holds:

m(𝜇) = 𝑐𝐼 + 𝐷, 𝑐 ∈ ℝ, 𝐷 ∈ Der(𝜇). (9)

Which algebras are isomorphic to a soliton? How special
are they?
Lie algebras. We now list only a few of several known
results on solitons in the case of Lie algebras (see [12]).
Note that the set of all 𝑛-dimensional Lie algebras is
parametrized by the GL𝑛-invariant algebraic subset

ℒ ⊂ 𝒜 (10)

of all algebras that are in addition skew-symmetric and sat-
isfy the Jacobi condition,6 called the variety of Lie algebras.

• SL𝑛 ⋅ 𝜇 is closed if and only if 𝜇 is semisimple. More-
over, 𝜇 is an SL𝑛-minimal vector if and only if the
Killing form𝐵𝜇 is either a negativemultiple of ⟨⋅, ⋅⟩ and
𝜇 is compact semisimple, or 𝐵𝜇 has exactly two oppo-
site eigenvalues (relative to ⟨⋅, ⋅⟩) and the eigenspace
decomposition is a Cartan decomposition.

• There is a soliton in the isomorphism class of each of
the fifty nilpotent Lie algebras of dimension ≤ 6 (see
[20]). In dimension 7, there are infinitely many nilpo-
tent Lie algebras that are not isomorphic to a soliton,
and a complete classification was obtained in [6].

• The only known general obstruction in the nilpotent
case is that any soliton 𝜇 has to admit an ℕ-gradation.
Everything seems to indicate that a full structural char-
acterization of nilpotent solitons may be hopeless.

• A Lie algebra 𝜇 is a soliton if and only if its nilradical 𝔫
is a soliton and the orthogonal complement 𝔯 of 𝔫 is
a reductive Lie algebra such that ad𝜇 𝑋|𝑡𝔫 ∈ Der(𝔫) for
any 𝑋 ∈ 𝔯. In that case, ad𝜇 𝑋|𝔫 is a normal operator
for any 𝑋 in the center of 𝔯 and the subspaces 𝔨 ≔ {𝑋 ∶
ad𝜇 𝑋|𝑡𝔫 = −ad𝜇 𝑋|𝔫} and 𝔭 ≔ {𝑋 ∶ ad𝜇 𝑋|𝑡𝔫 = ad𝜇 𝑋|𝔫}
give rise to a Cartan decomposition [𝔯, 𝔯] = 𝔨 ⊕ 𝔭 of
the semisimple Lie subalgebra [𝔯, 𝔯].

6𝜇(𝜇(𝑒𝑖 , 𝑒𝑗), 𝑒𝑘) + 𝜇(𝜇(𝑒𝑗 , 𝑒𝑘), 𝑒𝑖) + 𝜇(𝜇(𝑒𝑘, 𝑒𝑖), 𝑒𝑗) = 0 for all 𝑖, 𝑗, 𝑘.

The study of soliton Lie algebras was stronglymotivated
by their relationship with left-invariant Ricci solitons and
Einsteinmetrics on Lie groups (see [12]). The author is not
aware of any study of solitons in other classes of algebras,
such as associative or Jordan algebras.

6. Geometric Structures
Let 𝑀 be a differentiable manifold. We consider the
space Γ of all geometric structures on 𝑀 of a given type,
e.g., Riemannian metrics, almost-Hermitian structures, 𝐺2-
structures, etc. As usual, Γ is identified with a subset of the
vector space 𝒯𝑟,𝑠𝑀 of all tensor fields of some type (𝑟, 𝑠),
or tuples of tensors, and the equivalence relation is scal-
ing and pulling back by diffeomorphisms. Thus the equiv-
alence class of 𝛾 ∈ Γ is determined by the natural action
of the group 𝐻 ≔ Diff(𝑀) × ℝ∗ on tensor fields:

[𝛾] ≔ 𝐻 ⋅ 𝛾 = {𝑐ℎ∗𝛾 ∶ 𝑐 ∈ ℝ∗, ℎ ∈ Diff(𝑀)}.
The preferred direction

𝛾 ↦ 𝑞(𝛾) ∈ 𝑇𝛾Γ ⊂ 𝒯𝑟,𝑠𝑀
is typically given by a curvature tensor associated to some
affine connection associated with 𝛾, or the gradient of
a natural geometric functional, or the Hodge–Laplacian
on differential forms, etc. Thus 𝑞 is in most cases dif-
feomorphism equivariant, i.e., 𝑞(ℎ∗𝛾) = ℎ∗𝑞(𝛾) for any
ℎ ∈ Diff(𝑀), which implies that if 𝛾 is a soliton, then any
ℎ∗𝛾 is also a soliton.
Γ is many times open in a vector subspace 𝒯 ⊂ 𝒯𝑟,𝑠𝑀,

in which case one has that 𝑇𝛾Γ = 𝒯, and so any tensor
field in 𝒯 can be the “direction of improvement” 𝑞(𝛾) at
the structure 𝛾 ∈ Γ.

Once the space Γ and the preferred direction 𝑞 have
been specified, it follows from (1) that 𝛾 ∈ Γ is a soliton if
and only if

𝑞(𝛾) ∈ 𝑇𝛾(𝐻 ⋅ 𝛾), 𝐻 = Diff(𝑀) × ℝ∗,
which is equivalent to

𝑞(𝛾) = 𝑐𝛾 + ℒ𝑋𝛾, 𝑐 ∈ ℝ, 𝑋 ∈ 𝔛(𝑀), (11)

where ℒ𝑋 denotes the Lie derivative with respect to the
vector field 𝑋 of 𝑀. Indeed, recall that if 𝑋 is defined by a
one-parameter family 𝑓(𝑡) ∈ Diff(𝑀) with 𝑓(0) = id, then
𝑑
𝑑𝑡
||0 𝑓(𝑡)

∗𝛾 = ℒ𝑋𝛾.

Example 6.1 (Ricci solitons). Consider Γ = ℳ, the space
of all Riemannian metrics on 𝑀. Thus ℳ is open in 𝒯 =
𝒮2𝑀 ⊂ 𝒯2,0𝑀, the vector space of all symmetric 2-tensors
on 𝑀. A natural preferred direction is 𝑞(𝑔) ≔ −2Ric𝑔,
where Ric𝑔 is the Ricci tensor of the metric 𝑔 ∈ ℳ, giv-
ing rise to the well-known Ricci solitons (see [5, Chap-
ter 1]). Note that the corresponding evolution equation

is precisely the famous Ricci flow
𝜕
𝜕𝑡
𝑔(𝑡) = −2Ric𝑔(𝑡) in-

troduced in the 1980s by Hamilton and used as a primary
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tool by Perelman to prove the Poincaré and geometriza-
tion conjectures.

In the case we want to consider a space Γ of geomet-
ric structures satisfying some extra properties, e.g., an
integrability-like condition such as Hermitian, almost-
Kähler, or closedness/coclosedness for 𝐺2-structures, we
have to reduce accordingly the group 𝐻 ⊂ Diff(𝑀) × ℝ∗

determining the equivalence between structures. The pos-
sibilities for preferred directions also decrease, and the vec-
tor field 𝑋 in the definition of soliton (11) must be tangent
to 𝐻 as 𝑞(𝛾) ∈ 𝑇𝛾(𝐻 ⋅ 𝛾). Note that 𝑞 is assumed to be
only𝐻-equivariant in this situation rather than diffeomor-
phism equivariant. On the other hand, Γ is no longer open
in 𝒯.

Example 6.2. If a complex manifold (𝑀, 𝐽) is fixed and
Hermitian metrics or any other kind of geometric struc-
tures on (𝑀, 𝐽) are to be considered, then 𝐻 = Aut(𝑀, 𝐽) ×
ℝ∗, whereAut(𝑀, 𝐽) is the group of bi-holomorphic diffeo-
morphisms, 𝑞 is assumed to be onlyAut(𝑀, 𝐽)-equivariant,
and 𝑋 has to be a holomorphic field. Analogously, in the
symplectic case, 𝐻 = Aut(𝑀, 𝜔), the group of symplecto-
morphisms of a fixed symplectic manifold (𝑀, 𝜔).

Concerning the associated evolution equation,

𝜕
𝜕𝑡
𝛾(𝑡) = 𝑞(𝛾(𝑡)), 𝛾(0) = 𝛾, (12)

one easily obtains that 𝛾 is a soliton if and only if

𝛾(𝑡) = 𝑐(𝑡)𝑓(𝑡)∗𝛾, 𝑐(𝑡) ∈ ℝ, 𝑓(𝑡) ∈ Diff(𝑀); (13)

that is, 𝛾(𝑡) is a self-similar solution. It is worth pointing
out at this point that the natural preferred direction 𝑞 cho-
sen may or may not produce a flow, as the existence of
solutions to the PDE (12) is not always guaranteed. So
possibly, a study of solitons can be worked out without
any reference to a flow. An example of this situation is
Ricci solitons in pseudo-Riemannian geometry (see [4]).
On the other hand, even though the flow is not defined on
the whole space Γ, there may be special subclasses Γ′ ⊂ Γ
on which solutions to (12) do exist, e.g., homogeneous
structures (see below).

Assuming that the scaling behavior of the preferred di-
rection 𝑞 is given by 𝑞(𝑐𝛾) = 𝑐𝛼𝛾 for any 𝑐 ∈ ℝ∗, 𝛾 ∈ Γ, for
some fixed 𝛼 < 1, it is easy to check that the scaling in (13)
is given by

𝑐(𝑡) = ((1 − 𝛼)𝑐𝑡 + 1)
1

1−𝛼 ,

where 𝑐 is the constant appearing in the soliton equation
(11). The soliton 𝛾 is therefore called expanding, steady, or
shrinking depending on whether 𝑐 > 0, 𝑐 = 0, or 𝑐 < 0.
Themaximal time intervals of the self-similar solutions are

respectively given by

(−𝑇𝛼,∞) , (−∞,∞), (−∞,𝑇𝛼) ,

where 𝑇𝛼 ≔
1

(1 − 𝛼)|𝑐| > 0,

often called immortal, eternal, and ancient solutions, respec-
tively. For instance, 𝛼 = 0 if 𝑞 is the Ricci tensor or form
of any connection associated to a metric or to an almost-
Hermitian structure, and 𝛼 = 1

3
for most of the known

flows for 𝐺2-structures.
In what follows, we give an overview of different kinds

of solitons in complex, symplectic, and 𝐺2 geometries.
Chern–Ricci solitons. For a given complex manifold
(𝑀, 𝐽), consider the space Γ of all Hermitian metrics on 𝑀
(or 𝐽-invariant, i.e., 𝑔(𝐽⋅, 𝐽⋅) = 𝑔). Thus 𝒯 ⊂ 𝒯2,0𝑀 is the
vector space of holomorphic (or 𝐽-invariant) symmetric 2-
tensors, and the group providing the equivalence relation
is the subgroup𝐻 ⊂ Diff(𝑀) of bi-holomorphic diffeomor-
phisms (i.e., ℎ∗𝐽 = 𝐽). The Chern connection ∇𝐶 , being
the only Hermitian connection (i.e., ∇𝐶𝑔 = 0, ∇𝐶𝐽 = 0)
with an anti-𝐽-invariant torsion, provides us with the nat-
ural preferred direction 𝑞(𝑔) ≔ −2Ric𝐶𝑔 ∈ 𝒯, where Ric𝐶𝑔
is the corresponding Chern–Ricci tensor of the Hermitian
metric 𝑔. Note that 𝑔 is a soliton, called the Chern–Ricci
soliton, if and only if Ric𝐶𝑔 = 𝑐𝑔 + ℒ𝑋𝑔, for some 𝑐 ∈ ℝ
and holomorphic vector field 𝑋 on 𝑀. The correspond-
ing Chern–Ricci flow was introduced by Gill and has been
studied by Tosatti–Weinkove among others. Examples of
homogeneous Chern–Ricci solitons were given in [16].

Remark 6.3. Another possible preferred direction for Her-
mitian metrics is to just take the 𝐽-invariant part of the
Ricci tensor, given by

𝑞(𝑔) ≔ −Ric1,1𝑔 = − 1
2
(Ric𝑔 +Ric𝑔(𝐽⋅, 𝐽⋅)) .

This choice does not give rise to any geometric flow on the
set of all Hermitian metrics. However, as recently shown
by Lafuente–Pujia–Vezzoni, it coincides with the Hermit-
ian curvature flow (HCF for short) introduced by Streets–
Tian among left-invariant Hermitian metrics on complex
unimodular Lie groups.

Pluriclosed solitons. Consider now on (𝑀, 𝐽) the space Γ
of all Hermitian metrics on 𝑀 that satisfy the pluriclosed
condition 𝜕𝜕𝜔 = 0, where 𝜔 = 𝑔(𝐽⋅, ⋅) ∈ Ω2𝑀 (also
called SKT metrics). A natural preferred direction here

is given by 𝑞(𝑔) ≔ − (Ric𝐵𝑔 )
1,1

, where Ric𝐵𝑔 denotes the
Bismut–Ricci tensor of 𝑔 associated to the Bismut connec-
tion.7 Pluriclosed solitons (i.e., Ric𝐵𝑔 = 𝑐𝑔 + ℒ𝑋𝑔) and the
corresponding pluriclosed flow, which coincides withHCF

7The only Hermitian connection whose torsion satisfies that (𝑋, 𝑌, 𝑍) ↦
𝑔(𝑇 𝐵(𝑋, 𝑌), 𝑍) is a 3-form.
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on SKT metrics, have been studied by several authors (see
[1]).
Anticomplexified Ricci solitons. Let (𝑀, 𝜔) be a symplec-
tic manifold and let Γ denote the space of all compatible
metrics (i.e., 𝐽2 = −𝐼 if 𝜔 = 𝑔(𝐽⋅, ⋅)). For each 𝑔 ∈ Γ,
the pair (𝜔, 𝑔) is called an almost-Kähler structure (in other
words, an almost-Hermitian structure (𝜔, 𝑔, 𝐽) such that
𝑑𝜔 = 0). It follows that 𝒯 is the vector space of anti-
𝐽-invariant symmetric 2-tensors (i.e., 𝑞(𝐽⋅, 𝐽⋅) = −𝑞) and
𝐻 ⊂ Diff(𝑀) is the subgroup of symplectomorphisms (i.e.,
ℎ∗𝜔 = 𝜔). As a preferred direction, the simplest option is

𝑞(𝑔) ≔ Ric2,0+0,2𝑔 = 1
2
(Ric𝑔 −Ric𝑔(𝐽⋅, 𝐽⋅)) ,

the anti-𝐽-invariant part of the Ricci tensor Ric𝑔. This flow
was introduced by Le–Wang, and examples of homoge-
neous solitons were given by Fernández–Culma (see [13]).
Symplectic curvature flow solitons. We now consider the
larger and trickier space Γ of all almost-Hermitian struc-
tures (i.e., a 3-tuple (𝜔, 𝑔, 𝐽) such that 𝑔 = 𝜔(𝐽⋅, ⋅)) on a
manifold 𝑀. It is easy to see that in this case

𝒯 = {(𝜔, 𝑔) ∈ Ω2𝑀 × 𝒮2𝑀 ∶ 𝑔1,1 = 𝜔1,1(⋅, 𝐽⋅)} , (14)

and we take the full𝐻 = Diff(𝑀)×ℝ>0, so the equivalence
class of an almost-Hermitian structure 𝛾 = (𝜔, 𝑔) is given
by [(𝜔, 𝑔)] = {(𝑐ℎ∗𝜔, 𝑐ℎ∗𝑔) ∶ 𝑐 ∈ ℝ∗, ℎ ∈ Diff(𝑀)}.

As above, we consider the Chern–Ricci tensor Ric𝐶(𝜔,𝑔)
and the corresponding Chern–Ricci form 𝑝(𝜔, 𝑔) ≔
Ric𝐶(𝜔,𝑔)(𝐽⋅, ⋅), which is a very natural preferred direction at
𝜔 to choose (indeed, 𝑑𝑝 = 0 if 𝑑𝜔 = 0, so 𝑝 is tangent
to the set of almost-Kähler structures). According to (14),
the 𝐽-invariant part of the preferred direction at 𝑔 must be
given by 𝑝(𝜔, 𝑔)1,1(⋅, 𝐽⋅); hence it only remains to set the
anti-𝐽-invariant part, for which we can just choose the sim-
plest one considered above. In this way, we arrive at the
following natural preferred direction:

𝑞(𝜔, 𝑔) ≔ (𝑝(𝜔, 𝑔), 𝑝(𝜔, 𝑔)1,1(⋅, 𝐽⋅) + Ric2,0+0,2𝑔 ) ∈ 𝒯.
Thus (𝜔, 𝑔) is a soliton if and only if there exist 𝑐 ∈ ℝ and
𝑋 ∈ 𝔛(𝑀) such that

{ 𝑝(𝜔, 𝑔) = 𝑐𝜔 + ℒ𝑋𝜔,
𝑝1,1(⋅, 𝐽⋅) + Ric2,0+0,2 = 𝑐𝑔 + ℒ𝑋𝑔.

The flow is called symplectic curvature flow (SCF for short)
and was introduced by Streets–Tian; see [17] for a study of
homogeneous SCF-solitons. The fact that the three struc-
tures 𝜔, 𝑔, and 𝐽 are actually evolving is particularly chal-
lenging.

Remark 6.4. The classification of complex surfaces is a ma-
jor problem motivating the study of all the above flows
among different subclasses of structures. They all coincide
with the Kähler–Ricci flow among Kähler stuctures (i.e.,
∇𝐽 = 0 for the Levi–Civita connection ∇ of 𝑔).

Laplacian solitons. A 𝐺2-structure on a 7-dimensional dif-
ferentiable manifold 𝑀 is a differential 3-form 𝜑 that is
positive (or definite), in the sense that 𝜑 (uniquely) de-
termines a Riemannian metric 𝑔 on 𝑀 together with an
orientation. The space Γ of all 𝐺2-structures on 𝑀 is an
open subset of 𝒯 = Ω3𝑀 ⊂ 𝒯3,0, and the equivalence is
determined by 𝐻 = Diff(𝑀) × ℝ∗. A very natural preferred
direction is 𝑞(𝜑) = Δ𝜑𝜑, where Δ𝜑 = ∗𝑑∗𝑑−𝑑∗𝑑∗ denotes
the Hodge Laplace operator on forms and ∗ the Hodge star
operator attached to 𝑔 and the orientation. Indeed, if𝑀 is
compact and Δ𝜑𝜑 = 0, then 𝑔 is Ricci flat and has holo-
nomy group contained in the exceptional compact simple
Lie group 𝐺2.

The corresponding Laplacian flow
𝜕
𝜕𝑡
𝜑(𝑡) = Δ𝜑(𝑡)𝜑(𝑡)was

introduced back in 1992 by Bryant as a tool to try to de-
form closed 𝐺2-structures toward holonomy 𝐺2 and has
recently been deeply studied by Lotay–Wei (see [18]). We
refer to [14] for an account of the existence and structure
of Laplacian solitons. Interestingly, the shrinking Lapla-
cian solitons found on certain solvable Lie groups are the
only Laplacian flow solutions with a finite-time singularity
known so far.

7. Geometric Structures on Lie Groups
The role of (locally) homogeneous manifolds in Ricci flow
theory has been very important (see [2]). More recently,
Lie groups have also played an even stronger role in the
study of geometric flows in complex, symplectic, and ex-
ceptional holonomy geometries, due mainly to the lack of
explicit examples (see [13]).

We continue in this section the study of solitons in dif-
ferential geometry initiated above. However, our fixed
manifold is here a Lie group8 𝐺, and we assume that Γ con-
sists of left-invariant geometric structures, i.e., 𝐿∗𝑎𝛾 = 𝛾 for
any 𝑎 ∈ 𝐺, where 𝐿𝑎 is the diffeomorphism of 𝐺 defined
by 𝐿𝑎(𝑏) = 𝑎𝑏 for all 𝛾 ∈ Γ. Thus each 𝛾 is determined by
its value at the identity 𝑒 ∈ 𝐺 and so is identified with the
tensor 𝛾𝑒 (or a tuple of tensors) on the Lie algebra 𝔤 = 𝑇𝑒𝐺
of 𝐺. In this way,

Γ ⊂ 𝑇𝑟,𝑠𝔤,
the finite-dimensional vector space of all left-invariant ten-
sor fields of type (𝑟, 𝑠) on 𝐺. Note that Γ is usually con-
tained in a singleGL(𝔤)-orbit, which ismany times open in
some suitable vector subspace 𝑇 ⊂ 𝑇𝑟,𝑠𝔤 (e.g., inner prod-
ucts, nondegenerate 2-forms, almost-Hermitian structures,
SU(3)-structures, positive 3-forms, etc.).

Accordingly, we consider the equivalence between left-
invariant structures to be defined by scalings and the partic-
ular diffeomorphisms of 𝐺 that are also group morphisms,
i.e., by the group

𝐻 ≔ Aut(𝐺) × ℝ∗,
8A differentiable manifold that is also, compatibly, a group.
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which is identified with Aut(𝔤) × ℝ∗, where Aut(𝔤) is the
automorphism group of 𝔤, as 𝐺 is assumed to be simply
connected from now on.

Any preferred direction 𝑞 from the general case that is
diffeomorphism equivariant produces a left-invariant one.
Indeed, one obtains a preferred direction determined by a
function

𝛾 ↦ 𝑞(𝛾) ∈ 𝑇𝛾Γ ⊂ 𝑇𝑟,𝑠𝔤.
We therefore have that 𝛾 ∈ Γ is a soliton, called a semi-
algebraic soliton in the literature, if and only if

𝑞(𝛾) = 𝑐𝛾 + ℒ𝑋𝐷𝛾, 𝑐 ∈ ℝ, 𝐷 ∈ Der(𝔤), (15)

where 𝑋𝐷 ∈ 𝔛(𝐺) is defined at each point 𝑎 ∈ 𝐺 by

𝑋𝐷(𝑎) =
𝑑
𝑑𝑡
||𝑡=0 𝑓(𝑡)(𝑎) and 𝑓(𝑡) ∈ Aut(𝐺) is determined

by 𝑑𝑓(𝑡)|𝑒 = 𝑒𝑡𝐷 ∈ Aut(𝔤) (since 𝑋𝐷(𝑒) = 0, these fields are
never left invariant). Note that (𝐺, 𝛾) is also a soliton from
the general point of view considered in (11). It is easy to
check that, algebraically, the Lie derivative is simply given
by

ℒ𝑋𝐷𝛾 = −𝜃(𝐷)𝛾, (16)

where 𝜃 denotes the usual 𝔤𝔩(𝔤)-representation on tensors.
As in the general case, additional conditions on the deriva-
tion𝐷may apply if Γ satisfies extra properties (see Example
6.2).

Remark 7.1. These vector fields 𝑋𝐷 on Lie groups attached
to a derivation 𝐷 may be viewed as a generalization of lin-
ear vector fields on ℝ𝑛 (i.e., 𝑋𝑣 = 𝐴𝑣, 𝐴 ∈ 𝔤𝔩𝑛) and have
been strongly used in control theory since a pioneering ar-
ticle by Ayala–Tirao.

It is important to point out that in the Lie group case
considered in this section, the corresponding geometric
flow

𝑑
𝑑𝑡
𝛾(𝑡) = 𝑞(𝛾(𝑡)), 𝛾(0) = 𝛾, (17)

is actually an ODE rather than a PDE. In particular, short
time existence and uniqueness of solutions are always guar-
anteed. It is also known that |𝑞(𝛾(𝑡))|must blow up at any
finite-time singularity (see [13]). Note that 𝛾 is a semialge-
braic soliton if and only if the solution 𝛾(𝑡) to (17) is given
by 𝛾(𝑡) = 𝑐(𝑡)𝑓(𝑡)∗𝛾 for some 𝑐(𝑡) ∈ ℝ and 𝑓(𝑡) ∈ Aut(𝐺).

Due perhaps to its neat definition as a combination
of geometric and algebraic aspects of (𝐺, 𝛾) (cf. (15) and
(16)), the concept of semialgebraic soliton has a long and
fruitful history in the Ricci flow case (see [10–12]) and has
also been a quite useful tool to address the existence prob-
lem of soliton structures for all the geometric flows in com-
plex, symplectic, and 𝐺2 geometries given above.

Remark 7.2. Given a semialgebraic soliton (𝐺, 𝛾), if 𝐺 has
a cocompact discrete subgroup Λ, then the solution 𝛾(𝑡)
also solves (17) on the compact manifold 𝐺/Λ. However,
in general, the locally homogeneous manifold (𝐺/Λ, 𝛾) is
no longer a soliton, since the field 𝑋𝐷 does not descend

to 𝐺/Λ. The solution (𝐺/Λ, 𝛾(𝑡)) is very peculiar though:
it is “locally self-similar” in the sense that 𝛾(𝑡) is locally
equivalent to 𝛾 up to scaling for all 𝑡.
The moving-bracket approach. The following viewpoint
is suggested by the fact that all the geometric information
on a Lie group endowed with a left-invariant geometric
structure, say (𝐺, 𝛾), is encoded in just the tensor 𝛾 ∈ 𝑇𝑟,𝑠𝔤
and the Lie bracket 𝜇 of 𝔤. We consider the variety of Lie al-
gebras ℒ ⊂ Λ2𝔤∗⊗𝔤 as in (10) (i.e., the algebraic subset of
all Lie brackets on the vector space 𝔤) and fix a suitable ten-
sor 𝛾 on 𝔤. Each 𝜇 ∈ ℒ is therefore identified with (𝐺𝜇, 𝛾),
the simply connected Lie group 𝐺𝜇 with Lie algebra (𝔤, 𝜇)
endowed with the left-invariant geometric structure on 𝐺𝜇
defined by the fixed 𝛾:

𝜇⟷ (𝐺𝜇, 𝛾). (18)

The naturalGL(𝔤)-actions on tensors provide the following
key equivalence between geometric structures:

(𝐺ℎ⋅𝜇, 𝛾) −→≃ (𝐺𝜇, ℎ∗𝛾) ∀ℎ ∈ GL(𝔤), (19)

given by the Lie group isomorphism 𝐺ℎ⋅𝜇 → 𝐺𝜇 with de-
rivative ℎ−1. Since Γ ⊂ GL(𝔤) ⋅ 𝛾, it follows from (18) and
(19) that the isomorphism class GL(𝔤) ⋅ 𝜇 contains all geo-
metric structures of the same type of 𝛾 (up to equivalence)
on the Lie group𝐺𝜇 for each 𝜇 ∈ ℒ. Thus one has insideℒ,
all together, all Lie groups of a given dimension endowed
with left-invariant geometric structures of a given type.

Remark 7.3. The usual convergence of a sequence of brack-
ets produces convergence of the corresponding geomet-
ric structures in well-known senses such as pointed (or
Cheeger–Gromov) and smooth up to pull-back by diffeo-
morphisms, under suitable conditions (see [13]). In par-
ticular, a degeneration (i.e., 𝜆 ∈ GL(𝔤) ⋅ 𝜇 ⧵GL(𝔤) ⋅ 𝜇) gives
rise to the convergence of a sequence of geometric struc-
tures on a given Lie group toward a structure on a different
Lie group, which may be nonhomeomorphic.

The moving-bracket approach has actually been used
for decades in homogeneous geometry (see [13, Section 5]
and [15]). In most applications, concepts and results from
GIT, including moment maps and their convexity proper-
ties, closed orbits, stability, categorical quotients, and Kir-
wan stratification, have been exploited in one way or an-
other.

A particularly fruitful interplay occurs in the Riemann-
ian case, which relies on the fact that if 𝜇 is nilpotent, then
the Ricci operator of (𝐺𝜇, ⟨⋅, ⋅⟩) is precisely the moment
mapm(𝜇) defined in (8) (up to scaling). This implies that,
remarkably, soliton nilpotent Lie algebras (see (9)) and
semialgebraic Ricci solitons (see (15) and (16)) on nilpo-
tent Lie groups (called nilsolitons) are the same thing. In
particular, the uniqueness up to isometry and scaling of
nilsolitons on a given nilpotent Lie group follow from the
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uniqueness of critical points of E(𝜇) = |m(𝜇)|2 on a given
nilpotent GL(𝔤)-orbit up to the action of O(𝔤) and scaling.
The bracket flow. Provided by equivalence (19), a main
tool to study the geometric flow (17) is a dynamical system
defined on the variety of Lie algebras ℒ called the bracket
flow, which is equivalent in a precise sense to the geometric
flow (17). It is defined by

𝑑
𝑑𝑡𝜇(𝑡) = 𝜃(𝑄𝜇(𝑡))𝜇(𝑡), 𝜇(0) = 𝜇, (20)

where 𝑄𝜇 ∈ 𝔤𝔩(𝔤) is a suitable (unique) operator such that

𝜃(𝑄𝜇)𝛾 = 𝑞(𝐺𝜇, 𝛾).9 Since
𝑑
𝑑𝑡
𝜇(𝑡) ∈ 𝑇𝜇(𝑡) (GL(𝔤) ⋅ 𝜇(𝑡)), the

solution 𝜇(𝑡) ∈ GL(𝔤) ⋅ 𝜇 for all 𝑡, and so each 𝜇(𝑡) rep-
resents a structure on 𝐺𝜇. However, 𝜇(𝑡) may converge to

a Lie bracket 𝜆 ∈ GL(𝔤) ⋅ 𝜇, i.e., toward a structure on a
different Lie group 𝐺𝜆 (cf. Remark 7.3). For instance, this
occurs already in dimension 3 for the Ricci flow.

The bracket flow is useful to better visualize the possi-
ble pointed limits of solutions under diverse rescalings, as
well as to address regularity issues. Immortal, ancient, and
self-similar solutions naturally arise from the qualitative
analysis of the bracket flow (see [1,2,13,17]).
Algebraic solitons. In light of the equivalence between
the flows (17) and (20), a natural question arises: How do
solitons evolve according to the bracket flow? It is natural
to expect an evolution of a very special kind.

If 𝜇 is a fixed point (up to scaling) of the bracket flow
(20), i.e., 𝜇(𝑡) = 𝑐(𝑡)𝜇 for 𝑐(𝑡) ∈ ℝ, then 𝜃(𝑄𝜇)𝜇 = −𝑐𝜇 for
some 𝑐 ∈ ℝ by evaluating (20) at 𝑡 = 0, and one obtains
from (7) that

𝑄𝜇 = 𝑐𝐼 + 𝐷, 𝑐 ∈ ℝ, 𝐷 ∈ Der(𝜇). (21)

In that case, (𝐺𝜇, 𝛾) is called an algebraic soliton. Note that
these are semialgebraic solitons, since by (16), 𝑞(𝐺𝜇, 𝛾) =
𝑐𝛾−ℒ𝑋𝐷𝛾 for some 𝑐 ∈ ℝ. They are distinguished though;
indeed, it is proved in [15] that in terms of the operator𝑄𝜇,
(𝐺𝜇, 𝛾) is a semialgebraic soliton if and only if 𝑄𝜇 = 𝑐𝐼 +
𝑝(𝐷) for some 𝑐 ∈ ℝ and 𝐷 ∈ Der(𝜇), where 𝑝 ∶ 𝔤𝔩(𝔤) → 𝔮
is the projection with respect to the decomposition10

𝔤𝔩(𝔤) = 𝔨 ⊕ 𝔮, 𝔨 ≔ {𝐴 ∈ 𝔤𝔩(𝔤) ∶ 𝜃(𝐴)𝛾 = 0}.

Thus algebraic solitons are the solitons for which𝑄𝜇 = 𝑐𝐼+
𝑝(𝐷) holds for a special derivation 𝐷 such that 𝑝(𝐷) = 𝐷
(see (21)).

Any Ricci soliton on a Lie group is isometric to an alge-
braic soliton (see [10]). On the other hand, examples of
Laplacian and pluriclosed semialgebraic solitons that are
not isometric to any algebraic soliton were found in [19]
and [1], respectively.

9The existence of such an operator relies on the fact that GL(𝔤) ⋅ 𝛾 is open in 𝑇.
10For instance, 𝑝(𝐷) = 1

2
(𝐷 + 𝐷𝑡) if 𝛾 is a metric or a closed 𝐺2-structure.

As expected, algebraic solitons are distinguished from
many other points of view. Some of the results supporting
this follow:

• Consider the Ricci pinching functional

𝐹(𝑔) ≔
scal2𝑔
| Ric𝑔 |2

,

measuring in a sense how far a homogeneous metric
𝑔 is from being Einstein (indeed, 𝐹(𝑔) ≤ dim𝑀, and
equality holds if and only if (𝑀, 𝑔) is Einstein). As
shown by Lauret–Will, algebraic Ricci solitons are pre-
cisely the global maxima for 𝐹 restricted to the set of
all left-invariantmetrics on any unimodular Lie group,
as well as on any solvable Lie group with codimension
one nilradical.

• Böhm–Lafuente proved that the dimension of the
isometry group of an algebraic Ricci soliton on a solv-
able Lie group 𝑆 (called solvsolitons) is maximal among
all left-invariant metrics on 𝑆. A stronger symmetry
maximality condition was shown to hold in the case
when 𝑆 is in addition unimodular by Jablonski: the
isometry group of a solvsoliton contains all possible
isometry groups of left-invariant metrics on 𝑆 up to
conjugation by a diffeomorphism.

• A closed𝐺2-structure𝜑 is called extremally Ricci-pinched
(ERP for short) if

𝑑𝜏 = 1
6
|𝜏|2𝜑 + 1

6
∗ (𝜏 ∧ 𝜏),

where 𝜏 = −∗𝑑∗𝜑 is the torsion 2-form of 𝜑. They are
characterized in the compact case as the structures at
which equality holds in the following Ricci curvature
estimate for closed 𝐺2-structures discovered by Bryant:

∫
𝑀
scal2 ∗1 ≤ 3∫

𝑀
| Ric |2 ∗ 1. (22)

It was proved by Lauret–Nicolini that any left-
invariant ERP𝐺2-structure on a Lie group is necessarily
a steady algebraic Laplacian soliton and its attached
metric is an expanding algebraic Ricci soliton.

Concerning bracket flow evolution of a semialgebraic
soliton that is not algebraic, we know that 𝜇(𝑡)/|𝜇(𝑡)| is ei-
ther periodic or not periodic and the following chaotic be-
havior occurs: for each 𝑡0 there exists a sequence 𝑡𝑘 → ±∞
such that 𝜇(𝑡𝑘)/|𝜇(𝑡𝑘)| converges to 𝜇(𝑡0)/|𝜇(𝑡0)| (see [15]).
The existence of a soliton of this last kind is an open prob-
lem.

Remark 7.4. More generally, the whole picture developed
in this section essentially works for 𝐺-invariant geometric
structures on a homogeneous space 𝐺/𝐾, though a more
technical exposition would be necessary (see [13,15]).
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8. Concluding Remarks
As discussed in the Introduction, solitons play the role of
“best” elements in a given set in the case when the most
natural ones are not available. A main aim of this article
was to show how fruitful this has been in the study of geo-
metric structures onmanifolds, with particular strength on
Lie groups.

On each solvable Lie group, there is at most one solv-
soliton up to isometry and scaling. This allows us to en-
dow several Lie groups that do not admit Einstein metrics
(e.g., nilpotent or unimodular solvable Lie groups) with a
canonical Riemannian metric. Analogously, Chern–Ricci,
pluriclosed, and HCF (resp., SCF) algebraic solitons pro-
vide distinguished Hermitian (resp., almost-Kähler) struc-
tures for Lie groups on which Kähler metrics do not exist.
Laplacian algebraic solitons play the same role in the ho-
mogeneous case, where holonomy 𝐺2 is out of reach since
Ricci flat implies flat.

The moving-bracket approach allows the rich interplay
between soliton geometric structures on Lie groups and
soliton Lie algebras, paving the way to many beautiful ap-
plications of GIT to differential geometry.
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EARLY CAREER
The Early Career Section offers information and suggestions for graduate students, job seekers, early career academics 
of all types, and those who mentor them. Angela Gibney serves as the editor of this section. Next month’s theme will 
be variations in academic math jobs.
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I interpret this breakdown literally and typically set 
aside two full days each week for undistracted research 
time, two days for teaching (prep, lectures, office hours, 
meeting with students, grading, reading courses, student 
learning seminars), and one day for service. In practice the 
teaching and service days blur together, and I also set aside 
a day for (mostly) nonacademic work (errands, shopping, 
food prep, coordinating travel, processing email (usually 
in batch mode), and planning out my week).

My research time is sacred. One would never skip teach-
ing a lecture or a committee meeting for reasons related to 
research, and I encourage the converse. Work off campus 
if necessary, or at least with a closed door, headphones on, 
immune to distraction.

Create (and protect) research time. I used to “joke” 
with contemporaneous early career faculty that our work-
load doubled each year. The joke quickly aged.

I recommend reading some book like Getting Things 
Done by David Allen or Deep Work by Cal Newport, or the 
archives of an academic blog with a heavy advice subtheme 
(e.g., by Terry Tao1 or Matt Might2). Here are a few ways 
that I implement their ideas.

Become organized. A main message of books like Get-
ting Things Done is: if you can do something in 1–2 minutes, 
just do it; otherwise, schedule when you are planning to 
do it and put it out of sight and (especially) out of mind 
until then.

I do this via a calendar (synced with my phone, tablet, 
etc.). If I have a recommendation letter to write (or slides 
to make, PhD applications to read, etc.), I schedule a block 
of time (not just a reminder) to work on the task.

When I get a request to (for example) upload an already 
written recommendation to yet another UC school, I do it 
immediately (and organize so that it takes literally under 
a minute).

Email. Process in batch mode. Usually I’ll set aside a few 
hours over the weekend to handle as many menial tasks as 
I can all at once. Throughout the week, I’ll usually set aside 
half an hour for email in the mornings and another fifteen 
minutes at the end of the day, and otherwise I mostly don’t 
check email (especially not on my phone, which might 
reveal some task that I can’t attend to right away).
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How to Balance Research 
with Everything Else 
We Have to Do

David Zureick-Brown

My institution’s tenure and promotion guidelines describe 
my position as “40% research, 40% teaching, 20% service.” 
Teaching includes three courses each year, but also advising 
PhD or honors thesis students, and service includes com-
mittees, organizing conferences, refereeing, recommenda-
tion letters, etc.

David Zureick-Brown is an associate professor of mathematics at Emory 
University. His email address is david.zureick.brown@gmail.com.

For permission to reprint this article, please contact: reprint-permission 
@ams.org.

DOI: https://dx.doi.org/10.1090/noti2080

1https://terrytao.wordpress.com/career-advice/
2http://matt.might.net/articles/productivity-tips-hints 
-hacks-tricks-for-grad-students-academics/
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work with little guidance, and reaching out to experienced 
colleagues can be productive and therapeutic.

Credits
Author photo is courtesy of Sarah Zureick-Brown.

How to Read 
a Research Paper

Matt Baker

Before attempting to read a research paper, I recommend 
first deciding why you want to read it, what you hope to 
get out of the paper, and how much time you’re willing to 
commit. Then place the paper into one of the following 
three categories:

 • Speed Read: A paper whose introduction you plan 
to read in order to get an overview of the results 
and then possibly skim further.

 • Substantial Skim: A paper that you plan to skim 
all the way through, perhaps reading certain parts 
in detail.

 • Deep Dive: A paper that you wish to thoroughly 
study and understand.

It’s useful to have different categories because there’s so 
much interesting math research produced every day, and 
it’s impossible to keep up with everything. I go through the 
arXiv preprint listings in three different categories almost 
religiously every single morning. I get email notifications 
for all new postings and revisions in these categories, and I 
make an effort most days to “speed read” at least one new 
paper while drinking my morning coffee. I also bookmark 
papers to come back to later (although to be honest, I 
end up not having time to come back to many of these). 
Skimming through the arXiv abstracts in the daily digest 
and then speed reading at least one paper a day keeps me 
feeling in touch with what’s happening in the fields I’m 
most interested in.

Focus. I turn off most mobile notifications and set my 
phone to “do not disturb.” I stay off social media when 
working, and (worth emphasizing again) I don’t check 
email as a distraction (new work will manifest, and if I can’t 
dedicate 10–20 minutes to process, then this lingers and 
distracts). Any emails related to a joint project are printed 
to pdf and put in a folder related to that project as they 
arrive so that I don’t need to check email when working.

Automate. I coordinate our weekly Algebra and Number 
Theory research seminar. For each outside speaker, I send 
5–6 emails (announcing the seminar, requesting that the 
staff make and post flyers, processing reimbursement, etc.). 
The emails are basically the same every week, with a few 
variables; I have a bash script that writes the emails for me.

Saying no. Initially I accepted every reasonable referee 
request. Eventually, several senior colleagues explained 
that they turn down many requests. Good citizens seem 
to referee roughly three papers for each paper they submit, 
and I try to stick to that (even if the paper looks interesting 
and I’m an appropriate referee).

It’s difficult to say no, and psychologically, I needed 
“permission” to start declining requests. It was helpful 
that my department’s service expectations were clear and 
direct. Similarly, I found writing for Mathematical Reviews 
stressful and difficult but organizing conferences enjoyable 
and natural; these days I do more of the latter.

Efficiency. I could fill another article with habits and 
routines that create and protect time.

I bike to work: it takes about 25 minutes, compared to 
35–40 to drive and park. Our department has a shower on 
my floor. Cycling doubles as cardio and boosts my mood 
and mental health.

Each semester I poll students to find a time that accom-
modates everyone who might possibly attend office hours. 
I reserve a classroom for office hours. Students can show up 
even if they don’t have focused questions, and I can leave 
immediately when finished. (In any case I can’t fit more 
than 3–4 people in my office.)

I scan my lecture notes after each class; I include the date, 
lecture number, and course number in the filename, and 
keep a terse outline of what I covered each lecture. Teaching 
a course a second (or ninth…) time is a breeze, and this 
type of organization creates time and space to focus on 
improving the course. And if I’m stuck somewhere (e.g., 
delayed flight), I can access the notes via Dropbox and use 
that time for review and preparation.

In fact, I scan everything; my office is across from the 
printer/scanner, and Dropbox has a useful mobile app (if 
I have a meal receipt that needs to be reimbursed, I scan it 
immediately). If I give a chalkboard talk, I scan the notes 
(and put the scan somewhere easy to find again).

Discuss! I’ve had countless conversations about these 
topics (at tea, conference dinners, in hallways) and have 
benefited greatly. Our profession tends to pile on extra 

David Zureick-Brown
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my current research or I’ve agreed to referee it. But that’s 
an artifact of choices I’ve made and priorities I’ve set in 
my own life, and of course if you really want to build up a 
formidable knowledge base, you should take Deep Dives 
as often as possible. If, like me, you’re constantly feeling 
busy and overwhelmed, another way to “read” a paper is 
to assign it to a student to explain to you! Or put together 
a study group and parcel out the task to various students 
and colleagues. I did this recently with the paper “Lorent-
zian Polynomials” by Petter Brändén and June Huh over 
the course of a whole semester. (For an example of how 
to organize such a seminar, see https://sites.google 
.com/view/gtlorentzian.)

One other thing I think is important is to read widely 
and try to push the boundaries of your understanding. Es-
pecially with Speed Reads and Substantial Skims, don’t just 
read a bunch of papers about the same topic all the time. 
By reading about different topics within a short time frame, 
your brain will automatically start to explore connections 
and begin thinking “outside the box.”

This is my own personal approach to reading math pa-
pers, and I don’t claim that the same techniques will work 
for everyone. But I do think that every working mathemati-
cian needs to develop a system for reading research papers 
in order to attain, over time, both the breadth and depth 
of knowledge required to keep up with the relentless but 
thrilling march of progress in modern mathematics.

Credits
Author photo is courtesy of the author.

With a Speed Read, I don’t spend a lot of time trying 
to come to terms with complex definitions or understand 
precisely why the hypotheses in various theorems are what 
they are; I just want to get an overall impression of the paper 
and learn something new, even if it’s mostly superficial 
knowledge. This kind of reading will take me about 15 
minutes for an average paper.

If the paper seems really interesting and I’m wanting 
to read and learn more, I’ll upgrade it to the “Substantial 
Skim” category and come back to it later in more detail. 
I’ve found that over time, the collection of quick impres-
sions I obtain through my Speed Reads actually provides 
a reasonably deep foundation for understanding various 
bits of the mathematical landscape at large.

For a smaller number of papers (roughly one a week, 
in my case, though the variance is high), I will do a more 
Substantial Skim. This involves reading through all of the 
definitions and statements, and at least some of the proofs, 
in the whole paper and making an attempt to actually 
understand what’s going on. My goal here is to embed 
the paper firmly enough into my mind that I’ll be able to 
incorporate some of the ideas into my thinking later on. 
When I read a paper in this way, I will sometimes jot down 
key definitions or statements (either in a physical notebook 
or Evernote file), and I might go through certain arguments 
carefully in order to understand particular points in detail. 
However, I don’t make an attempt to check the paper for 
correctness or try to fully understand all of the technical 
points. This is actually my favorite category of reading, be-
cause I learn a tremendous amount without having to put 
in too many hours of work. Depending on the complexity 
of the paper, this kind of reading might take me anywhere 
between one and three hours per 10 pages.

Finally, there’s the Deep Dive. These days, I probably do 
this for only about one paper every month or two (though 
when I was younger and less overwhelmed with respon-
sibilities, it was quite a bit more frequent). Here, I spend 
as much time as it takes to understand the definitions, 
the conditions of the theorems, and the logic behind the 
arguments. I will sometimes write out detailed notes in a 
notebook, and as often as possible I’ll stop reading and see 
if I can figure out the next step myself. If I’m really interested 
in understanding the paper and retaining the knowledge, 
I’ll try to explain the results to someone else; there’s no 
better way than teaching to internalize complex informa-
tion! I’ll also look up background facts in the references 
and, as long as it doesn’t lead to an exponential recursion, 
try to understand that material as well. And I’ll keep a list 
of typos or other errors I find and send it to the author as 
appropriate. This kind of reading can take anywhere from 
15 minutes to a couple of hours per page, depending on 
the subject matter and how familiar I am with the under-
lying concepts.

To be perfectly honest, these days I find the time for a 
Deep Dive only when a paper is either directly relevant to 

Matt Baker
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Postdoc Numero Uno: Midwest
Postdoc! First job! Two years. Upon arrival, in the early 
fall of so many years ago, I submitted my first NSF grant 
research proposal. In writing it, I realized, to my horror, 
that I was not interested in the problems I came up with 
and was proposing. The subsequent decline letter from the 
foundation only confirmed my suspicion that many others 
were in total agreement with me. Meantime, I had stumbled 
upon some new beautiful math, estimates for solutions to ∂

–
 

and applications to algebraic geometry. I started a learning 
seminar with faculty and graduate students. I asked myself 
a question, answered it, wrote two papers and my second 
NSF proposal, which was funded just in time for my second 
postdoc to begin.

Postdoc Numero Due: Germany
Postdoc! Second job! One year. Upon my arrival in Ger-
many, a math physicist said, “Ah! You are an algebraic ge-
ometer. Why don’t you explain to us, in a series of talks (not 
one, not two…a series of them, as many as you need), the 
action of the Heisenberg algebra on the cohomology of the 
Hilbert scheme of points on a surface?” I said, “Uh?” The 
truth is, I did not want to do it: I did not know that field; it 
would have been too much work; I wanted to focus on ∂

–
; I 

could not care less. I needed to get out of this predicament. 
But the physicist was…my office mate. I tried avoiding him. 
I failed. He was gently persistent. Hey, he was a fun guy 
with a great disposition—towards math, and towards life. 
I started reading up. Wow! Love at fifteenth sight. It took 
a lot of work to start realizing that I liked very much what 
I was not fully understanding. By the end of the year, my 
second postdoc was over; I was working a little bit on the 
∂
–

 project, and more on Hilbert schemes.

Postdoc Numero Tre: East Coast
Postdoc! Third job! One year. Fancy US institution. Fellow-
ship from the AMS (thank you). Stellar mentor. But (there 
is always a “but”) I felt something was a bit off: I had been 
awarded the NSF grant, the fellowship, and the postdoc be-
cause of ∂

–
, but I could not stop binging on Hilbert schemes. 

Was I even on the right track? Upon arrival, a newly minted 
postdoc, a fellow algebraic geometer, explained in very, 
very lengthy detail his achievements and his goals. He 
asked me about my work, and ten seconds into my pitch, 
he dismissed me quickly: “That’s not algebraic geometry.” 
What should you do when something like this happens? 
I smiled. During that year, I ended up devoting a lot of 
my attention to finding a tenure-track job, giving over two 
dozen talks, and straddling the two research topics. I know 
now that nothing was off. Math, as a whole, must invest in 
its own future: encourage young people to try new things.

Tenure-Track: Long Island
Tenure-track! Move to Long Island. Benefits, tenure-clock, 
dean, sub-dean, uber-dean, mini-dean, provost, president, 

Changing Focus

Mark Andrea de Cataldo 

Alla memoria di mamma e papà, con amore.

I write down here a few thoughts about changing the 
direction of one’s research, mostly by referring to my per-
sonal experience. It is not my intention to have the reader 
interpret my writing as a description of a move towards 
“better” math (whatever that means). Very plainly, I have 
tried to share selected memories of what happened when I 
met new math that I found to be interesting and beautiful. 
Math that I could not resist. It would be silly to try to pose 
that what follows contains any kind of universal truth. I 
hope the young reader glances at these recollections and 
draws some hopefully useful conclusions.

In My Youth
In my youth, I had lots of fun playing rugby as a left-wing 
for the University of Milano. In this role, change of pace 
and direction are very important, and they occur as if in a 
dizzying ride, the result of the split-second decisions you 
make running with the ball. The speed at which they occur 
notwithstanding, these changes are planned. On the other 
hand, I think that, more often than not, the changing of 
research direction does not occur because of a choice made 
at one point in time. Oftentimes, it is the result of a series 
of (mostly) fortunate events. This new evolution is not a 
sudden occurrence but the result of a mental disposition 
towards the beautiful math that comes to us by reading, 
thinking, working out problems, writing, and, most impor-
tantly, talking to people.

Grad School: Midwest
As a graduate student, I had been working on a problem I 
did not like. Ah! What a unique situation I found myself in. 
At that time, higher-dimensional algebraic geometry was in 
a boom (still is), and, darn it, I wanted to be part of it. So I 
set myself to work on it, drop my problem, change advisor, 
and do great new things. Bust! It came to nothing. The field 
itself was very exciting, but I was unprepared to enter it 
for what I now think was the wrong reason. I backtracked. 
However, I did not go back to the old line of work. With 
the help of my (very patient) advisor, I found myself a new 
problem, involving the special properties of codimension 
two submanifolds of complex hyperquadrics, solved it for 
the most part, and got a few papers out of it. And a degree.

Mark Andrea de Cataldo is a professor of mathematics at SUNY Stony 
Brook. His email address is mark.decataldo@stonybrook.edu.
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assign to myself (now that I'm the mentor!) to make sure 
that my students and I have a fun and productive experi-
ence.

But first, a reminder: Whom you mentor matters. Stu-
dents form their mathematician identity through their 
experiences with us, the mathematicians in their lives. Our 
outside recognition of them as “the kind of people who do 
math” is a component of this development, especially for 
students who don’t see themselves represented in math-
ematics often or at all. For an entry into the literature on 
this topic, see the recent paper [RCJ19] and its thorough 
bibliography. The upshot? Inviting students from under-
represented groups in mathematics to work on our research 
projects is one way of committing to diversity and inclusion 
in our profession.

Exercises
I recommend completing these exercises several months 
in advance of your anticipated research project with un-
dergraduates. For example, if you are thinking of working 
with students over a summer, consider working on them 
between the fall and spring semesters.

Exercise 1. Answer two questions: What do you hope 
to get from the collaboration? What do you hope your 
students get from it?

Your answers here (and below) don’t need to be deep, 
philosophical reflections; keep it workable. For example, 
when I was a pretenure REU mentor, my goal for me was to 
produce a paper with my team. My goal for my team was to 
give them each ownership over specific parts of the project.

It’s a good time to state that every piece of advice comes 
with exceptions! While I usually ask students to work on a 
project I designed, I’ve had gung-ho students pursue their 
own problems, and they’ve come up with surprising (to 
me) approaches and results. In those cases, I revised my 
goals for myself and made sure I felt like I had enough 
background to jump in and help.

Exercise 2. Write up a project proposal, including the 
problem(s) and a potential pathway to a solution.

The first time I did this, I didn’t have a choice. I had 
agreed to be a visiting REU mentor, and I had to write this 
as part of the grant proposal. I think it’s the most useful 
exercise on the list. From this, you will figure out what kind 
of background your future research students will need and 
what supplemental material they’ll need to learn. You will 
start to see how to divide up the project into parts.

You can guide students along a path and stay a few 
steps ahead of them. You can even assign students some 
preliminary homework if they seem interested in working 
on research with you!

Exercise 3. Decide on the length of the collaboration 
and structure your time.
1. Break the project into phases: ramp-up (literature re-

view, “classes” to cover background material, and time 
for students to build up stamina), active research, and 

chair, departmental politics, grant proposals, teaching, set-
ting up a webpage (1999! Still have the same one; looks like 
it’s from 1993). More importantly, what to do mathwise? 
My good old friend ∂

–
 was no longer on my horizon. Hilbert 

schemes? Yes, but it was not the Hilbert schemes anymore, 
really. Somehow, the topology of complex algebraic vari-
eties, with its difficulties, was occupying my thoughts. It 
had started dwelling in my mind without much fanfare as 
a result of thinking about Hilbert schemes. It was there, 
and it did not budge. What was going to happen? I was on 
tenure-track, needed to write papers, get grants, and this 
math was so new to me (and so weirdly exciting). What if 
it did not pan out? What about the grant renewal? Tenure 
(tick-tock)? In the end, there was really no choice. It was 
too interesting, difficult, and beautiful. The light was too 
blinding. I went towards it, and that was it. Luckily, as it 
turned out, it was not a truck.

Today
Undergrad years, compulsory military service, grad school, 
postdocs, tenure-track, promotions… It’s all a vivid, awe-
some blur. There have been more changes in direction since 
then, but, at least mathwise, none more pronounced than 
the ones of my younger years. When I look back (when do 
I do that? There’s no time!), it seems to me that the real 
changes of direction in my research were not recognized 
by me as such when they started happening: I was simply 
drawn to work on something that fascinated me, and to 
do that, I needed to learn and discover new math. And it 
was fun, pure and simple. At some point, suddenly, I found 
myself already moving in a new direction. It seems that 
there was no moment in time when I made a conscious 
decision to change. Quite simply, it just happened. And I 
am very, very happy it did.

Mentoring Undergraduate 
Research: Advanced 
Planning Tools and Tips

Courtney R. Gibbons

My first experience with mentoring undergraduate re-
searchers was as the undergraduate mentee, and the critical 
importance of that summer features prominently in my 
mathematical coming-of-age story. That summer was a suc-
cess because my mentor had a pretty clear idea of what we 
would do: the problem, the schedule, the follow-up. With 
this in mind, I’m sharing five homework exercises that I  
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ramp-down (writing up results in various formats). Fill 
in some of the details for each phase. What topics will 
you cover? What software will your students learn to 
use? What will students be responsible for presenting?

2. Draft a sample weekly and daily schedule. Big blocks of 
unstructured time are great for research if you already 
know how to support your research process. Those 
doing research for the first time benefit from having 
finite chunks of time planned for specific purposes.

Your weekly schedule can include a lunch outing, times 
for group meetings, or whatever you like to break the time 
up. For first-time researchers, I schedule 2–3 hours twice 
a week to sit side by side and work on math so that I can 
help them develop research practices for what to do when 
they’re stuck. If there are other faculty working with stu-
dents along a similar timeline, I coordinate with them to 
have joint “show-and-tell” meetings.

Exercise 4. Write a paragraph dedicated to your future 
research student to share your expectations for them and 
yourself. How much time do you expect them to work on 
the project each day/week, and how will you keep them 
accountable?

I have found that remote mentoring is far less effective 
than mentoring in person. For me, this means when I 
decide to work with undergraduates, I’m committing to 
being in the same room (at the beginning) and in the same 
building (later on) for most of the collaboration.

Exercise 5. Describe how you will commit to your stu-
dents’ professional development after the time is officially 
up. Will you send them info about conferences where they 
can present? Will you write down some preliminary notes 
for letters of recommendation?

I like to keep a file with notes about what my students 
accomplished during our project and any other tidbits I 
think might be useful for future formal or informal recom-
mendations. It can be as simple as a text file.

Parting  Advice
Working with undergraduates was a highlight of my early 
career. Not every project turned into a bullet point in my 
research portfolio for tenure and promotion, but the energy 
that each young researcher brought to a collaboration gave 
me a booster shot of enthusiasm for all of my projects. 
Without other commutative algebraists around to talk to 
in my department, I found it was talking to my research 
students that did the most to keep me motivated and pro-
ductive. I’ll finish with the advice I received that I keep in 
mind when I start a new project with undergraduates: be 
ambitious for your students; they can learn a lot and do ex-
cellent work. They may just be your best local collaborators.

Courtney R. Gibbons

© Marijn Heule
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Introduction

Magnus B. Landstad  
and George A. Elliott 

Ola Bratteli is known first and foremost for what are now 
called Bratteli diagrams, a kind of infinite, bifurcating, 
graded graph. He showed how these diagrams (cousins of 
Coxeter–Dynkin diagrams) can be used to study algebras 
that are infinite increasing unions of direct sums of matrix 
algebras. They turned out to be very useful tools, giving a 
large class of examples, and later led to a K-theoretical clas-
sification both of the algebras just mentioned and, more 
recently, of an enormously larger class (all “well-behaved” 
simple amenable C*-algebras). According to MathSciNet, 
Ola Bratteli has 113 publications with 21 coauthors and he 
received various awards. He was a member of the Norwe-
gian Academy of Science and Letters and a member of the 
AMS for forty-three years.

As to his biography, Ola Bratteli graduated with dis-
tinction from the University of Oslo in 1971 and took his 
doctorate there in May 1974. He was a research fellow at 
New York University 1971–73, had various postdoc posi-
tions 1973–77, was an associate professor at the Univer-
sity of Oslo 1978–79, a full professor at the University of  

Trondheim (now 
NTNU) 1980–91, 
and since 1991 at the 
University of Oslo.

O l a ’ s  f a t h e r, 
Trygve Bratteli, was 
a Norwegian politi-
cian from the Labour 
Party and prime 
minister of Norway 
in 1971–72 and 
1973–76. During 
the Nazi invasion of 
Norway, he was ar-
rested in 1942, and 
was a Nacht und Nebel prisoner in various German con-
centration camps from 1943 to 1945 but miraculously 
survived. Ola’s mother, Randi Bratteli, was a respected jour-
nalist and author of several books. Ola was born October 
24, 1946, and died February 8, 2015. He is survived by his 
wife, Rungnapa (Wasana), and their son, Kitidet.

For a detailed biography, see the MacTutor History of 
Mathematics Archive: www-history.mcs.st-and.ac.uk 
/Biographies/Bratteli.html.

Ola Bratteli and His Diagrams
Tone Bratteli, Trond Digernes, George A. Elliott, 

David E. Evans, Palle E. T. Jorgensen, Aki Kishimoto, 
Magnus B. Landstad, Derek W. Robinson, and Erling Størmer
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Figure 1. Ola Bratteli (1946–2015).
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just the reflection of the step from the first row to the sec-
ond. Both these one-step Bratteli diagrams are obtained 
from a single Coxeter–Dynkin diagram by pleating it in 
the two different possible ways.

Bratteli diagrams with an order structure were intro-
duced by Vershik to describe a measurable transformation, 
and were adapted by Herman, Putnam, and Skau to de-
scribe a minimal transformation of the Cantor set. Using 
this description, Giordano, Putnam, and Skau classified the 
orbit structures of such transformations, the invariant being 
(in the generic case) the ordered K-group of the associated 
C*-algebra, also classified by this ordered group.

Below is a Bratteli diagram representing the GICAR alge-
bra (see above). Note the resemblance to Pascal’s triangle. 

The corresponding inductive chain system (depicted 
vertically) is

where the (injective) connecting homomorphisms are 
given by

Bratteli Diagrams

George A. Elliott 

One of Bratteli’s most important discoveries, I think, was 
what is now called a Bratteli diagram, which he found as a 
way of codifying the data of an approximately finite-dimen-
sional (AF) C*-algebra (the completion of an increasing se-
quence of finite-dimensional C*-algebras, i.e., finite direct 
sums of full matrix algebras), in a far-reaching extension of 
the thesis of Glimm. (Glimm considered the case of simple 
finite-dimensional C*-algebras, with unital embeddings. 
The nonunital case was later studied by Dixmier.)

In one sense, Bratteli diagrams had perhaps already 
been invented, as, for one thing, the idea is so simple—a 
vertically arranged sequence of horizontal rows of points, 
with numbered lines connecting the points of each row 
to the points of the row below, these numbers recording 
the multiplicities of the partial embeddings of the simple 
direct summands at one stage of the sequence of algebras 
into those at the next stage.

In the unital case, with unital embeddings, the orders 
of the simple direct summands at each stage, which can 
be written as numbers accompanying the corresponding 
points in the diagram, are determined in a simple way by 
the multiplicities, assuming that the first stage is just the 
complex numbers (which clearly is no loss of generality). 

Pascal’s triangle is a Bratteli diagram—with the multi-
plicities equal to one, and the numbers appearing in the 
rows being of course the successive degrees of binomial 
coefficients. The unital AF C*-algebra this diagram encodes 
arises in physics as the gauge-invariant subalgebra of the 
so-called CAR algebra, the C*-algebra of the canonical 
anticommutation relations (also AF). (This well-known 
subalgebra is referred to as the GICAR algebra.)

Bratteli was not content just to look at the diagrams—
he isolated the equivalence relation between them that is 
determined by isomorphism of the associated C*-algebras. 
This was prophetic, as he in fact was noticing that the 
diagrams formed a category, in which his equivalence is 
just isomorphism. It was later noticed that this category is 
equivalent to the category of ordered groups arising from 
the algebras in question via the K-functor. This led eventu-
ally to a K-theoretical classification of an enormous—still 
evolving!—class of amenable C*-algebras, analogous to 
the classification by Connes and Haagerup and others of 
amenable von Neumann algebras.

Bratteli diagrams arose in a fundamental way in Jones’s 
theory of subfactors. Given a subfactor of Jones index less 
than four, the increasing sequence of relative commutants 
in the Jones tower are finite-dimensional and so give rise to 
an AF algebra. Its Bratteli diagram is periodic with period 
two, with the step from the second row to the third being 
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some half-empty wine glasses had caught his eye. After 
tasting that juice, the shy, self-conscious boy was briefly 
transformed into a party animal.

But Ola was soon ready for Bolteløkka School and a 
meeting with the subject that became his passion—math-
ematics. My mother was rather taken aback the day she 
discovered that Ola had wallpapered his room with equa-
tions. He did not play football or hang out with friends. 
Instead he solved equations and went for very long walks 
in the forests and the mountains. He also did my maths 
homework for me, because to me that subject was a strug-
gle. Ola achieved the best grade in mathematics; mine was 
the worst.

As a young man, Ola spent many hours skiing, and the 
trips could easily reach 50 to 60 kilometres. He also tried 
to find detours to make them even longer. When he came 
home, a slice of bread or two was not enough. He ate the 
whole loaf.

Early on, Ola showed an interest in music and visual 
arts as well. He made an attempt to teach himself to play 
the cello. It was not a success. But he spent a lot of time 
listening to music and he went to exhibitions. Our sister, 
Marianne, is an artist, so my brother and sister had some-
thing in common there. Later in life, when I travelled to 
several continents in my job as a journalist and in other 

where blank means one or more zeros; a, b, c, d are complex 
numbers; and B, C are matrices.

Ola was always a fountain, or mountain, of good sense. 
Once, when he was visiting Toronto, we went to the gym 
to go swimming. I was a member, but it was a little murky 
what guest privileges I had. I thought I had them as a fac-
ulty member and proceeded to explain that. This met with 
resistance, which gradually became more protracted. In the 
meantime, Ola slipped past the desk, picked up a towel, 
and half an hour later had finished his swim—perhaps 
even had a sauna too. At that point I gave up and we left. 

Ola—A Child of Peace,  
a Man of the Outdoors,  
and a Family Man

Tone Bratteli 

On United Nations Day, October 24, 1946, a child of peace 
was born in a crowded maternity department in Oslo. He 
was one of many in the baby boom that followed World 
War II.

This event was no matter of course. My father came home 
in 1945 after years in extermination camps in Germany. He 
survived by a hair’s breadth. Soon after his return he met my 
mother. Her father had also come home from concentra-
tion camps. The two found each other quickly, despite my 
father’s shyness. My mother’s sociable nature made up for 
that. And in October 1946 he could lift his son up in the 
air in joy. He had not been sure whether he would be able 
to have children after the appalling treatment in the camps.

A year and a half later, May 8, 1948, I was born. And 
after another three years, May 20, 1951, our little sister, 
Marianne, arrived. Ola’s sometimes insistent little sister.

My father was on his way into politics, with the result 
that when Ola was five years old we moved to a so-called 
official residence in which our parents could also carry out 
social duties. On the day we moved, Ola and I scrambled 
around searching for our old home. The little we had with 
us was swallowed up by the huge rooms. Many leading 
politicians from other countries came to this apartment. 
We children hid away in our rooms and were not especially 
eager to introduce ourselves. Ola was a quiet boy, but one 
evening he came in to join the houseguests and started 
tugging on the men’s ties. This was a big surprise. What 
had happened to Ola? He had been in the kitchen, where 

Figure 2. The Bratteli family, 1952.

Tone Bratteli, now retired, worked for the Norwegian newspaper Arbeider-
bladet and the Norwegian Agency for Development Cooperation (NORAD) 
and was deputy minister at the Ministry of Environment and political advisor 
for the Minister of Consumer and Administrative Affairs and the Minister 
of Social Affairs. Her email address is tobratte@online.no.
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connections, Ola always knew which gallery I should head 
for if there was only time for one. The composition of a 
picture and the solution to a mathematical puzzle must 
have something in common.

Ola graduated from the University of Oslo in 1971. He 
was awarded the best possible grade and was what we call 
“reported to the King.” That meant that the entire govern-
ment was informed about his academic accomplishments. 
It was a big day for everyone in the family, but perhaps most 
of all for my father. He was the prime minister who came 
from such a poor background that he never completed 
his education himself, but was self-taught. Now he was to 
inform the king and government about his son’s academic 
triumph. As usual, Ola was unassuming and self-conscious, 
but he was no doubt satisfied.

It was difficult to be completely anonymous and work 
undisturbed with his own research in Oslo. Being the child 
of a prime minister has many sides. You have to take a vari-
ety of comments and media coverage in your stride. When 
Ola went to New York in 1971, it was a kind of escape. From 
his apartment in Greenwich Village, it was easy to get to 
theatres and exhibitions, and Ola soaked up everything he 
could get to. One day when it snowed in New York—that 
does happen, after all—he skied up and down Fifth Avenue. 
Finally, skiing weather in the Big Apple....

Ola returned home in 1973 and took his doctorate in 
1974. This was during Dad’s second term as prime minister 
and also led to coverage in the media.

In his personal life, Ola was simply a very kind, generous, 
caring and family-loving man. With a twinkle in his eye, it 
was easy for him to establish rapport with children.

During the years he lived abroad, he kept in touch with 
our mother by phone and wanted to know how we were 
doing.

Before Ola moved back to Norway, he was fortunate 
enough to meet Rungnapa (Wasana). He was to share 
almost half his life with her. Kitidet—his son—was his 
pride and joy.

Rungnapa and Ola travelled widely all over the world. 
There were holidays, but she also accompanied him to 
conferences and on visits to universities. After a while, they 
settled down in Norway. They enjoyed good years together. 
In the last years of his life, Ola’s health deteriorated. Rung-
napa was enormously supportive and did all she could to 
make it possible for him to live at home as long as possible. 
He was a lucky man.

Now Rungnapa and Kitidet have moved back to Phitsa-
nulok in Thailand. Ola and Rungnapa built a house in her 
home city several years ago and had no doubt planned to 
spend the winters there eventually. It did not turn out that 
way; Ola died so early. But outside the house there is a small 
temple for Ola. So in a way he is there too.

Reminiscences of Ola

Trond Digernes

I first met Ola around 1970 when we were both Master’s 
students at the University of Oslo. At that time Ola was a 
slender young man with a passion for the outdoors, espe-
cially mountain hiking.

During the year 1970–71 there were three of us who 
spent much time together: Ola, John Erik Fornæss, and 
myself. We played bridge, took a skiing vacation in the 
Norwegian mountains, and went mountain hiking in the 
summer. At the end of summer 1971 our roads parted. 
We all went to the US for PhD studies, but to different 
institutions: Ola to the Courant Institute, John Erik to the 
University of Washington, and I to UCLA. Other adven-
tures with Ola in the early seventies included a multiday 
hike in the Sierra Nevadas in the summer of 1972, and a 
trip by jeep through the roadless interior of Iceland in the 
summer of 1973. The latter involved getting stuck in rivers 
and sleeping out in the open. After Iceland, Ola returned 
to New York, whereas I was headed for a year’s stay at CPT/
CNRS, Marseille.

Figure 3.  Wedding in Trondheim, 1986.

Tone Bratteli
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Ola Bratteli, Friend  
and Mathematician

Erling Størmer 

I met Ola for the first time when he was about to start on 
his Master’s thesis. Then he was a dark-haired lad with a 
beard, radiating health and fitness, who often went for very 
long skiing trips. It soon struck me that he was a highly 
effective person who could pick up new theory extremely 
quickly. By then he had taught himself a great deal about 
the field of operator algebras, which he wanted to work 
on. In the late 1960s the physicists became interested, and 
operator algebras became a popular field. So Ola’s timing 
was excellent when he passed the Master’s examination 
in 1971 with top grades. When it became clear to me how 
good the thesis was, I said to Ola that we had made a big 
mistake; this thesis should have been used for a doctoral 
degree. And it was precisely the results here ([1]) that made 
Ola well known as a mathematician from an early stage.

In 1959, James Glimm studied operator algebras that 
were achieved by taking an infinite union of an increasing 
family of n×n matrices. This became a famous piece of 
work, and Ola quickly discovered that he could generalize 
Glimm’s work by studying infinitely increasing unions of 
direct sums of matrix algebras. He then ended up with an 
infinitely large diagram that described all the inclusions, 
which thus also described how the operator algebra was 
constructed. His main finding was that this diagram fully 
described the operator algebra, enabling a classification of 
all such operator algebras, now known as AF algebras. This 
result proved far more important than Ola and I had an-
ticipated, and the figures are now called Bratteli diagrams.

After graduating, Ola studied for two years at New York 
University, where Glimm was. There was here an excellent 
environment in mathematical physics but also for cultural 
life and food. His appearance changed in some ways; much 
of his hair disappeared, his beard was gone, and he put 
on so much weight that when I met him later, I did not 
recognize him, so I introduced myself to him.

Ola returned home and took his doctorate in Oslo in 
1974. After that, he went to Marseilles, where there was a 
very active and high-quality environment led by physicists 
who developed the theory of quantum physics in operator 
algebras. There he met Derek Robinson, and they started 
a cooperation that lasted for the rest of Ola’s career. Rob-
inson moved to Australia, and on one of Ola’s journeys to 
Australia he stopped in Thailand. Here he was fortunate 

At CPT/CNRS, Marseille, the year 1973–74 was orga-
nized as a special year dedicated to operator algebras and 
mathematical physics. It attracted several high-powered 
researchers, among them Alain Connes and Masamichi 
Takesaki, and Derek Robinson and Daniel Kastler were al-
ready there. Ola joined the Marseille group in January 1974, 
and this was also when he started his long-time collabora-
tion with Derek Robinson. During the decade 1980–90 I 
joined Ola and Derek on several occasions for discussions 
at ANU, Canberra, and Derek also visited Trondheim. This 
resulted in a few joint publications, sometimes also with 
other coauthors.

I was involved in only a fraction of Ola’s mathematical 
work, but since we spent much time together, we had many 
interesting discussions. Given Ola’s incisive mind and deep 
understanding of everything he was involved in, it was al-
ways a rewarding experience to exchange ideas with him. 
He is dearly missed, both as friend and colleague.

Figure 4. Ola and Trond in Trondheim, 1983.

Erling Størmer is a professor emeritus of mathematics at the University of 
Oslo. His email address is erlings@math.uio.no.
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Life with Ola

Derek W. Robinson 

I met Ola at the beginning of 1974 in Marseille. He was 
introduced to me by Trond Digernes. It was to be a pivotal 
moment in each of our lives, although we had no premo-
nition of this at the time. There were many unpredictable 
consequences: a few years later Trond was to meet his 
wife, Hallie, at an open air opera in Sydney; Ola became 
the owner of a mushroom farm in northern Thailand; and 
Ola and I were to write a book that is still bought, read, 
and regularly cited thirty-five years later. At that time I was 
professor of physics at the University of Marseille, where, 
under the influence of the late Daniel Kastler, there was 
a strong visitors program in mathematical physics. This 
explained Ola’s and Trond’s presence.

My collaboration with Ola began the day we met. I 
explained to him some of the ideas I had about quantum 
dynamics and derivations on C*-algebras, and shortly 
after we wrote our first paper on these topics. By 1976 
we had coauthored three other papers. When we met we 
had different interests, different backgrounds, and quite 
different personalities. Ola was quiet, well organized, and 
introspective, characteristics I did not share. Ola rapidly 
assimilated the Mediterranean lifestyle—the sun, the sand, 
and the seafood, especially the seafood. It was a time of 
calm cooperation amid the chaos of French academic life. 
In 1975 I began to think about writing a book on opera-
tor algebras and their applications in physics. I discussed 
the idea in spring 1976 with Ola, thinking that with our 

enough to meet Wasana, whom he married. Together, they 
had a good life.

Ola had many more coauthors and was altogether a 
very popular person to work with. Everyone liked Ola. 
When there were several of us together, he was not a man 
of many words, but in private he would talk. Ola radiated 
a good spirit, and it was easy to become fond of him. He 
was a person with a warm heart and a subtle humor that 
will stay with us for the rest of our lives.

Ola Bratteli passed away at the age of sixty-eight after 
several years of steadily declining health. It was an ex-
tremely sad experience to see how he had become weaker 
each time I saw him in recent years. His strength began 
to fail at a fairly early stage. His last research articles were 
published in 2008, and after that he had little energy to do 
more. So his brilliant career as a mathematician came to an 
end far too early. Ola will be remembered and missed for a 
long time, both as a mathematician and as the wonderful 
person he was. 

Figure 5. Ola’s PhD defense, May 1974. From left: the dean, Ola, 
Gert K. Pedersen.

Figure 6. Derek and Ola, 1988.

Erling Størmer
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1000-page, two-volume book took about three years. That 
was not the end, however; we returned to it again twice, 
preparing the second edition, but that is a different story.

After the book was finished, our collaboration contin-
ued, with Ola visiting Australia almost every year. He was 
lucky to survive his first visit. Whilst touring the almost 
deserted roads of a national park, he reverted, European 
style, to driving on the right side, the wrong side for Austra-
lia. This led to a head-on collision that wrecked both cars, 
fortunately without any personal injuries.

Ola realized that by timing his Australian visits correctly 
he could ensure that it was almost always summer. It also 
had the advantage that we could spend a maximum of time 
working at the family beach house. Ola would then take 
his daily swim before heading to the local oyster shop. He 
bought freshly harvested oysters by the bag to be opened, 
seasoned with a lemon from our garden, and savoured as 
the sun went down.

“Those were the days my friend, I thought they’d never 
end.”

disparate backgrounds and successful working relationship 
we would be able to do justice to the subject and its recent 
developments. I was pleased he did not dismiss the idea 
immediately.

Initially the book was intended as a relatively short-term 
project: a monograph of 300–400 pages with the early 
chapters on mathematical background and the later chap-
ters on applications to quantum statistical mechanics. We 
quickly realized that we would exceed the estimated length, 
so the short-term project turned out to be a long-term 
project, and the book changed from one volume to two.

We began each chapter with a tentative sketch of the 
intended sections. After discussing the general presentation 
of the material in each section, we began to draft alternate 
sections. We then exchanged drafts and edited each other’s 
work. This process would be repeated until we were each 
satisfied with the outcome. We often had different notions 
of the relative significance of the material and the emphasis 
to be given to various statements and results. At times my 
first draft would be completely changed by Ola and vice 
versa. Somehow the process always reached equilibrium 
after a reasonably short time, with one exception, the sec-
tion on modular theory. This took seven exchanges before 
we were both satisfied. This procedure had various advan-
tages. It naturally introduced a uniformity of style. It also 
gave a fairly foolproof method of avoiding error, although 
we were not completely successful in that respect.

The first volume of the book was completed by Septem-
ber 1977, which left three months to complete the second 
volume of the book before I left France to take up a position 
in Australia. In that time we managed to write about 40 
percent of Volume 2, aided by discussions with Akitaka 
Kishimoto, who had just arrived in Marseille as a postdoc. 
I returned to Marseille in June 1978, and work began again. 
I then returned to Sydney and Ola moved to Trondheim, 
but we returned to Marseille in June 1979 to tackle the final 
work. We completed the book by working nonstop for three 
and a half weeks. The second volume finally appeared in 
1981, so the total operation of writing and publishing the 

Figure 7. Lysebu, Oslo, 2017. From left: Aki Kishimoto, Palle 
Jorgensen, Derek Robinson, Tone Bratteli, George Elliott, Reiko 
Kishimoto, and David Evans.

Figure 8. Sjusjøen, Lillehammer, Easter 2004.

Derek W. Robinson
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than me in everything. So when we had to descend a steep 
slope made of gravel at one point, I was surprised to find 
myself rather enjoying skidding down while Ola tried to 
walk down steadily, as if reflecting his meticulous style of 
doing mathematics.

Ola’s paper ([1]) on AF algebras became an inspirational 
source for me. This class might look rather special, but now 
we might say if a C*-algebra is not obviously not AF, then it 
would be AF. As a touchstone of this credo Ola and I ex-
amined the fixed point algebra Fθ of a C*-algebra Cθ(u,v) 
generated by two unitaries u,v with uv=e2πiθvu with θ  irra-
tional, under the period two automorphism σ: σ(u)=u–1, 
σ(v)=v–1. (C0(u,v) with θ=0 still can be defined and com-
prises the continuous functions on the torus, while F0 is 
on the sphere or rather a pillow with four corner points.) 
We managed to show Fθ, a noncommutative pillow, is AF 
(when θ  is irrational). Another notable result in [1] was that 
any two irreducible representations of a simple AF algebra 
are bridged by an automorphism, which we established 
in a different setting, published as “Homogeneity of the 
pure state space of the Cuntz algebra” in J. Funct. Anal. 
171 (2000). This gave me hope of successfully attacking a 
more general case, and I did it with some help from others.

Ola had many works; I cannot touch on all of them. 
Among them the books [3,4] are a good reference for those 
in the field of mathematical physics, me included. Our last 
work “Approximately inner derivations,” Math. Scand. 103 
(2008) with Derek is an attempt to shed light on a topic 
dealt with there, which yet haunts me to this day. 

Mathematics Collaborations 
on Three Continents

Palle E. T. Jorgensen

Ola Bratteli had a profound influence on modern analy-
sis, especially themes connected with operator algebras, 
classification, noncommutative harmonic analysis, and 

A  Tribute to Ola Bratteli 

Aki Kishimoto

Before I first met him in September of 1977, I must have 
read his early paper ([1]) of 1972 and his more recent se-
ries of papers on unbounded derivations, mostly written 
with D. W. Robinson, because his image had been firmly 
established in my mind as a formidable mathematician 
with whom I could hardly be compared. And he was, and I 
think I was quite lucky to come to know him in the earliest 
possible days, which brought me chances to collaborate 
with him for three decades.

Ola and Derek were writing the book in Marseille, a kind 
of book I love and could get familiar with, when I visited 
in 1977. Derek soon left for Sydney, but Ola and I spent 
almost a year together there. Though he was just one year 
my senior, he was a kind of mentor in mathematics and 
everything else during the stay. He also arranged for me 
to attend two conferences, sort of encouraging me against 
my timidity. In all these activities when transportation was 
required, Ola was in charge, which eliminated a practical 
worry for me.

In one outing I remember we hiked on rocky coastal 
paths, where I learned to mumble “Bonjour” to strangers 
we encountered. (Later I found this practice ubiquitous, 
and Ola would say “Konnichiwa” awkwardly when we 
hiked in Japan.) We were not sports types, but he was better 

Figure 9. Ola preparing bouillabaisse in  Trondheim.
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Sadly, Ola’s health declined towards the end, but I am 
happy to have had the benefit of many intense research 
experiences from the early part of our careers.

Ola and Orbifolds

David E. Evans

I first briefly met Ola in the new year of 1977 when I was 
a postdoc in Oslo. Later I got to know him very well, not 
only through our work and joint papers (fifteen altogether) 
but also through holidays taken together, particularly ski-
ing ones in Rondane and Sjusjøen. He spent six months 
with me in Warwick in 1982, which was the start of our 
collaboration. Our first conference together was at Arco 
Felice, Naples, in March 1978. Ola and Aki drove there from 
Marseille in his Citroën deux chevaux. This was a meeting 
organized by Vittorio Gorini on Mathematical Problems in 
Quantum Theory of Irreversible Processes that brought to-
gether our mutual interests in derivations and generators of 
one parameter semigroups of positive maps, on which we 
would later collaborate. At a meeting in Chennai organized 
by Sunder, Ola took me on an expedition through the local 
markets to find saffron, which was later put to good use in 
his bouillabaisse, the finest I have ever had, with fresh fish 
from the harbor back in Norway.

In his PhD thesis ([1]), Ola classified AF C*-algebras in 
terms of what are now known as Bratteli diagrams. This 
work was not only pivotal in Elliott’s classification of AF 
algebras through K-theory; it is ubiquitous in operator alge-
bras, dynamical systems, and in Jones’s theory of subfactors.

My own work with Ola started with dynamical sys-
tems of one-parameter semigroups of positive maps in 
1982. Later visits to Swansea led to the collaboration with 
George Elliott and Akitaka Kishimoto on noncommutative 
spheres, the irrational rotation algebra, and the K-theoretic 
obstructions to classifying such amenable C*-algebras and 
their dynamical systems. This was particularly motivated 
by the remarkable construction by Blackadar (Annals of 

representation theory. While Ola’s first paper was solo, 
almost all that followed were joint.

In January of 2017, a weeklong conference was organized 
in Oslo, with the aim of presenting some of the many  
collaborative advances in mathematics and its applications 
involving Ola.

My own collaboration with Ola started by chance, dates 
back to the mid-1970s, and lasted for four decades. Our 
early work was in noncommutative geometry, and our later 
research moved in a diverse number of directions.

My own collaborations involved my visiting Ola in 
Oslo. In addition, we both made research visits to Derek 
Robinson, Dai Evans, and George Elliott. In all, I have thirty 
joint research publications (including two AMS Memoirs) 
with Ola, and a book.

Early joint research includes the themes Lie algebras of 
operators, smooth Lie group actions on noncommutative 
tori, and a study of decomposition of unbounded deriva-
tions into invariant and approximately inner parts. These 
topics are part of a systematic analysis of unbounded *-der-
ivations as infinitesimal generators in operator algebras, 
with direct connections to quantum statistical mechanics. 
Other applications include noncommutative geometry, 
as envisioned by Alain Connes. Our later joint research 
moved more in the direction of representations and certain 
applications.

My most recent, and substantial, joint work with Ola 
was wavelets. That part includes a book Wavelets through a 
Looking Glass: The World of the Spectrum, which presents the 
subject from a representation theoretic viewpoint.

A common theme in my joint research with Ola is my 
insistence on the central role to be played by representa-
tions and decomposition theory. Some of our early work 
dealt with representations of Lie groups, of C*-algebras, 
and of multiscale systems.

A quite different representation theoretic theme was 
the theory of numerical AF invariants, representations and 
centralizers of certain states on the Cuntz algebras, and a re-
lated but different study of combinatorial notions we called 
iterated function systems and permutation representations 
of Cuntz algebras. They play a key role in our understand-
ing of such multilevel systems as wavelet multiresolution 
scales, in addition to multiband filters in signal processing.

Later joint work between Ola, me, K.-H. Kim, and F. 
Roush was inspired by Bratteli diagrams. It is known that 
the nonstationary case defies classification (order-iso-
morphism is undecidable), but we discovered that the 
stationary case could be decided by explicit classification 
numbers and associated finite algorithms. In this work, 
for the stationary dimension groups, we obtained explicit 
computation of numerical isomorphism invariants. We 
proved decidability of the isomorphism problem for 
stationary AF algebras and the associated ordered simple 
dimension groups.

Palle E. T. Jorgensen
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The work described above laid the foundations for 
subsequent work over the last twenty-five years on the 
classification of amenable C*-algebras by K-theoretic data, 
before which the classification was out of sight and did 
not appear feasible. Our work on orbifolds also directly 
led to the study of orbifold subfactors (Evans and Kawa-
higashi, Comm. Math. Phys., 1994), as reported in the first 
Danish-Norwegian Workshop on Operator Algebras at 
Røros in 1991.

Ola had a long connection and affection for Thailand, 
making regular visits; his wife for more than thirty years, 
Wasana, was from Phitsanulok. In 2016, Paulo Bertozzini 
initiated at Thammasat University in Bangkok the Ola 
Bratteli Mathematical Physics and Mathematics in Thailand 
Colloquium, where I was honored to give the first talk.

Ola had a generous spirit and integrity. We will miss his 
presence and friendship.

Math, 1990) of a Z2-symmetry on the Fermion algebra with 
non-AF fixed point algebra, and the subsequent work of 
Kumjian in showing that a Z2-symmetry of a Bunce–Ded-
dens algebra and the corresponding crossed product C(T)× 
dyadic rotations ×Z2 yielded an AF algebra. The issue of 
existence of such symmetries had been a well-known open 
problem.

This led us to consider the Z2-symmetry on the rotation 
algebra with the flip σ: σ(u)=u–1, σ(v)=v–1 on the genera-
tors. On the classical two torus, T2, this yields a singular 
orbifold T2/Z2 which can be thought of as a tetrahedron, 
topologically a sphere, but with four singular vertices. 
This led us to refer to the fixed point algebras and crossed 
products of rotation algebras as noncommutative spheres, 
but as Alain Connes pointed out, they are better described 
as noncommutative toroidal orbifolds, as they do not have 
the K-theory of a sphere.

Taking matrix-valued functions constrained at the sin-
gular points to have dimension drops and their inductive 
limits led us on a path towards studying group actions on 
approximately finite-dimensional AF algebras with non-AF 
fixed point algebras and crossed product algebras.

This way we also showed the existence of non-AF C*-al-
gebras that when tensored with a certain UHF algebra (i.e., 
an infinite tensor product of matrix algebras) become UHF 
as well, that the fixed point algebra of an irrational rotation 
algebra by the flip is AF, and that the irrational rotation 
algebras are inductive limits of sums of matrix algebras 
over the continuous functions on a circle.

Figure 11. Non-commutative orbifold from folding the 
Kronecker flow on a torus.
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Figure 10. Kronecker flow on a torus. The flip on the irrational 
or Kronecker flow on the torus yields a nonsingular flow on 
the sphere which is zero-dimensional in a strong sense. The 
corresponding C*-algebra is approximately finite-dimensional.
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Memories of Goro Shimura
Don Blasius, Toni Bluher, Haruzo Hida,
Kamal Khuri-Makdisi, Kenneth Ribet,
Alice Silverberg, and Hiroyuki Yoshida

Goro Shimura, a mathematician who greatly influenced
number theory in the second half of the twentieth cen-
tury, was born in Japan on February 23, 1930. Over a
career spanning six decades, he repeatedly made transfor-
mational discoveries that stimulated new lines of inves-
tigation and played a central role in the development of
the field. Shimura earned his degrees at the University of
Tokyo and held appointments at the University of Tokyo
andOsakaUniversity. Hewas a professor at PrincetonUni-
versity from 1964 until he retired in 1999. He authored
numerous influential books and papers and was awarded
a Guggenheim Fellowship in 1970, the Cole Prize in Num-
ber Theory in 1977, the Asahi Prize in 1991, and the Steele
Prize for Lifetime Achievement in 1996. Goro Shimura
passed away in Princeton on May 3, 2019, at the age of
eighty-nine.

Don Blasius
Goro Shimura advised my 1981 Princeton thesis and he
was, through his research and guidance, the central figure
of my intellectual life in graduate school and for many
years afterwards. His ideas about how to do mathematics
have influenced me throughout my career.

Arriving at Princeton in fall 1977, I had no plan to study
number theory, had never read a book about it, and had
never heard of Shimura, Iwasawa, Dwork, Langlands, or
even Weil. Most graduate courses had incomprehensible
course descriptions. In this context Professor Shimura’s
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Figure 1. Goro, Chikako, Haru, and Tomoko returning to the
US from Haneda Airport in 1971.

offering of an introductory course in algebraic number
theory stood out as a beacon of light. Algebra already
had great appeal for me, and I was hooked right away by
this perfect course. Later I took his courses on families of
abelian varieties, special values of 𝐿-functions, period rela-
tions, the arithmetic theory of automorphic forms, Eisen-
stein series, theta functions, etc., all topics essential to his
current research and, as it turned out, my initial research.
He really taught for his students, not just to have a context
to explore a topic of interest to himself. Each course started
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with minimal assumptions of background and went far
into its subject with both clarity and an economy ofmeans.
He always had his lecture fully written out in a notebook,
which would be on the table in front of him. He would lec-
ture without it except for complex formulas. For them, he
would pick it up to refresh his memory, always explaining
clearly as he went. Shimura was always perfectly prepared
and engaging.

By early in my second year, it was clear to me that I
wanted Shimura to supervise my dissertation. When I
queried him about it, he asked me to read his famous
1971 text Introduction to the Arithmetic Theory of Automor-
phic Functions. This book is a masterpiece of exposition,
starting from scratch and giving, mostly with proofs, the
key themes of his research up to that point. For me it was
the perfect preparation for reading the articles on which
it was based. It was a transformative undertaking. As an
anecdote, I mention that when I told him I had finished
Chapter 3, the one onHecke algebras and the relationwith
𝐿-functions, he askedme how long I had spent on it. I told
him I had spent about a month, and he said that was “very
fast” (meaning too fast). He was correct! Later that year,
when I asked to be his student formally, he agreed but im-
posed the condition that I promise not to “fire” him. He
explained that a student with whom he had been work-
ing for some time had just done that, and he was visibly
hurt when he spoke about it. I told him that there was no
chance of that.

Shimura did not tend, at least with me, to engage in
lengthy, detailed discussion of mathematics. Usually, af-
ter a brief discussion of math, he would shift the con-
versation to something else, ranging from departmental
gossip to Chinese stories. He did not give me a research
problem right away. Instead, he asked me to read articles.
The first was [3], mentioned below, and the second was
[17]. Sometime while reading the second paper, he gave
me the simple-sounding research problem concerning its
main theme of relations between the periods of abelian
varieties: “Find more precise results. Find natural fields of
definition.” This was a great problem because it connected
with so many topics, including values of 𝐿-functions and
the extension of the canonical models formalism from au-
tomorphic functions to automorphic forms, both new ar-
eas.

Before giving me this problem, Shimura had supported
my desire to come up with my own. Several times I made
suggestions to him, but he found compelling issues with
them, such as being too hard or already done. When I
finally found some results on his problem, he was happy
and exclaimed “Isn’t it nice to have some success?!” Later,
I asked him about how he worked. He drew a really messy
self-intersecting path on the blackboard and declared the

end as his destination after the fact. In words, he told me
he starts with a general idea but no fixed goal or conjecture.

Many people who did not know him have some imag-
ination of Shimura as exclusively serious or severe. This
is simply not true, and I mention two among many mo-
ments of wit that we both enjoyed. After I started a conver-
sation with a remark about Hecke operators, he said, “The
first thing you say to me is always interesting.” And after
I complained to him that I found his paper on confluent
hypergeometric functions hard, he said, “You need to go
see an analyst!”

About other mathematicians, he freely acknowledged
his debts to Eichler, Hecke, and Weil, who was a friend
for over four decades. He also had the highest respect for
Siegel. Once he told me, “His proofs are correct and you
can just use his theorems.” He did not think that about
many mathematicians. One day we discussed Weil’s 1967
paper on the converse theorem. After a while he said,
with intensity, “Weil is a genius.” I never heard him say
that about anyone else, even when discussing major works.
About ideas, although he knew a great deal, he was some-
thing of a minimalist in his preferred way of writing. For
example, when I referred to automorphic forms as sections
of vector bundles, he queried me sharply as to whether
this language added anything. I had to admit that, in the
context, except for curb appeal to some, it did not. As a
consequence, I avoided such usage in my dissertation.

I was asked to make a brief summary concerning
Shimura’s theory of canonical models and its antecedents.
In 1953, at the start of his career, Shimura created ([1])
the first theory of reduction mod 𝑝 of varieties in arbitrary
dimensions. In a December 1953 letter to Shimura, Weil
called it “a very important step forward” and emphasized
its promise for the further development of complex multi-
plication. He also wrote that it was “just what is needed [to
study] modular functions of several variables.” The first
direction became the famous collaboration of Shimura
and Yutaka Taniyama, which was well underway by 1955.
They defined and studied abelian (group) varieties of CM
type and proved the Shimura–Taniyama reciprocity law,
which describes explicitly the action of a Galois group on
the points of finite order of the variety. The main un-
derlying result here is a celebrated formula for the prime
ideal decomposition of the endomorphism that reduces to
the Frobenius morphism attached to a given prime of the
field of definition. As a key application of this formula,
they computed the Hasse–Weil zeta function at almost all
places, thereby verifying Hasse’s conjecture for such func-
tions. Their research was summarized in the well-known
1961 monograph Complex Multiplication of Abelian Vari-
eties and Its Applications to Number Theory, which Shimura
wrote after Taniyama’s death. In fact, Shimura wrote
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research articles about complexmultiplication and abelian
varieties over his career, even publishing in 1998 an expos-
itory monograph Abelian Varieties with Complex Multiplica-
tion and Modular Functions. This text includes more recent
fundamental topics of his research, such as reciprocity laws
for values of modular functions at CM points and the the-
ory of period relations for abelian varieties of CM type.

From the late 1950s until the late 1960s Shimura made
a continuing study, mostly published in theAnnals of Math-
ematics, of the fields of definition for certain varieties de-
fined by arithmetic quotients of bounded symmetric do-
mains. For me, the start was the 1963 article “On ana-
lytic families of polarized abelian varieties and automor-
phic functions.” In its first part, this highly readable paper
showed that arithmetic quotients of three of the four clas-
sical domains arise, via normalizing period matrices, as
analytic parameter spaces of the varieties of a given type.
In 1966 he followed up with [7], which introduced the
well-known notion of PEL type. He constructed a moduli
space for each type as a model of an arithmetic quotient,
thus providing a large supply of varieties whose points had
definite meaning, and remarking of their fields of defini-
tion 𝑘Ω: “In many cases we have verified that 𝑘Ω is an
abelian extension of 𝐾′.” Here 𝐾′ is a number field, fre-
quently called the reflex field, which is central to the sub-
ject and which first arose in the Shimura–Taniyama theory.
In 1964 in [4], he studied the varieties (quotients of prod-
ucts of upper half-planes) attached to quaternion algebras
over a totally real field of arbitrary ramification behavior at
infinite places. This paper introduced the cases where the
fields of definition are abelian extensions of totally real
fields. The algebraic varieties themselves had already been
studied in [5] as moduli spaces associated to quaternion
algebras over CM fields, in which case the canonical fields
of definition are abelian extensions of the reflex field, a
CM field. Thus in [4] it was a question of a further descent
(Shimura used the term “bottom field”). In 1967, in [9] he
considered further the cases of [5] where the dimension is
one and computed, via a congruence relation analogous to
Eichler’s, the Hasse–Weil zeta function at almost all places,
thereby proving Hasse’s conjecture for the curves. These
are the famous “Shimura curves.” This article also intro-
duces the notion of a canonical model as one uniquely
characterized by an explicit description, obtained by virtue
of the uniformization, of the Galois action over the reflex
field on the images of CM points (see Main Theorem 1 of
the article). In 1967 as well, a further paper [8] extended
the canonical model theory of [9] to arithmetic quotients
of higher-dimensional Siegel spaces. All these papers were
written in the language of ideals. Finally, in 1970 this long
development culminated with two articles, now famous:
“On canonical models of arithmetic quotients of bounded

Figure 2. Chikako and Goro in 1993 in Nagano prefecture,
where they had a summer house.

symmetric domains I, II,” both published in the Annals.
In them, Shimura gave an adelic version of [8]. This view-
point enabled him to define an action of the finite adeles
(a way of introducing Hecke operators) of the associated
reductive group on the system of models. He conjectured
that such a theory would exist for any reductive group giv-
ing rise to a product of classical domains. Indeed he wrote,
“The completion of this task does not seem so difficult.”

Shimura’s students Shih and Miyake each proved cases
of Shimura’s conjecture, andDelignemademajor progress,
as well as reformulating the theory in a general axiomatic
way. In 1983 Borovoi and Milne constructed canonical
models for all reductive groups of Hermitian symmetric
type. They did this by proving a conjecture of Langlands
that extended the reciprocity law at the fixed points to ar-
bitrary automorphisms of Gal(𝐐/𝐐) instead of Gal(𝐐/𝐾′).
This conjecture was based itself on Langlands’s remarkable
extension, later proven by Deligne, of the reciprocity law
of Shimura and Taniyama for abelian varieties of CM type.
Shimura himself did not really return to the theory after
1970, except, as mentioned, for extending it to automor-
phic forms in some special cases. Instead, the 1970s were
for him a period of great and diverse achievements in new
fields such as the theory of critical values of 𝐿-functions.
Yoshida and Khuri-Makdisi mention these in their contri-
butions, so I will stop here.

I miss Shimura deeply. Before beginning to write, I
looked again at many of his articles that were so impor-
tant to me. I fell again under the spell of my teacher and I
found a problem to work on.

Toni Bluher
One of the reasons that Professor Shimura had so many
graduate students was his extraordinary commitment to
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teaching. He gave masterful lectures that were very pop-
ular among the graduate students. We circulated among
ourselves mimeographed copies of notes from prior years.
Most influential to me was his course on Siegel modu-
lar forms, given during my first year of graduate school
in 1984. Based on my experience in his course, I asked
to be his graduate student and told him that I particu-
larly enjoyed the material on theta functions. He remem-
bered that comment and designed a thesis topic for me
that included theta functions of half-integral weight. He
prepared a series of readings that introduced all the con-
cepts that I would need for my thesis topic, including
some material on bounded symmetric domains, several
of Shimura’s articles, and Andre Weil’s Sur certain groups
d’operateurs unitaires (Acta Math 111, 1964, 143–211). Ev-
erything fit together perfectly, and the thesis was progress-
ing well. I got married in my second year of graduate
school and had a son in September of my fourth year. Pro-
fessor Shimura was supportive and nominated me for a
Sloan Scholarship, which relieved me of teaching duties
and made it possible to focus on writing my thesis. Be-
ing Shimura’s student was akin to hiking Mount Everest
with a skilled guide—he cleared the path so that we could
reach the summit. I remember him saying that he would
have preferred an approach that would give us more time
to read and gain perspective, but he adopted his style be-
cause at that time it was expected that graduate students
should finish in four years, something that is hard to do
in such a technical field.

I have fond memories of when Professor Shimura in-
vited me, my husband, and other graduate students to his
house on a few occasions and also a dinner party where
we met Andre Weil. At one of those occasions, I learned
about his sense of humor. He said that puns are not part
of Japanese culture, and he could not see how they were
funny. “So what is funny to you?” I asked. He told the fol-
lowing joke. Some mosquitos were annoying the guests,
so the host said he would take care of it. He put out a
bowl of sake and many small pieces of tissue paper. “How
will this help get rid of the mosquitos?” the guests asked.
The host replied that the mosquitos would drink the sake
and then fall asleep. “Ah, very clever,” said the guests, “and
what is the tissue for?” “It’s so that themosquitos will have
a place to rest their heads after they drink the sake!”

Haruzo Hida
In the mid-1970s, I was a senior undergraduate at Ky-
oto University and had just started learning mathematics.
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Somehow I had met Professor Doi in Kyoto slightly ear-
lier, and because of a friend of mine (an ardent mathe-
matics addict) I had started reading mathematics books at
college level and above. This day, following a suggestion
of Doi, I planned to attend a lecture by Professor Shimura
at Tokyo University of Education. I took a bullet train in
the morning and reached Tokyo about an hour before the
lecture. In the lecture, he talked about CM abelian vari-
eties and their fields of moduli. I understood the content
well, as I had already read his red book and the English ver-
sion of the book he coauthored with Taniyama. Because of
my late start, I was obsessively reading, as quickly as pos-
sible, many mathematics books. I did well, giving myself
good background knowledge of analysis, algebraic and an-
alytic number theory, and algebraic geometry, including
the viewpoints of both Weil and Grothendieck. Prior to
this point in my life, I had read a great deal but mostly to
have fun. Reading books, including Chinese classics that
Shimura loved, had been my way of life.

After the lecture, senior PhD students were invited into
a smaller room to pose questions to the speaker. Out of
curiosity, I walked into the room also. As Shimura had a
rare charisma, at first nobody dared to ask him questions.
This seemed impolite to me, so I started asking some well-
posed questions about CM abelian varieties. This went
well, and he answered me, looking directly into my eyes,
treating me correctly as a novice, and emphasizing the im-
portance of studying periods of CM automorphic forms.
Then there was another awkward silence, so I decided to
ask a somewhat imprecise question about a minimal field
of definition of a given CM abelian variety, as it seemed to
be related to some results on the field of moduli that I had
seen in a preprint of his that Doi had received ([15]). Once
I had described the question (saying that Doi allowed me
to see his new results), he got excited and gave me a terse
reply, saying that you could ask questions about facts, but
trying to get some “guess” or some “way” towards a new re-
sult from somebody else is notmorally sound. You should
think about them on your own and should find a way out.
His last words were, “Do your own mathematics.”

I am from a family belonging to a traditional commer-
cial class of people in Osaka-Kyoto. My family had been
successful in banking from the late shogunate era through
the Meiji Restoration. In Japan, we had a “rice exchange,”
which was analogous to a European stock exchange, as
early as the late seventeenth century. There were “rice
stocks” (kome-tegata) that were traded at the exchange by
banking officials, and the price of rice, including that col-
lected as tax by each feudal province, was determined na-
tionally at the exchange. Banking (called Ryogae, literally
“money-exchange”) was a prosperous business for three
or four centuries. Even though Japan was governed by a
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combination of the shogun’s samurai (principled and well
literate in Chinese classics) and the emperor’s aristocrats
(often indulging in subtle poems with hidden meanings),
the economy at the time was essentially an unofficial cap-
italism. This is one of the reasons Japan was able to mod-
ernize itself so quickly in the colonial period of other Asian
nations. For people in banking, a deep understanding of
the governing samurai class is fundamental for their busi-
ness. So most children of either gender in such a family
had a sort of private tutor/nurse/nanny to train them how
to divine the undercurrent thinking of people. (I mean,
training so that your front personality can make friendly
contact while at the same time your rear personality can
delve into the counterpart’s intents, often by posing ques-
tions that appear innocuous.) I had learned this type of
slightly schizophrenic approach to people. Thus, when
Shimuramade his reply tomy question, I was calm, but in-
side I was quite amused by his excitement (as I was looking
for a way to cope well with him). I decided to avoid hence-
forth indulging myself too much in unfounded thoughts
with him and instead to focus on asking him well-posed,
maybe conjectural, questions and to present himwith new
ideas, not necessarily in mathematics. I made a firm note
in my mind that this should be my way to cope with his
principled personality.

Immediately after his lecture, I stopped my indulgence
of reading mathematics broadly and focused on books
whose content I felt I really needed. This freed my time,
and I started writing a research article that became my first
paper, published in 1978. In March 1976, there was a
Takagi anniversary conference at RIMS, and at it I had a
short conversation with Shimura without much content
(though he rememberedmewell). I felt shame that I could
not produce something entertaining to him by this time,
although I had the seed of an idea of creating complex
multiplication on the complex torus spanned by CM theta
series in the middle degree Jacobian of the Hilbert mod-
ular variety. I finished this project a year after the confer-
ence. Doi had left for the Max Planck Institute for Math-
ematics just after the conference, and in April 1976, I en-
tered the graduate school of Kyoto University. I was next
to meet Doi again in Sapporo only two years later, so I was
alone. Fortunately, Hiroyuki Yoshida returned to Kyoto at
this time after his PhD study with Shimura in Princeton,
and he had a good understanding of Hilbert modular vari-
eties. In fact, while working on this problem, I talked only
to Yoshida. When I was ready, I wrote about my results
to Shimura at Princeton and, surprisingly, this attracted
him. Indeed, the work suggested that higher-dimensional
periods of Hilbert modular CM theta series are somehow
related to periods of CM elliptic curves, at least if the base
totally real field has odd degree. Here I should mention

that CM period relations were a main topic of Shimura’s
research at the time. I knew this conjecture, but I did not
explicitly write it in the letter or in the published paper. In
any case, I got a job at Hokkaido University with the help
of Doi, who moved there after his trip to Germany. For
my next project, at Hokkaido, I classified CM factors of Ja-
cobians of Shimura curves, extending Shimura’s work for
the case of modular curves. I thus, with Shimura’s support,
was offered a one-year visit to the Institute for Advanced
Study.

I arrived at Princeton in August 1979, and right away
I called Shimura on the phone. He invited me and my
wife to a dinner at his home. At the dinner, he asked us a
funny question: Why do Osaka people use the plural form
oko-tachi in referring to an only child? The part “tachi” is
a plural indication, although the Japanese language does
not have a systematic plural form. My answer was that for
a family in commerce, having several children is more de-
sirable than having one, and hence the talker is apparently
showing friendship by way of courtesy. He was not at all
convinced, giving me a couple of counterexamples from
the usage found in Kyoto aristocracy. This was typical in
his conversation. He would come up with totally unex-
pected questions, and if one’s answer was off the mark, he
used it as a seed-topic of often poignant stories he loved to
talk about. My answer could be wrong but not bad either
(at least not provable in either way). After this conversa-
tion, he started calling me Haruzo-san and told me to call
him Goro-san, which I never did in our conversation. (I
called him, to his dismay, always Sensei.) I was told at the
dinner to come to see him in Fine Hall at tea time, that is,
every Thursday at 3 pm.

I kept busy every week to concoct something new to tell
Sensei on Thursday. If I had not done that, I would have
had a hard time listening to his short stories. To cope with
them I needed all my skill of conversation. Perhaps he
was doing this intentionally to pull out the most from me.
I was fairly successful in the first year, and I wrote three
papers, later published in Inventiones. By these, I think, I
earned an extension to stay at the IAS for a second year.
This year was difficult, although I had a conjectural idea
about 𝑝-adic deformation ofmodular forms and the use of
the Hecke algebra to make something like a GL(2)-version
of Iwasawa theory. They were fuzzy thoughts at the time
and only once or twice useful in our conversation. Repe-
tition of topics, without much progress, was not a useful
strategy for conversation with Sensei. But if you are an
entertainer hired by somebody, you need to produce an
attraction every time you perform! Thus, I had to skip the
meeting several times. Fortunately, I eventually came up
with a use of the partial Fourier transform to compute 𝑞-
expansions of orthogonal and unitary Eisenstein series, as
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well as some series that Shimura had invented (I call them
Shimura series). Then I went to the tea. The first words
he threw at me were “I thought you are dead.” I replied
to him, “Like the characters ‘Yosaburo and Otomi’ of a
Kabuki play (Japanese opera), somebody’s survival could
not be known even to Buddha.” This amused him. I recov-
ered, and I was to find a place twenty-five years later for this
computation, in the case of Siegel’s theta series, in my arti-
cle in the Coates volume of Documenta Math. dealing with
the anti-cyclotomic main conjecture.

Those were demanding but happy days for me at IAS.
Shimura was able to squeeze out of me every bit of math-
ematics I potentially had. I still have a good stock of us-
able results from the notes at the time. He did not teach
me much mathematics, but he guided me how to pull out
something useful from my own mind, not from books or
articles somebody else wrote. I am grateful for his un-
usual effort for my development. Farewell to his existence,
which was so richly difficult, rewarding, and fun for me.
Sayou-nara! (literally, “if things have gone that way, we
part”).

Kamal Khuri-Makdisi
Personal memories. Goro Shimura was my thesis advisor
in the early 1990s, and the relationship developed into
friendship over the subsequent years. While I was his grad-
uate student, he gave me full support and mentorship, pa-
tiently guiding me through first reading a number of his
articles in preparation for my thesis, then the actual the-
sis work. Our weekly meetings would usually last one to
one and a half hours, during which he was unstintingly
generous with his attention and advice. When, as a result
of my youthful inexperience, I made a naive mathemati-
cal speculation, or was mistaken about a certain point, he
would diplomatically correct me with the phrase, “That
is completely correct, but....” He also regularly exhorted
me during my thesis and subsequent career choices to be
“practical,” especially in terms of finding research subjects
to work on that were both attainable and interesting. He
was so aware of my progress that when I stalled for a while
on my thesis, he was able to diagnose the problem with-
out my having told him precisely what I had been stuck on.
He simply presented me one day with a few pages of notes
where he explained what I had most probably overlooked
(an issue where Maass-type Hilbert modular forms could
be either odd or even at each archimedean place, which led
to different constructions). His advice was of course right
on the mark, and he included in his notes suggestions on
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Figure 3. Chikako and Goro with Kamal Khuri-Makdisi in
Beirut in May 2000.

how to overcome the blockage.
During my time at Princeton, Shimura’s graduate

courses alternated between lectures at the introductory or
more advanced level and seminars where students had
to present material out of his 1971 book Introduction to
the Arithmetic Theory. . . or from terse notes of his on 𝐿-
functions of modular forms and Artin 𝐿-functions. I have
kept these notes preciously over the years. At the end of
the semester, particularly with a seminar, he would invite
the students over to his house for a “dinner in lieu of final
exam,” an occasion to be more informal than in class.

Shimura had a real interest in art, with an impressive
collection of both prints and porcelain, the latter not only
from East Asia but also the Middle East; his nonmathemat-
ical writings include a book on Imari porcelain. He and
his wife Chikako traveled several times to the Middle East,
visiting Turkey a few times (K. Ilhan Ikeda and I did our
PhDs with him at the same time), Iran for a conference,
and Lebanon on two occasions, when it was a real plea-
sure to be able to host Goro and Chikako. He managed
to combine the mathematical aspect of his trips with visits
to museums and archaeological sites, plus the inevitable
antique shops.
Some aspects of his mathematical legacy. Shimura’s
mathematical contributions are so fundamental and wide-
ranging that no one person can write about them all. I will
go over many important topics too quickly and will skip
others altogether. I hope that this discussion can at least
do justice to some fraction of his work.

Shimura knew thoroughly the earlier work on modular
forms by Hecke, Siegel, Maass, Petersson, Fricke, and We-
ber, among others. He had also carefully studied Lie (and
algebraic) groups from Chevalley’s book, as well as alge-
braic geometry in the language of Weil’s Foundations. By
the late 1970s, though, his articles tended to contain less
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algebraic geometry and more analysis. He never worked
explicitly in the language of automorphic representations
but was very happy to move between the adelic language
and explicit computations with real or Hermitian symmet-
ric spaces and arithmetic groups. In general, his articles
are complete, thorough, and very demanding to read in
terms of the intricacy of the calculation. However, all the
material is there, with very few errors (which usually get
corrected in errata at the end of a subsequent paper). So a
patient and determined reader can make it to the end but
must just be prepared for a slow rate of progress per page.

Readers in number theory will be familiar with
Shimura’s foundational contributions to the arithmetic of
modular curves and abelian varieties, such as the decom-
position of the Jacobian of amodular curve. The section by
Blasius in this memorial article summarizes his introduc-
tion of what are now known as Shimura varieties and their
canonical models. I will only mention Shimura’s impor-
tant insight that in the non-PEL case one can use the CM-
points to pin down the rationality and produce a canonical
model over the “correct” number field.

Another famous contribution by Shimura is in the area
of modular forms of half-integral weight, beginning with
[11]. Shimura studied many aspects, not just over SL(2, 𝐐)
as in the first paper above, but also over symplectic groups
over totally real fields, so in the Siegel–Hilbert case. Over
SL(2, 𝐐), as is well known, Shimura showed that to a
Hecke eigenform 𝑓 of half-integral weight 𝑘 = 𝑚 + 1/2
there corresponds a Hecke eigenform 𝑔 of (even) integral
weight 2𝑚, so on 𝑃GL(2, 𝐐), with matching Hecke eigen-
values. Shimura’s original proof of this went via con-
structing the 𝐿-functions of twists of 𝑔 by Dirichlet char-
acters and then invoking Weil’s converse theorem. Later,
after work of Shintani and Niwa and with further hind-
sight, this “Shimura correspondence” was recognized as
an early example of a theta-correspondence, here between
the double cover of SL(2) and 𝑂(2, 1), which is essentially
the same as 𝑃GL(2). Shimura revisited his correspon-
dence from this point of view in [21] and subsequent arti-
cles for the Hilbert modular case, and describes the theta-
correspondence viewpoint over 𝐐 in a readable account
for students in his last book, Modular Forms: Basics and
Beyond, published in 2012. As another result using half-
integral weight on SL(2), Shimura was the first to prove
the remarkable result [13] that the symmetric square 𝐿-
function of a classical modular form has an analytic con-
tinuation to 𝐂. Prior to that, one had only a meromorphic
continuation with possible poles at all the zeros of the Rie-
mann zeta function or a Dirichlet 𝐿-function. This proof
used a careful analysis of Eisenstein series of half-integral
weight. Shimura of course studied many other aspects of
half-integral weight on larger groups, including but also

going well beyond questions about the behavior of Eisen-
stein series, as part of his large program on arithmeticity,
which was a large focus of his work from the mid-1970s
through the late 1990s.

Before I mention Shimura’s work on arithmeticity, how-
ever, I will briefly mention his significant production of
books and articles from the mid-1990s until 2012, dur-
ing his retirement (“only from teaching,” he once told
me). In a 1997 monograph, Euler Products and Eisenstein
Series, he broke new ground in the explicit construction
of 𝐿-functions using essentially the “doubling method” of
Gelbart, Piatetski-Shapiro, and Shalika, obtaining all Eu-
ler factors and gamma factors. Also, in two monographs,
Arithmetic and Analytic Theories of Quadratic Forms and Clif-
ford Groups (2004) andArithmetic of Quadratic Forms (2010),
Shimura obtained new results in the theory of quadratic
forms and new explicit forms of the celebrated Siegel mass
formula. He further summed up and refined in mono-
graph form many strands of his earlier work that had pre-
viously appeared in articles: his work with Taniyama from
the 1950s on complex multiplication in Abelian Varieties
with Complex Multiplication and Modular Functions (1998);
elementary and less elementary topics in modular forms,
including the Shimura correspondence and the simplest
cases of arithmeticity in the books Elementary Dirichlet Se-
ries and Modular Forms (2007) and Modular Forms: Basics
and Beyond (2012); and a more comprehensive treatment
of his program of arithmeticity in Arithmeticity in the Theory
of Automorphic Forms (2000).

Shimura’s program on arithmeticity, a large focus of his
work from themid-1970s onwards, can be viewed as a very
large and elaborate outgrowth of the two seminal articles
[12], [14]. I shall single out two themes: from the first
article, the arithmeticity of the values of nearly holomor-
phic modular forms at CM points, and from the second,
the arithmeticity of special values of 𝐿-functions of modu-
lar forms, and the relation of these special values to more
fundamental periods attached to the forms.

The first theme above generalizes Shimura’s reciprocity
law for holomorphic modular functions at CM points to
certain nonholomorphic functions, where the relation to
algebraic geometry is less direct. In the classical context, a
nearly holomorphic form is a function 𝑓 ∶ ℋ → 𝐂 on the
usual upper half-plane which transforms as expected un-
der a congruence subgroup of SL(2, 𝐙). Instead of requir-

ing 𝑓 to be holomorphic, we require 𝑓 = ∑𝑁
𝑛=0 𝑓𝑛(𝑧)𝑦−𝑛,

where 𝑦 = Im(𝑧) and the 𝑓𝑛 are holomorphic. (Actually,
for arithmeticity reasons, it is better to use (𝜋𝑦)−𝑛.) A typi-
cal example is the Eisenstein series 𝐸2 = (8𝜋𝑦)−1−(1/24)+
∑𝑛≥1 𝜎1(𝑛)𝑞𝑛. One can also obtain nearly holomorphic
forms by applying certain differential operators to holo-
morphic forms. Shimura introduced an ingenious way to
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evaluate such an 𝑓 at a CM-point 𝑧0 = (𝑎 + 𝑏√−𝐷)/𝑐, by
comparing 𝑓 and 𝑓|𝛼 for an element 𝛼 that stabilizes 𝑧0,
and combining this with taking various derivatives. The
generalization of this to larger groups is of course more
involved.

The second theme, in the setting of the arithmeticity
of the special values of standard 𝐿-functions of classical
modular forms, can be studied in terms of the Eichler–
Shimura cohomology groups or (as formulated by Manin)
in terms of modular symbols. The new approach in
[14] is quite different and allows for a generalization
to many other groups and 𝐿-functions. In the classi-
cal setting, let 𝑓 be a newform (in Shimura’s terminol-
ogy, a primitive form). Instead of considering a single
(twisted) special 𝐿-value 𝐿(𝑘, 𝜒, 𝑓) for a Dirichlet character
𝜒, Shimura considers products of two such special values,
which he obtains via an integral of Rankin–Selberg type
as 𝐿(𝑘1, 𝜒1, 𝑓)𝐿(𝑘2, 𝜒2, 𝑓) = ⟨𝑓, 𝐺⟩ for an explicit modular
form 𝐺. Here 𝐺 is a product of two Eisenstein series and
can be expanded as 𝐺 = 𝑐𝐸𝐸 +∑𝑖 𝑐𝑖𝑔𝑖, where 𝐸 itself is an
Eisenstein series, and the 𝑔𝑖 are cuspidal Hecke eigenforms
(not necessarily newforms; one can have 𝑔𝑖(𝑧) = ℎ𝑖(𝑁𝑖𝑧)
for a newform ℎ𝑖). Since 𝐺, 𝐸, and the ℎ𝑖 have algebraic
Fourier coefficients, the 𝑐𝑖 and 𝑐𝐸 are themselves algebraic,
and then one obtains (after some more work) an algebraic
expression for 𝐿(𝑘1, 𝜒1, 𝑓)𝐿(𝑘2, 𝜒2, 𝑓) in terms of those 𝑐𝑖
where ℎ𝑖 = 𝑓. This is the heart of the idea in the classi-
cal case, and it generalizes somewhat directly to Hilbert
modular forms. However, for the generalization to larger
groups and other 𝐿-functions, one requires two significant
inputs: first, a good understanding of the analytic (not
just meromorphic) continuation of Eisenstein series on
larger groups, with a precise proof of arithmeticity of their
Fourier expansions, and, second, once again a thorough
understanding for higher groups of the differential oper-
ators that already appeared for evaluation at CM-points.
(The differential operators are needed even in the classical
case but are more tractable there.) Tackling both of these
questions in more general settings involved a large body
of work by Shimura (and his students, in their theses) over
some twenty-five years, and the computations are quite in-
tricate. Besides the books mentioned above, Euler Products
and Eisenstein Series (1997) and Arithmeticity in the Theory
of Automorphic Forms (2000) and their references, I will sin-
gle out the articles [19], [20] as a memorable illustration
of the careful study that Shimura was able to undertake of
the analytic continuation and Fourier expansions of Eisen-
stein series in integral and half-integral weight. The diffi-
culty resides largely in the number theory, but there are
also genuine analytic challenges in terms of special (con-
fluent hypergeometric) functions on the symmetric spaces
of these higher-rank groups.

Figure 4. Goro Shimura and Kenneth Ribet in the summer of
1973.

Kenneth Ribet
I first saw Goro Shimura at the Antwerp conference Mod-
ular Functions of One Variable in 1972. I was a graduate
student at the time and was shy around senior mathemati-
cians. Some of the faculty members at that conference
encouraged informal contact with graduate students, but
Shimura’s body language did not convey any encourage-
ment. I was further intimidated by a comment that was
made by one of the Princeton graduate students: “Many
mathematicians have knowledge. Shimura has wisdom.”

Twelve months later, I had finished my dissertation
work and was about to begin a lecturer position at Prince-
ton. Shimura welcomed me when I arrived in the Prince-
ton math department and gave me tips for dealing with
students. In particular, he recommended that I respond to
students’ questions by writing down answers in their note-
books so that theywould have easy access tomy comments
even after their memories of my remarks had faded.

Shimura then asked me a mathematical question that
turned out to be extremely fruitful. Specifically, let 𝑁 be
a prime number and let 𝐽 be the Jacobian of the modu-
lar curve 𝑋0(𝑁) that classifies degree 𝑁 isogenies between
elliptic curves. Then 𝐽 is an abelian variety over the field
𝐐 of rational numbers. Moreover, 𝐽 has endomorphisms
𝑇𝑛 (𝑛 ≥ 1) that are geometric versions of the Hecke oper-
ators on modular forms that had been studied by Hecke
and Shimura. These endomorphisms generate a subring 𝐓
of the ring of endomorphisms of 𝐽 over 𝐐. Shimura asked
me whether 𝐓⊗ 𝐐 is the full endomorphism algebra of 𝐽.

Kenneth Ribet is a professor of mathematics at the University of California,
Berkeley. His email address is ribet@berkeley.edu.
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Figure 5. Goro, Chikako, and Haru at the Ukiyo-e Museum in
Matsumoto, Japan.

I found first that 𝐓 ⊗ 𝐐 is the algebra of all endomor-
phisms of 𝐽 that are defined over 𝐐, but this was not news
to Shimura. He asked me whether or not there were en-
domorphisms of 𝐽 over the algebraic closure of 𝐐 beyond
the ones that are already defined over 𝐐. Using results
that had been obtained by Deligne and Rapoport a year or
two before, I proved that all endomorphisms of 𝐽 are de-
fined over 𝐐. Technically, I used the theorem of Deligne–
Rapoport to the effect that 𝐽 has semistable reduction at
the prime 𝑁 (and thus at all primes, because 𝐽 has good
reduction outside 𝑁); my result was really about abelian
varieties with semistable reduction.

Shimura was delighted by my result and asked me to
explain my proof to him in detail. In response, he wrote
down a polynomial identity that simplified the main com-
putation that I had presented to him. Shimura then sug-
gested that we write a joint article with the result. Perhaps
selfishly, I told him that I was reluctant to write a joint pa-
per because I had never yet published any mathematical
article. Shimura accepted my answer and encouraged me
to publish the result on my own. I did so—and credited
Shimura for posing the original problem and for the sim-
plification that he made to my argument. I was grateful
to him for this act of generosity, but now worry that I was
wrong to decline his offer.

By the way, my theorem shows that (End 𝐽)/𝐓 is a tor-
sion abelian group. Here, End 𝐽 is the full ring of endo-
morphisms of 𝐽, and 𝐓 again is the subring of those en-
domorphisms that come from Hecke operators. In 1977,
Barry Mazur proved that the quotient (End 𝐽)/𝐓 is torsion
free in his “Eisenstein ideal” article. Our results together
imply that the quotient is trivial, i.e., that 𝐓 is the full ring
of endomorphisms of 𝐽.

Alice Silverberg
Theway I became a PhD student of Goro Shimura was a bit
unusual. Sometime inmy first year, I asked Nick Katz to be
my thesis advisor. He told me to talk to him after I passed
my General Exam in the spring. After the exam, Katz went
away for the summer. At a conference early that summer,
I ran into John Coates, who asked me whom I planned
to work with. When I said Katz, he exclaimed, “But Alice,
you can’t possibly work with Nick Katz! He won’t be at
Princeton. He’s accepted a job at Berkeley.”

I had no way to contact Katz to check this (and to find
out that it wasn’t correct). So I decided that I had bet-
ter have a back-up plan. Former students of Professor
Shimura had told me that the first thing he tells prospec-
tive students is to read the red book, Introduction to the
Arithmetic Theory of Automorphic Functions. That summer,
I started to read the book and do the exercises.

In the fall, I needed to talk to the director of graduate
studies about an administrative matter. That happened to
be Katz. One day after tea I followed him to the elevator
and asked to talk with him. As we waited for the elevator
he turned to me and said, “So are you my student or aren’t
you?” Based on his tone of voice, I reflexively responded,
“No, I’m not.” Then he asked me who my advisor was.
Without thinking I blurted out “Shimura.” Then, horrified
at the thought that he might ask Shimura and find out it
wasn’t true, I hurriedly added, “But he doesn’t know it yet!”

Luckily, Shimura agreed to be my advisor.
A former student told me that his experience was that

he would bring a notebook to his meetings with Shimura.
Shimura would write a problem in the notebook and ask
the student to solve it for their next meeting. If the student
didn’t solve it, Shimura wrote the solution in the student’s
notebook. My experience was very different; I worked very
independently.

Shimura suggested a nice thesis problem, and I went
away and worked on it. He then took the problem away
from me. I heard through the grapevine that Shimura had
given the problem to a former student to do for his thesis,
but the student hadn’t solved the problem then and now
wanted it back.

Next, perhaps tomake up for the time I had spent on the
first problem, Shimura gaveme a choice of three problems.
When I chose the one furthest fromhis interests at the time,
he was pleased with my choice.

Shimura gave me a first step to solve and told me to
come back in about two weeks to report on my progress.

Alice Silverberg is Distinguished Professor of Mathematics and Computer Sci-
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By the end of those twoweeks Imanaged to understand the
question, but I hadn’t made progress towards a solution. I
didn’t feel that was good enough, so I didn’t arrange to see
him and kept working. After another two weeks I had an-
swered the question, but I didn’t feel I could show up after
four weeks having only accomplished what I should have
done in two. So I kept working and made more progress,
but it never seemed like enough, given the time I had spent
on it. After a few months, I realized that I needed to let
my advisor know I was still alive, so I met with Shimura
and told him what I had accomplished. He could have
been angry that I hadn’t kept him informed. Instead, and
luckily for me, he was pleased with both the work I had
accomplished and my independence.

If I were restricted to one word to describe Shimura
as a thesis advisor, I would say that he was “responsi-
ble.” That’s higher praise than it sounds; conscientious-
ness seemed like a rare and unusual trait among thesis ad-
visors when I was a Princeton graduate student.

As my interests moved away from automorphic forms
and into cryptography, I found that I continued to use
Goro’s work, especially the theory of complex multiplica-
tion, which is useful for modern-day cryptography. I also
used Shimura reciprocity to help construct an algorithm re-
lated to point counting on elliptic curves over finite fields.

Goro Shimura had very high standards. I do best when
the standards for me are high, so I am very grateful to Goro
for having high standards for me, for telling me that a
mathematician must be an optimist, and for believing in
me as a mathematician. While he didn’t often communi-
cate that he thought highly of me, he did it enough (to
both me and mathematicians who made decisions about
me) to have a positive effect on my life and career. I will
cherish thememories of ourmathematical father-daughter
relationship.

Hiroyuki Yoshida
The impact of student protests in Paris in May 1968 spread
to the world, and Kyoto University in Japan was swallowed
up in big waves from the beginning of 1969. No courses
were offered to students for one year. In the autumn of
1969, I visited, with classmates, Professor Hiroaki Hijikata,
who was then a young associate professor, in his office
to ask him to give us a seminar on number theory. I
was a senior mathematics major at Kyoto University. Hi-
jikata asked me what I was interested in. I responded,
“Complex multiplication.” I knew at that time, without

Hiroyuki Yoshida is emeritus professor at Kyoto University. His email address
is hyoshida111@gmail.com.

Figure 6. Group photograph taken at the NSF-CBMS
conference at Texas Christian University in honor of Shimura
in May 1996.

precise understanding, the legend of Shimura–Taniyama–
Weil on complex multiplication and Shimura’s work on
Shimura curves. Hijikata selected some suitable literature
for a seminar, and I was able to proceed rather quickly and
learned that Shimura was developing the theory of higher-
dimensional arithmetic quotients of bounded symmetric
domains. Hiroshi Saito also attended Hijikata’s seminar.

Next summer, Hijikata, through his friend Professor Ya-
sutaka Ihara, introduced me to Shimura. In the spring of
1971, I was admitted to graduate school in mathematics
at Princeton University with a scholarship, to start in the
autumn. That spring, Professors Koji Doi and Hidehisa
Naganuma came back to Kyoto from IAS in Princeton. I
first met Professor Goro Shimura on July 14, 1971, on
the Ishibashi campus of Osaka University. Shimura was
invited by Professor Taira Honda to give a lecture in Os-
aka. My first impression was that he resembled the famous
philosopher Kitaro Nishida of the Kyoto school.
Talks with Shimura in person. I arrived at Princeton on
September 13, 1971, and met Shimura the next day in
his office, and he kindly took me to his home. Shimura
had just published his now standard textbook Introduction
to the Arithmetic Theory of Automorphic Functions. I asked
him, “What is your present interest?” He replied that he
was studying modular forms of half integral weight. He
hinted that he had discovered a relation between modu-
lar forms of half integral weight and modular forms of in-
tegral weight. A preprint became available only the next
spring, and now this relation between modular forms of
half integral weight (2𝑘 + 1)/2 and modular forms of inte-
gral weight 2𝑘 is called the Shimura correspondence ([11]). A
technical core of the proof is an ingenious application of
the Rankin–Selberg convolution and Weil’s converse theo-
rem.
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We also talked about complex multiplication of abelian
varieties and construction of class fields. Though an
abelian variety 𝐴 has (sufficiently many) complex multi-
plications by an algebraic number field 𝐾, the class field is
obtained over the reflex field 𝐾′, which is different from 𝐾
in general. Shimura explained this curious phenomenon,
first discovered by Hecke in a simple case, as follows. Sup-
pose that 𝐴 is defined over a subfield 𝑘 of 𝐂. Then the field
generated by the division points of 𝐴 is determined as a
subfield of 𝐂. But 𝐾 is not determined as a subfield of 𝐂;
only its isomorphism class has a definitive meaning. In
contrast to this, the reflex field is determined as a subfield
of 𝐂 from 𝐾 and the CM-type of 𝐴. I felt a revelation and
got deeply interested in this “thought experiment.”

In the summer of 1972, Shimura took me to the
Antwerp conference on modular functions of one variable.
One afternoon, we went out for sightseeing in the city. I
was impressed that Shimura very efficiently found a route
to visit museums and places of interest with a handy map.
This experience turned out to be very useful for my travels
in later years. He went back to his hotel after buying some
paper of good quality for his calculations.

I received a PhD in 1973 under Shimura’s guidance and
stayed in Princeton as a postdoc until August of 1975. In
1975, when I was preparing to leave Princeton for Kyoto,
Shimura was studying critical values of 𝐿-functions associ-
ated with modular forms. This time the Rankin–Selberg
method was employed again. The basic formula is

(4𝜋)−𝑠Γ(𝑠)𝐷(𝑠, 𝑓, 𝑔)

= ∫
Γ0(𝑁)\𝐻

𝑓(𝑧)𝑔(𝑧)𝐸𝑘−𝑙(𝑧, 𝑠 + 1 − 𝑘)𝑦𝑠−1𝑑𝑥𝑑𝑦. (1)

Here 𝑠 is a complex variable, 𝐻 is the complex upper half-
plane, and 𝑧 ∈ 𝐻 is written as 𝑧 = 𝑥 + 𝑖𝑦, 𝑦 > 0, 𝑥 ∈ 𝐑;
𝑓(𝑧) = ∑∞

𝑛=1 𝑎𝑛𝑞𝑛 and 𝑔(𝑧) = ∑∞
𝑛=0 𝑏𝑛𝑞𝑛, with 𝑞 = 𝑒2𝜋𝑖𝑧,

are holomorphic modular forms with respect to Γ0(𝑁) of
weights 𝑘 and 𝑙, respectively, with 𝑘 > 𝑙. For simplicity, we
assume that the characters of 𝑓 and 𝑔 are trivial (Hauptty-
pus). For 0 ≤ 𝜆 ∈ 𝐙, 𝐸𝜆(𝑧, 𝑠) is an Eisenstein series defined
by

𝐸𝜆(𝑧, 𝑠) = ∑
𝛾∈Γ∞\Γ0(𝑁)

(𝑐𝑧 + 𝑑)−𝜆|𝑐𝑧 + 𝑑|−2𝑠,

where

𝛾 = (𝑎 𝑏
𝑐 𝑑)

and

Γ∞ = {±(1 𝑚
0 1 )

||| 𝑚 ∈ 𝐙} .

Our first objective is to study special values of 𝐿(𝑠, 𝑓) =
∑∞

𝑛=1 𝑎𝑛𝑛−𝑠. Suppose that 𝑓 is a Hecke eigen cusp form.
Then there exist periods 𝑢±(𝑓) such that 𝐿(𝑚, 𝑓)/𝜋𝑚𝑢±(𝑓)

is algebraic for 1 ≤ 𝑚 ≤ 𝑘 − 1, (−1)𝑚 = ±1, 𝑚 ∈ 𝐙. (A co-
homological approach was discovered by Shimura fifteen
years earlier ([2]).)

Moreover, 𝑢+(𝑓)𝑢−(𝑓) = 𝑖1−𝑘𝜋⟨𝑓, 𝑓⟩, where ⟨𝑓, 𝑓⟩ is the
normalized Petersson norm of 𝑓. Shimura stressed the im-
portance of𝐷(𝑠, 𝑓, 𝑔) and not only 𝐿(𝑠, 𝑓). Suppose that 𝑔 is
also a Hecke eigen cusp form. Then 𝜁(2𝑠+2−𝑘−𝑙)𝐷(𝑠, 𝑓, 𝑔)
has an Euler product of degree 4 and may be denoted as
𝐿(𝑠, 𝑓 ⊗ 𝑔). Then (2𝜋)𝑙−1−2𝑚𝐿(𝑚, 𝑓 ⊗ 𝑔)/𝑢+(𝑓)𝑢−(𝑓) is al-
gebraic for 𝑙 ≤ 𝑚 < 𝑘, 𝑚 ∈ 𝐙 ([14], [16]). It is very inter-
esting that the form of higher weight gives the dominant
contribution. Shimura discovered an ingenious but now
standard way to deduce these results from (1).

Shimura was a great master of using the Rankin–Selberg
convolution to squeeze arithmetical information from it.
In the half integral weight case mentioned above, 𝑓 is a
form of half integral weight, 𝑔 is a classical theta func-
tion, and 𝐸 is an Eisenstein series of half integral weight
in (1). In the later years, Shimura generalized the method
to higher-dimensional cases.

In the summer of 1985, Shimura suddenly called me.
(In the meantime, I was communicating with Shimura by
occasional letters.) He told me he had come to Kyoto with
his wife but with no business. His wife was visiting her
friend. So we went to Kurama temple for sightseeing. In
the bus from his hotel to the local train station, I talked
about the then-popular movie Amadeus. I talked about the
sad destiny of Salieri’s music. Then he said, “I am Mozart”
immediately. Shimura also declared at this time that the
modularity conjecture for elliptic curves over 𝐐 was his.
Shimura explained to me some interesting work of his re-
cent PhD students. The name of Don Blasius was among
them. I think Shimura wished to give me some stimula-
tion. We parted this time after he promised to visit Kyoto
University in the summer two years later.

Shimura had a summer villa in Tateshina, Nagano pre-
fecture, Japan. After 2011, Shimura invited me three
times to visit his villa. The villa was acquired around
the time when Shimura moved to Princeton from Osaka.
An old, rather small building was standing in a large site.
Tateshina is very nice to stay in during the summertime.
Nearby are villas of celebrities. Shimura spent summers
here with his family every couple of years during his pro-
fessorship in Princeton. His studywas small, less than 5m2.
It is amazing that monumental papers were written in this
place. As I was accompanying a young mathematician, I
asked Shimura what would you do in mathematics if you
were young. It was around 2013. He responded that he
would study Siegel. In fact, volume V of his collected pa-
pers contains several important papers on quadratic forms,
and the influence of Siegel and Eichler was manifest.
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Shimura sometimes told me that he loved “tricks” in
mathematics. The trace formula and the Rankin–Selberg
convolution are examples to him. A long winding road of
reasoning leads to a simple theorem, illuminated by con-
crete (sometimes numerical) examples that can be seen
by everybody. This is a tradition among number theorists
from ancient times. For a layman, thismay look likemagic.
I mention [2], [6], [11], [14], and [25].

On a few occasions, we talked about big problems
such as the Hodge conjecture and the Riemann hypothesis.
Shimura was negative about attacking a big problem with-
out having good ideas. But he had the opinion that for
the Riemann hypothesis, differential operators will play a
crucial role. An interested reader may consult [23], [24].
In Shimura’s class. Shimura’s students know that the
master has excellent skills of exposition and is also an en-
tertainer.

In a lecture around 1972 at Princeton University, he
explained the theory of canonical models, now called
Shimura varieties. To study the model further, he said, “To
desingularize or not to desingularize: that is the question.”
Everybody, knowingHamlet, enjoyed the performance and
laughed. (This incident is recorded in his book written in
Japanese How to Teach Mathematics, p. 20. This book is
the last item of the bibliography of volume V of his col-
lected papers.) Also in another lecture around the same
time, he talked about exotic ℓ-adic representations con-
structed using the theory of canonical models ([10], and
§8 of “On canonical models of arithmetic quotients of
bounded symmetric domains. I”). He said that the eigen-
values of the Frobenius automorphism have the property
of “Riemann–Ramanujan–Weil type.” Everybody enjoyed
it and laughed.

In a lecture around 1989 at Kyoto University, he talked
about the critical values of Dirichlet series and periods
of automorphic forms ([22]). Automorphic forms are of
Hilbert modular type, and 𝐿-functions are of standard type
or of Rankin–Selberg type. But he considers all configu-
rations of weights including the half integral weight case.
Shimura’s exposition was clear, but the situation is compli-
cated and divided into several cases. For the half integral
case, the period to be considered is the minus period of
the integral weight form that corresponds to the half inte-
gral weight form by the Shimura correspondence, while it
is the product of plus and minus periods when the form is
integral weight. He explained this by saying, “The period
becomes the half because the weight is half.” Everybody
laughed but this time with some feeling of relief. (To catch
the point quickly, the reader is advised to see the introduc-
tion of [18].)

In Paris in 2000, after finishing a talk at a conference,
Shimura was asked to give advice for a young audience by

the chairman. He replied, “Don’t prove anybody’s conjec-
ture,” and everybody laughed. This episode is recorded in
How to Teach Mathematics, p. 33. In this book, Shimura
explains this advice in some depth.

I stayed at IAS in Princeton for 1990–91. In the spring
of 1991, Shimura showed me reports of senior students
evaluating Shimura’s course. Most students evaluated the
course highly; a few said that they never attended such
splendid lectures during their student time in Princeton.
Shimura told me that they were not mathematics majors;
he lectured on number theory with an emphasis on histor-
ical perspectives. He was very proud of the students’ eval-
uations and saw some of them in his Princeton home for
decades.

Shimura published two autobiographies; one in Eng-
lish (TheMap of My Life), one in Japanese. The contents are
basically the same, of course, but they are independently
written. In the book, he wrote that when he was young
(1952–56), he taught at the University of Tokyo and also
in a preparatory school because the salary was so low. Hi-
jikata told me that he was then in preparatory school and
impressed by Shimura’s lecture; that experience led him to
study mathematics.

Perhaps I should comment briefly on the historical
facts concerning the Shimura–Taniyama conjecture, i.e.,
the modularity conjecture of elliptic curves over 𝐐. The
issue is analyzed in detail in his autobiographies. The
English version gives a more detailed account. He under-
stood well that the issue was quite social. I quote one
paragraph from Shimura’s book: “The reader may ask why
there were so many people who called the conjecture in
various strange ways. I cannot answer that question except
to say that many of them had no moral sense and most
were incapable of having their own opinions.”
As a man of culture. We had several interests in com-
mon, so it was not difficult for me to start a conversa-
tion with Shimura. One interest is Japanese chess (Shogi).
The chess board is 9 × 9, and we can use captured pieces
again. The other rules are basically the same as the western
chess game. When I visited him in his Princeton home, he
showed me a Japanese chess problem (Tsume-Shogi) com-
posed by him. When I showed the correct answer of 71
moves written on a paper in my next visit, Shimura was
very pleased. I still keep this problem and another problem
of 169 moves. Shimura said he composed chess problems
when he was very young, spending considerable time.

As my family served as Buddhist priests for centuries, I
had some training to read Buddhist scriptures in Chinese
translation frommy childhood. Shimura liked to read Chi-
nese classics and published two books. He also had some
original perspectives on Buddhism.

Shimura loved music very much. His writings about
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music are scattered in many places in his books. In my
first visit to his home, he played the well-tempered clavier
on a record player. In later years, he regularly visited the
Metropolitan Opera with his wife.

Shimura had an interest in antiques. He published a
book on Imari porcelains. He had this interest since he
was young; he wrote so in his book written in Japanese.
But it was enhanced by a famous professor of oriental art at
Princeton University, I think. Shimura’s wife told me that
her husband had a very strong memory of shapes, perhaps
stronger than that professor.
Final recollections. Writing this article, I felt strongly the
coherency of Shimura’s character. Time has passed, and I
am now much older than Shimura was when we first met.
Nobody can stop aging and change their ultimate destiny.
What I can be proud of, if anything, is that, after 1987, I in-
vited Shimura about ten times to Kyoto University to give
intensive courses, which must benefit students and young
researchers. I also helped Shimura to edit his collected pa-
pers I–V with Alice Silverberg and Doi. But compared to
what Shimura gave me to live as a mathematician, they are
very small contributions. I thank Professor Goro Shimura
again, this time with the deepest feeling of loss. Shimura is
not among us anymore and will not respond to our emails.
But his mathematics will live like the music of Mozart.
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The Legacy of
Józef Marcinkiewicz:
Four Hallmarks of Genius
In Memoriam of an Extraordinary Analyst

Nikolay Kuznetsov

This article is a tribute to one of the most prominent Pol-
ish mathematicians, Józef Marcinkiewicz, who perished
eighty years ago in the Katyń massacre. He was one of
nearly 22,000 Polish officers interned by the Red Army
in September 1939 and executed in April–May 1940 in
the Katyń forest near Smolensk and at several locations
elsewhere. One of these places was Kharkov (Ukraine),
where more than 3,800 Polish prisoners of war from
the Starobelsk camp were executed. One of them was
Marcinkiewicz; the plaque with his name (see Figure 1)
is on the Memorial Wall at the Polish War Cemetery
in Kharkov.1 This industrial execution was authorized by
Stalin’s secret order dated 5 March 1940 and organized by
Beria, who headed the People’s Commissariat for Internal
Affairs (the interior ministry of the Soviet Union) known
as NKVD.

Turning to the personality and mathematical achieve-
ments of Marcinkiewicz, it is appropriate to cite the article
[24] of his supervisor Antoni Zygmund (it is published in
the Collected Papers [13] of Marcinkiewicz; see p. 1):
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Considering what he did during his short life and
what hemight have done in normal circumstances
one may view his early death as a great blow to
Polish Mathematics, and probably its heaviest in-
dividual loss during the second world war.

From the Marcinkiewicz Biography [9]
On the occasion of the centenary of Marcinkiewicz’s birth,
a conference was held on 28 June–2 July 2010 in Poznań.
In its proceedings, L. Maligranda published the detailed
article [9] about Marcinkiewicz’s life and mathematical re-
sults; sixteen pages of this paper are devoted to his biog-
raphy, where one finds the following about his education
and scientific career.
Education. Klemens Marcinkiewicz, Józef ’s father, was a
farmer well-to-do enough to afford private lessons for him
at home (the reason was Józef ’s poor health) before send-
ing him to elementary school and then to gymnasium in
Białystok. After graduating in 1930, Józef enrolled in the
Department of Mathematics and Natural Science of the
Stefan Batory University (USB) in Wilno (then in Poland,
now Vilnius in Lithuania).

From the beginning of his university studies, Józef de-
monstrated exceptional mathematical talent that attracted
the attention of his professors, in particular, of A. Zyg-
mund. Being just a second-year student, Marcinkiewicz
attended his lectures on orthogonal series, requiring some
erudition, in particular, knowledge of the Lebesgue in-
tegral; this was the point where their collaboration be-
gan. The first paper of Marcinkiewicz (see [13, p. 35])

690 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 67, NUMBER 5

https://https://www.tracesofwar.com/sights/10355/Polish-War
https://-Cemetery-Kharkiv.htm
https://reprint-permission@ams.org
https://doi.org/10.1090/noti2084


Figure 1. Plaque for Marcinkiewicz on the Memorial Wall at
the Polish War Cemetery in Kharkov.

was published when he was still an undergraduate student.
It provides a half-page proof of Kolmogorov’s theorem
(1924) guaranteeing the convergence almost everywhere
for partial sums of lacunary Fourier series. Marcinkiewicz
completed his MSc and PhD theses (both supervised by
Zygmund) in 1933 and 1935, respectively; to obtain his
PhD degree he also passed a rather stiff examination.
The second dissertation was the fourth of his almost five
dozen publications; it concerns interpolation by means
of trigonometric polynomials and contains interesting re-
sults (see [24, p. 17] for a discussion), but a long publica-
tion history awaited this work. Part of it was published in
the StudiaMathematica the next year after the thesis defense
(these two papers in French are reproduced in [13, pp. 171–
185 and 186–199]). The full, original text in Polish ap-
peared in the Wiadomości Matematyczne (the Mathemati-
cal News) in 1939. Finally, its English translation was in-
cluded in [13, pp. 45–70].
Scientific career. During the two years between defending
his MSc and PhD theses, Marcinkiewicz did the one year of
mandatory military service and then was Zygmund’s assis-
tant at USB. The academic year 1935–1936 Marcinkiewicz
spent as an assistant at the Jan Kazimierz University in
Lwów. Despite twelve hours of teaching weekly, he was
an active participant in mathematical discussions at the fa-
mous Scottish Café (see [3, ch. 10], where this unique form
of doing mathematics is described), and his contribution

to the Scottish Book compiled in this café was substantial,
taking into account that his stay in Lwów lasted only nine
months. One finds the history of this book in [14, ch. I],
whereas problems and their solutions, where applicable,
are presented in ch. II. Marcinkiewicz posed his own prob-
lem; it concerns the uniqueness of the solution for the in-
tegral equation

∫
1

0
𝑦(𝑡)𝑓(𝑥 − 𝑡) d𝑡 = 0, 𝑥 ∈ [0, 1].

He conjectured that if 𝑓(0) ≠ 0 and 𝑓 is continuous, then
this equation has only the trivial solution 𝑦 ≡ 0 (see prob-
lem no. 124 in [14, pp. 211 and 212]). He also solved three
problems; his negative answers to problems 83 and 106
posed by H. Auerbach and S. Banach, respectively, involve
ingenious counterexamples. His positive solution of prob-
lem 131 (it was formulated by Zygmund in a lecture given
in Lwów in the early 1930s) was published in 1938; see
[13, pp. 413–417].

During the next two academic years, Marcinkiewicz was
a senior assistant at USB and after completing his habili-
tation in June 1937 became the youngest docent at USB.
The same year, he was awarded the Józef Piłsudski Scien-
tific Prize (the highest Polish distinction for achievements
in science at that time). His last academic year 1938–1939,
Marcinkiewicz was on leave from USB; a scholarship from
the Polish Fund for National Culture afforded him op-
portunity to travel. He spent October 1938–March 1939
in Paris and moved to the University College London for
April–August 1939, also visiting Cambridge and Oxford.

This period was very successful for Marcinkiewicz; he
published several brief notes in the Comptes rendus de
l’Académie des Sciences Paris. One of these, namely [12],
became widely cited because the celebrated theorem con-
cerning interpolation of operators was announced in it.
Now this theorem is referred to as the Marcinkiewicz or
Marcinkiewicz–Zygmund interpolation theorem (see be-
low). Moreover, an important notion was introduced in
the same note: the so-called weak-𝐿𝑝 spaces, known as
Marcinkiewicz spaces now, are essential for the general
form of this theorem.

Meanwhile, Marcinkiewicz was appointed to the posi-
tion of Extraordinary Professor at the University of Poznań
in June 1939. On his way to Paris, he delivered a lecture
there and this, probably, was related to this impending ap-
pointment. Also, this was the reason to decline an offer of
professorship in the USA during his stay in Paris.

Marcinkiewicz still was in England when the general
mobilization was announced in Poland in the second half
of August 1939; the outbreak of war became imminent.
His colleagues advised him to stay in England, but his
ill-fated decision was to go back to Poland. He regarded
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Figure 2. Józef Marcinkiewicz.

himself as a patriot of his homeland, which is easily ex-
plainable by the fact that he was just eight years old (very
sensitive age in forming a personality) when the indepen-
dence of Poland was restored.

Contribution of Marcinkiewicz to Mathematics
Marcinkiewicz was a prolific author, as demonstrated by
the almost five dozen papers he wrote in just seven years
(1933–1939); see Collected Papers [13, pp. 31–33]. He was
open to collaboration; indeed, more than one third of his
papers (nineteen, to be exact) were written with five coau-
thors, of which the lion’s share belongs to his supervisor
Zygmund.

Marcinkiewicz is known, primarily, as an outstanding
analyst, whose best results deal with various aspects of real
analysis, in particular, theory of series (trigonometric and
others), inequalities, and approximation theory. He also
published several papers concerning complex and func-
tional analysis and probability theory. In the extensive pa-
per [9] dedicated to the centenary of Marcinkiewicz’s birth,
one finds a detailed survey of all his results.

This survey begins with the description of five topics
concerning functional analysis ([9, pp. 153–175]). No
doubt, the first two of them—the Marcinkiewicz interpo-
lation theorem and Marcinkiewicz spaces—are hallmarks

of genius. One indication of the ingenuity of the idea be-
hind these results is that the note [11], in which they first
appeared, is the most cited work of Marcinkiewicz.

Another important point about his work is that he skill-
fully applied methods of real analysis to questions border-
ing with complex analysis. A brilliant example of this mas-
tery—one more hallmark of genius—is the Marcinkiewicz
function 𝜇 introduced as an analogue of the Littlewood–
Paley function 𝑔. It is worth mentioning that the short pa-
per [10], in which 𝜇 first appeared, contains other fruitful
ideas developed by many mathematicians subsequently.

One more hallmark of genius one finds in the paper
[11] entitled “Sur les multiplicateurs des séries de Fourier.”
There are many generalizations of its results because of
their important applications. This work was the last of
eight papers that Marcinkiewicz published in the Studia
Mathematica; the first three he submitted during his stay
in Lwów, and they appeared in 1936.

Below, the above-mentioned results of Marcinkiewicz
are outlined in their historical context together with some
further developments. One can find a detailed presenta-
tion of all these results in the excellent textbook [18] based
on lectures of the eminent analyst Elias Stein, who made a
considerable contribution to further development of ideas
proposed by Marcinkiewicz.

Marcinkiewicz Interpolation Theorem
and Marcinkiewicz Spaces
There are two pillars of the interpolation theory: the clas-
sical Riesz–Thorin and Marcinkiewicz theorems. Each of
these serves as the basis for two essentially different ap-
proaches to interpolation of operators known as the com-
plex and real methods. The term “interpolation of opera-
tors” was, presumably, coined by Marcinkiewicz in 1939,
because Riesz and Thorin, who published their results in
1926 and 1938, respectively, referred to their assertions as
“convexity theorems.”

It is worth emphasizing again that a characteristic fea-
ture of Marcinkiewicz’s work was applying real methods
to problems that other authors treated with the help of
complex analysis. It was mentioned above that in his
paper [10] published in 1938, Marcinkiewicz introduced
the function 𝜇 without using complex variables but so
that it is analogous to the Littlewood–Paley function 𝑔,
whose definition involves these variables. In the same year,
1938, Thorin published his extension of the Riesz con-
vexity theorem, which exemplifies the approach based on
complex variables. Possibly this stimulatedMarcinkiewicz
to seek an analogous result with proof relying on real anal-
ysis. Anyway, Marcinkiewicz found his interpolation the-
orem and announced it in [12]; concurrently, a letter was
sent to Zygmund that contained the proof concerning a
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particular case. Ten years after World War II, Zygmund re-
constructed the general proof and published it in 1956;
for this reason the theorem is sometimes referred to as the
Marcinkiewicz–Zygmund interpolation theorem.

An excellent introduction to the interpolation theory
one finds in the book [1] based on the works of Jaak Pee-
tre (he passed away on 1 April 2019 at age eighty-three),
whose contribution to this theory cannot be overestimated.
In collaboration with Jacques-Louis Lions, he introduced
the “real method interpolation spaces” (see their funda-
mental article [8]), which can be considered as “descen-
dants” of the Marcinkiewicz interpolation theorem.

An important fact of Peetre’s biography is that his life
was severely changed during World War II (another re-
minder about that terrible time). With his parents, Jaak
escaped from Estonia in September 1944 just two days be-
fore his home town of Pärnu was destroyed in an air raid
of the Red Army. He was only ten years old when his fam-
ily settled in Lund (Sweden), where he spent most of his
life. But let us turn to mathematics again.
The Marcinkiewicz interpolation theorem for operators
in 𝐿𝑝(ℝ𝑛). We begin with this simple result because it has
numerous applications, being valid for subadditive opera-
tors mapping the Lebesgue spaces 𝐿𝑝(ℝ𝑛) with 𝑝 ≥ 1 into
themselves (see, e.g., [18, ch. 1, sect. 4]). We recall that an
operator 𝑇 ∶ 𝐿𝑝 → 𝐿𝑝 is subadditive if

|𝑇(𝑓1 + 𝑓2)(𝑥)| = |𝑇(𝑓1)(𝑥)| + |𝑇(𝑓2)(𝑥)| for every 𝑓1, 𝑓2 .
Furthermore, 𝑇 is of weak type (𝑟, 𝑟) if the inequality

𝛼𝑟mes{𝑥 ∶ |𝑇(𝑓)(𝑥)| > 𝛼} ≤ 𝐴𝑟‖𝑓‖𝑟𝑟
holds for all 𝛼 > 0 and all 𝑓 ∈ 𝐿𝑟 with 𝐴𝑟 independent of
𝛼 and 𝑓. Here, mes{… } denotes the Lebesgue measure of
the corresponding set, and

‖𝑓‖𝑝 = [∫
ℝ𝑛
|𝑓(𝑥)|𝑝 d𝑥]

1/𝑝

is the norm in 𝐿𝑝(ℝ𝑛). Now, we are in a position to formu-
late the following.

Theorem 1. Let 1 ≤ 𝑟1 < 𝑟2 < ∞, and let 𝑇 be a subadditive
operator acting simultaneously in 𝐿𝑟𝑖 (ℝ𝑛), 𝑖 = 1, 2. If it is of
weak type (𝑟𝑖, 𝑟𝑖) for 𝑖 = 1, 2, then for every 𝑝 ∈ (𝑟1, 𝑟2) the
inequality ‖𝑇(𝑓)‖𝑝 ≤ 𝐵‖𝑓‖𝑝 holds for all 𝑓 ∈ 𝐿𝑝(ℝ𝑛) with 𝐵
depending only on 𝐴𝑟1 , 𝐴𝑟2 , 𝑟1, 𝑟2, and 𝑝.

When 𝐵 is independent of 𝑓 in the last inequality, the
operator 𝑇 is of strong type (𝑝, 𝑝); it is clear that 𝑇 is also of
weak type (𝑝, 𝑝) in this case.

In the letter to Zygmund mentioned above, Marcinkie-
wicz included a proof of this theorem for the case 𝑟1 = 1
and 𝑟2 = 2. Presumably, it was rather simple; indeed, even
when 𝑟2 < ∞ is arbitrary, the proof is less than two pages
long in [18, ch. 1, sect. 4].

Marcinkiewicz spaces. Another crucial step, made by
Marcinkiewicz in [12], was the introduction of the weak
𝐿𝑝 spaces playing the essential role in his general interpola-
tion theorem. They are now called theMarcinkiewicz spaces
and usually denoted 𝐿𝑝,∞.

To give an idea of these spaces, let us consider ameasure
space (𝑈, Σ,𝑚) over real scalars with a nonnegative mea-
sure 𝑚 (just to be specific). For a real-valued 𝑓, which is
finite almost everywhere and𝑚-measurable, we introduce
its distribution function

𝑚({𝑥 ∶ |𝑓(𝑥)| > 𝜆}), 𝜆 ∈ (0,∞)

and put

|𝑓|𝑝,∞ = sup
𝜆>0

𝜆[𝑚({𝑥 ∶ |𝑓(𝑥)| > 𝜆})]1/𝑝 for 𝑝 ∈ [1,∞).

Then 𝐿𝑝,∞ = {𝑓 ∶ |𝑓|𝑝,∞ < ∞}, and it is clear that 𝐿𝑝 ⊂ 𝐿𝑝,∞
for 𝑝 ∈ [1,∞), because |𝑓|𝑝,∞ ≤ ‖𝑓‖𝑝 in view of Cheby-
shev’s inequality. The Marcinkiewicz space for 𝑝 = ∞ is
𝐿∞ by definition.

It occurs that |𝑓|𝑝,∞ is not a norm for 𝑝 ∈ [1,∞), but a
quasi-norm because

|𝑓 + 𝑔|𝑝,∞ ≤ 2(|𝑓|𝑝,∞ + |𝑔|𝑝,∞)

(see, e.g., [1, p. 7]). However, it is possible to endow 𝐿𝑝,∞,
𝑝 ∈ (1,∞), with a norm ‖⋅‖𝑝,∞, converting it into a Banach
space. Moreover, the inequality

|𝑓|𝑝,∞ ≤ ‖𝑓‖𝑝,∞ ≤ 𝑝(𝑝 − 1)−1|𝑓|𝑝,∞
holds for all 𝑓 ∈ 𝐿𝑝,∞. It is worth mentioning that 𝐿𝑝,∞
belongs (as a limiting case) to the class of Lorentz spaces
𝐿𝑝,𝑞, 𝑞 ∈ [1,∞] (see, e.g., [1, sect. 1.6] and references cited
in this book).

Another generalization of 𝐿𝑝,∞, known as theMarcinkie-
wicz space 𝑀𝜑, is defined with the help of a nonnegative,
concave function 𝜑 ∈ 𝐶[0,∞). This Banach space con-
sists of all (equivalence classes of) measurable functions
for which the norm

‖𝑓‖𝜑 = sup
𝑡>0

1
𝜑(𝑡) ∫

𝑡

0
𝑓∗(𝑠) d𝑠

is finite. Here 𝑓∗ denotes the nonincreasing rearrangement
of 𝑓, i.e.,

𝑓∗(𝑠) = inf
𝜆>0

{𝜆 ∶ 𝑚({𝑥 ∶ |𝑓(𝑥)| > 𝜆}) ≤ 𝑠} for 𝑠 ≥ 0,

and so is nonnegative and right-continuous. Moreover, its
distribution function 𝑚({𝑥 ∶ |𝑓∗(𝑥)| > 𝜆}) coincides with
that of 𝑓. If 𝜑(𝑡) = 𝑡1−1/𝑝, then the corresponding Marcin-
kiewicz space is 𝐿𝑝,∞, whereas 𝜑(𝑡) ≡ 1 and 𝜑(𝑡) = 𝑡 give 𝐿1
and 𝐿∞, respectively.
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The Marcinkiewicz interpolation theorem for bounded
linear operators. This kind of continuous operator is usu-
ally considered as mapping one normed space to another
one, in which case the operator’s norm is an important
characteristic. However, the latter can be readily general-
ized for a mapping of 𝐿𝑝 to 𝐿𝑝,∞. Indeed, if |𝑇𝑓|𝑝,∞ ≤
𝐶‖𝑓‖𝑝, then it is natural to introduce the norm (or quasi-
norm) of 𝑇 as the infimum over all possible values of 𝐶.
Now we are in a position to formulate the following.

Theorem 2. Let 𝑝0, 𝑞0, 𝑝1, 𝑞1 ∈ [1,∞] satisfy the inequali-
ties 𝑝0 ≤ 𝑞0, 𝑝1 ≤ 𝑞1, and 𝑞0 ≠ 𝑞1, and let 𝑝, 𝑞 ∈ [1,∞] be
such that 𝑝 ≤ 𝑞 and the equalities

1
𝑝 = 1 − 𝜃

𝑝0
+ 1
𝑝1

and
1
𝑞 = 1 − 𝜃

𝑞0
+ 1
𝑞1

hold for some 𝜃 ∈ (0, 1). If 𝑇 is a linear operator that maps 𝐿𝑝0
into 𝐿𝑞0,∞ and its norm is 𝑁0 and simultaneously 𝑇 ∶ 𝐿𝑝1 →
𝐿𝑞1,∞ has 𝑁1 as its norm, then 𝑇 maps 𝐿𝑝 into 𝐿𝑞 and its norm
𝑁 satisfies the estimate

𝑁 ≤ 𝐶𝑁1−𝜃
0 𝑁𝜃

1 , (1)

with 𝐶 depending on 𝑝0, 𝑞0, 𝑝1, 𝑞1, and 𝜃.
The convexity inequality (1) is a characteristic feature

of the interpolation theory. The general form of this theo-
rem (it is valid for quasi-additive operators, whose special
case are subadditive ones described prior to Theorem 1) is
proved in [23, ch. XII, sect. 4]. In particular, it is shown
that one can take

𝐶 = 2 ( 𝑞
|𝑞 − 𝑞0|

+ 𝑞
|𝑞 − 𝑞1|

)
1/𝑞 𝑝(1−𝜃)/𝑝00 𝑝𝜃/𝑝11

𝑝1/𝑝 ;

see [23, Vol. II, p. 114, formula (4.18)], where, unfortu-
nately, the notation differs from that adopted here. Special
cases of Theorem 2 and diagrams illustrating them can be
found in [9, pp. 155–156]. It should be emphasized that
the restriction 𝑝 ≤ 𝑞 is essential; indeed, as early as 1964,
R. A. Hunt [6] constructed an example demonstrating that
Theorem 2 is not true without it. For a description of this
example see, e.g., [1, pp. 16–17].

It was Marcinkiewicz himself who proposed an exten-
sion of his interpolation theorem to other function spaces;
namely, the so-called diagonal case (when 𝑝0 = 𝑞0 and
𝑝1 = 𝑞1) of his theorem is formulated for Orlicz spaces
in [12]. References to papers containing further results on
interpolation in these and other spaces (e.g., Lorentz and
𝑀𝜑) can be found in [1, pp. 128–129] and [9, pp. 163–
166].
Applications of the interpolation theorems. (1) In his
monograph [23], Zygmund gave a detailed study of the
one-dimensional Fourier transform

𝐹(𝑓)(𝜉) = 1
√2𝜋

∫
ℝ
𝑓(𝑥) exp{−𝑖 𝜉𝑥} d𝑥, 𝜉 ∈ ℝ.

See Vol. II, ch. XVI, sects. 2 and 3, where, in particular,
it is demonstrated that 𝐹, originally defined on a dense
set in 𝐿𝑝, 𝑝 ∈ [1, 2], is extensible to the whole space as a
bounded operator 𝐹 ∶ 𝐿𝑝 → 𝐿𝑝′ , 𝑝′ = 𝑝/(𝑝−1), and so the
integral converges in 𝐿𝑝′ . To prove this assertion and its
𝑛-dimensional analogue one can use Theorem 2. Indeed,
𝐹 ∶ 𝐿1 → 𝐿∞ is bounded (this is straightforward to see),
and by Plancherel’s theorem 𝐹 is bounded on 𝐿2, and so
this theorem is applicable. On the other hand, the Riesz–
Thorin theorem, which has no restriction 𝑝 ≤ 𝑞, yields a
more complete result valid for the inverse transform 𝐹−1 as
well. The latter operator acting from 𝐿𝑝′ to 𝐿𝑝 is bounded;
here 𝑝′ ∈ [2,∞), and so 𝑝 = 𝑝′/(𝑝′ − 1) ∈ (1, 2].

(2) In studies of conjugate Fourier series, the singular
integral operator (the periodic Hilbert transform)

𝐻(𝑓)(𝑠) = 1
2𝜋 lim

𝜖→0
∫
𝜖≤|𝑡|≤𝜋

𝑓(𝑠 − 𝑡) cot 𝑡2 d𝑡

plays an important role. Indeed, by linearity it is sufficient
to define 𝐻 on a basis in 𝐿2(−𝜋, 𝜋), and the relations

𝐻(cos 𝑛𝑡) = sin 𝑛𝑠 for 𝑛 ≥ 0, 𝐻(sin 𝑛𝑡) = − cos 𝑛𝑠 for 𝑛 ≥ 1

show that it expresses passing from a trigonometric series
to its conjugate. Moreover, these formulae show that 𝐻 is
bounded on 𝐿2(−𝜋, 𝜋) and its norm is equal to one.

In the mid-1920s, Marcel Riesz obtained his celebrated
result about this operator; first, he announced it in a brief
note in the Comptes rendus de l’Académie des Sciences Paris,
and three years later published his rather long proof that
𝐻 is bounded on 𝐿𝑝(−𝜋, 𝜋) for 𝑝 ∈ (1,∞); i.e., for every
finite 𝑝 > 1 there exists 𝐴𝑝 > 0 such that

‖𝐻(𝑓)‖𝑝 ≤ 𝐴𝑝‖𝑓‖𝑝 for all 𝑓 ∈ 𝐿𝑝(−𝜋, 𝜋). (2)

However, (2) does not hold for 𝑝 = 1 and∞; see [23, Vol. I,
ch. VII, sect. 2] for the corresponding examples and a proof
of this inequality.

There are several different proofs of this theorem; the
original proof of M. Riesz was reproduced in the first edi-
tion of Zygmund’s monograph [23], which appeared in
1935. In the second edition published in 1959, this proof
was replaced by that of Calderón obtained in 1950. Let us
outline another proof based on the Marcinkiewicz inter-
polation theorem analogous to Theorem 1 but involving
𝐿𝑝-spaces on (−𝜋, 𝜋) instead of the spaces on ℝ.

First we notice that it is sufficient to prove (2) only for
𝑝 ∈ (1, 2]. Indeed, assuming that this is established, then
for 𝑓 ∈ 𝐿𝑝 and 𝑔 ∈ 𝐿𝑝′ we have

∫
𝜋

−𝜋
[𝐻(𝑓)(𝑠)] 𝑔(−𝑠) d𝑠 ≤ 𝐴𝑝‖𝑓‖𝑝 ‖𝑔‖𝑝′

by the Hölder inequality (as above 𝑝′ = 𝑝/(𝑝 − 1), and so
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𝑝′ ≥ 2 when 𝑝 ≤ 2). Since

∫
𝜋

−𝜋
[𝐻(𝑓)(𝑠)] 𝑔(−𝑠) d𝑠 = ∫

𝜋

−𝜋
𝑓(−𝑠) [𝐻(𝑔)(𝑠)] d𝑠 ,

the inequality ‖𝐻(𝑔)‖𝑝′ ≤ 𝐴−1𝑝 ‖𝑔‖𝑝′ is a consequence of
the assertion converse to the Hölder inequality.

It wasmentioned above that𝐻 is bounded in 𝐿2. Hence,
in order to apply Theorem 1 for 𝑝 ∈ (1, 2], it is sufficient
to show that this operator is of weak type (1, 1), and this is
an essential part of Calderón’s proof; see [23, Vol. I, ch. IV,
sect. 3]. Moreover, an improvement of the latter proof al-
lowed S. K. Pichorides [16] to obtain the least value of the
constant 𝐴𝑝 in (2). It occurs that 𝐴𝑝 = tan𝜋/(2𝑝) and
cot 𝜋/(2𝑝) is this value for 𝑝 ∈ (1, 2] and 𝑝 ≥ 2, respec-
tively.

There are many other applications of interpolation the-
orems in analysis; see, e.g., [1, ch. 1], [23, ch. XII], and
references cited in these books.
Further development of interpolation theorems. Results
constituting the interpolation space theory were obtained
in the early 1960s and are classical now. This theory
was created in the works of Nachman Aronszajn, Alberto
Calderón, Mischa Cotlar, Emilio Gagliardo, Selim Grig-
orievich Krein, Jacques-Louis Lions, and Jaak Peetre, to
list a few. We leave aside several versions of complex in-
terpolation spaces developed from the Riesz–Thorin the-
orem (see, e.g., [1, ch. 4]) and concentrate on “espaces
de moyennes” introduced by Lions and Peetre in their
celebrated article [8]. These “real method interpolation
spaces,” usually denoted (𝐴0, 𝐴1)𝜃,𝑝, are often considered
as “descendants” of the Marcinkiewicz interpolation theo-
rem.

Prior to describing these spaces, it is worth mention-
ing another germ of interpolation theory originating from
Lwów. Problem 87 in the Scottish Book [14] posed by Ba-
nach demonstrates his interest in nonlinear interpolation.
Presumably, it was formulated duringMarcinkiewicz’s stay
in Lwów. Indeed, he solved problems 83 and 106 in
[14], which were posed before and after, respectively, Ba-
nach’s problem on interpolation. A positive solution of
the latter problem (due to L. Maligranda) is presented in
[14, pp. 163–170].

Let us turn to defining the family of spaces {(𝐴0, 𝐴1)𝜃,𝑝}
involved in the real interpolation method; here 𝜃 ∈ (0, 1)
and 𝑝 ∈ [1,∞]. In what follows, we write 𝐴𝜃,𝑝 instead
of (𝐴0, 𝐴1)𝜃,𝑝 for the sake of brevity. Let 𝐴0 and 𝐴1 be
two Banach spaces, both continuously embedded in some
(larger) Hausdorff topological vector space. Then for a pair
(𝜃, 𝑝) the space 𝐴𝜃,𝑝 with 𝑝 < ∞ consists of all 𝑎 ∈ 𝐴0+𝐴1

for which the norm

‖𝑎‖𝜃,𝑝 = {∫
∞

0
[𝑡−𝜃 𝐾(𝑡, 𝑎)]

𝑝 d𝑡
𝑡 }

1/𝑝

is finite. Here 𝐾(𝑡, 𝑎) is defined on 𝐴0 + 𝐴1 for 𝑡 ∈ (0,∞)
by

inf
𝑎0,𝑎1

{‖𝑎0‖𝐴0+𝑡‖𝑎1‖𝐴1 ∶ 𝑎0 ∈ 𝐴0, 𝑎1 ∈ 𝐴1 and 𝑎0+𝑎1 = 𝑎}.

This𝐾-functional was introduced by Peetre. If 𝑝 = ∞, then
the expression sup𝑡>0{𝑡−𝜃 𝐾(𝑡, 𝑎)} gives the norm ‖𝑎‖𝜃,∞
when finite.

Every 𝐴𝜃,𝑝 is an intermediate space with respect to the
pair (𝐴0, 𝐴1), i.e.,

𝐴0 ∩ 𝐴1 ⊂ 𝐴𝜃,𝑝 ⊂ 𝐴0 + 𝐴1.
Moreover, if 𝐴0 ⊂ 𝐴1, then

𝐴0 ⊂ 𝐴𝜃0,𝑝0 ⊂ 𝐴𝜃1,𝑝1 ⊂ 𝐴1,
provided either 𝜃0 > 𝜃1 or 𝜃0 = 𝜃1 and 𝑝0 ≤ 𝑝1. For any
𝑝, it is convenient to put 𝐴0,𝑝 = 𝐴0 and 𝐴1,𝑝 = 𝐴1. Now
we are in a position to explain what the interpolation of an
operator is in terms of the family {𝐴𝜃,𝑝} and another family
of spaces {𝐵𝜃,𝑝} constructed by using some Banach spaces
𝐵0 and 𝐵1 in the same way as 𝐴0 and 𝐴1.

Let 𝑇 ∶ 𝐴0 + 𝐴1 → 𝐵0 + 𝐵1 be a linear operator such
that its norm as the operator mapping 𝐴0 (𝐴1) to 𝐵0 (𝐵1)
is equal to 𝑀0 (𝑀1). Then the operator 𝑇 ∶ 𝐴𝜃,𝑝 →
𝐵𝜃,𝑝 is also bounded, and its norm is less than or equal
to 𝑀1−𝜃

0 𝑀𝜃
1 . Along with the method based on the 𝐾-

functional, there is an equivalent method (also developed
by Peetre) involving the so-called 𝐽-functional. Further de-
tails concerning this approach to interpolation theory can
be found in [1, chs. 3 and 4].

The Marcinkiewicz Function
In the Annales de la Société Polonaise de Mathématique, vol-
ume 17 (1938), Marcinkiewicz published two short pa-
pers. Two remarkable integral operators were considered
in the first of these notes (see [10] and [13, pp. 444–451]);
they and their numerous generalizations became indis-
pensable tools in analysis. One of these operators is al-
ways called the “Marcinkiewicz integral”; see [23, ch. IV,
sect. 2] for its definition and properties. In particular, it
is used for investigation of the structure of a measurable
set near an “almost arbitrary” point; see [18, sects. 2.3 and
2.4], whereas further references to papers describing some
of its generalizations can be found in themonographs [18]
and [23]. The second operator is usually referred to as the
“Marcinkiewicz function” (see, e.g., [9, pp. 192–194]), but
it also appears as the “Marcinkiewicz integral.” Presum-
ably, the mess with names began as early as 1944, when
Zygmund published the extensive article [22], section 2 of
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which was titled “On an Integral of Marcinkiewicz.” In
fact, this 14-page section is devoted to a detailed study of
the Marcinkiewicz function 𝜇, whose properties were just
outlined by Marcinkiewicz himself in [10]. It is not clear
whether Zygmund had already received information about
Marcinkiewicz’s death when he decided to present in de-
tail the results from [10] (the discovery of mass graves in
the Katyń forest was announced by the Nazi government
in April 1943).

Zygmund begins his presentation with a definition of
the Littlewood–Paley function 𝑔(𝜃; 𝑓), which is a nonlin-
ear operator applied to an integrable, 2𝜋-periodic 𝑓. The
purpose of introducing 𝑔(𝜃; 𝑓) was to provide a characteri-
zation of the 𝐿𝑝-norm ‖𝑓‖𝑝 in terms of the Poisson integral
of 𝑓. After describing some properties of 𝑔(𝜃), Zygmund
notes:

It is natural to look for functions analogous to 𝑔(𝜃)
but defined without entering the interior of the
unit circle.

After a reference to [10], Zygmund continues:

Marcinkiewicz had the right idea of introducing
the function

𝜇(𝜃) = 𝜇(𝜃; 𝑓)

= {∫
𝜋

0

[𝐹(𝜃 + 𝑡) + 𝐹(𝜃 − 𝑡) − 2𝐹(𝜃)]2
𝑡3 d𝑡}

1/2

= {∫
𝜋

0
𝑡[𝐹(𝜃 + 𝑡) + 𝐹(𝜃 − 𝑡) − 2𝐹(𝜃)

𝑡2 ]
2
d𝑡}

1/2

where 𝐹(𝜃) is the integral of 𝑓,

𝐹(𝜃) = 𝐶 +∫
𝜃

0
𝑓(𝑢) d𝑢 .

More generally, he considers the functions

𝜇𝑟(𝜃) = {∫
𝜋

0

|𝐹(𝜃 + 𝑡) + 𝐹(𝜃 − 𝑡) − 2𝐹(𝜃)|𝑟
𝑡𝑟+1 d𝑡}

1/𝑟

= {∫
𝜋

0
𝑡𝑟−1 |||

𝐹(𝜃 + 𝑡) + 𝐹(𝜃 − 𝑡) − 2𝐹(𝜃)
𝑡2

|||
𝑟
d𝑡}

1/𝑟
,

so that 𝜇2(𝜃) = 𝜇(𝜃). He proves the following facts
which are clearly analogues of the corresponding
properties of 𝑔(𝜃).

These facts are the estimates

‖𝜇𝑞‖𝑞 ≤ 𝐴𝑞‖𝑓‖𝑞 and ‖𝑓‖𝑝 ≤ 𝐴𝑝‖𝜇𝑝‖𝑝
valid for 𝑞 ≥ 2 and 1 < 𝑝 ≤ 2, respectively, where 𝑓
has the zero mean value in the second inequality and the
assertion: For every 𝑝 ∈ (1, 2] there exists a continuous, 2𝜋-
periodic function 𝑓 such that 𝜇𝑝(𝜃; 𝑓) = ∞ for almost every
𝜃.

Furthermore, Marcinkiewicz conjectured that for 𝑝 > 1
the inequalities

𝐴𝑝‖𝑓‖𝑝 ≤ ‖𝜇‖𝑝 ≤ 𝐵𝑝‖𝑓‖𝑝 (3)

hold, where again 𝑓 must have the zero mean value in the
second inequality. Moreover, he foresaw that it would not
be easy to prove these inequalities; indeed, the proof given
by Zygmund in his article [22] is more than 11 pages long.

The first step towards generalization of the Marcinkie-
wicz function was made by Daniel Waterman; his paper
[21] was published seven (!) years after presentation of the
work to the AMS. However, its abstract appeared in the
Proceedings of the International Congress of Mathematicians
held in 1954 in Amsterdam. Waterman considered the 𝜇-
function

𝜇(𝜏; 𝑓) = {∫
∞

0

[𝐹(𝜏 + 𝑡) + 𝐹(𝜏 − 𝑡) − 2𝐹(𝜏)]2
𝑡3 d𝑡}

1/2
,

where 𝜏 ∈ (−∞,∞) and 𝐹 is a primitive of 𝑓 ∈ 𝐿𝑝(−∞,∞),
𝑝 > 1. His proof of inequalities (3) for 𝜇(𝜏; 𝑓) heavily re-
lies on the M. Riesz theorem about conjugate functions on
ℝ1 (see [21, p. 130] for the formulation), and its proof in-
volves the Marcinkiewicz interpolation theorem described
above.

Another consequence of inequalities (3) for 𝜇(𝜏; 𝑓) is a
characterization of the Sobolev space 𝑊 1,𝑝(ℝ), 𝑝 ∈ (1,∞).
Indeed, putting

M(𝜏; 𝑓) = {∫
∞

0

[𝑓(𝜏 + 𝑡) + 𝑓(𝜏 − 𝑡) − 2𝑓(𝜏)]2
𝑡3 d𝑡}

1/2

for 𝑓 ∈ 𝑊 1,𝑝(ℝ), we have that M(𝜏; 𝑓) = 𝜇(𝜏; 𝑓′). Then (3)
can be written as

𝐴𝑝‖𝑓′‖𝑝 ≤ ‖M(⋅; 𝑓)‖𝑝 ≤ 𝐵𝑝‖𝑓′‖𝑝 ,

which implies the following assertion. Let 𝑝 ∈ (1,∞).
Then 𝑓 ∈ 𝑊 1,𝑝(ℝ) if and only if 𝑓 ∈ 𝐿𝑝(ℝ) and M(⋅; 𝑓) ∈
𝐿𝑝(ℝ).

Stein extended these results to higher dimensions in the
late 1950s and early 1960s (it is worth mentioning that
𝜇 is referred to as the Marcinkiewicz integral in his paper
[17]). For this purpose he applied the real-variable tech-
nique used in the generalization of the Hilbert transform

P.V.∫
∞

0

𝑓(𝑥 + 𝑡) − 𝑓(𝑥 − 𝑡)
𝑡 d𝑡

to higher dimensions. Indeed, this can be written as

∫
∞

0

𝐹(𝑥 + 𝑡) + 𝐹(𝑥 − 𝑡) − 2𝐹(𝑥)
𝑡2 d𝑡,

which resembles the expression for 𝜇(𝜏; 𝑓), and so Stein, in
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his own words, was

guided by the techniques used by A. P. Calderón
and A. Zygmund [2] in their study of the 𝑛-di-
mensional generalizations of the Hilbert trans-
form; connected with this are some earlier ideas
of Marcinkiewicz.

The definition of singular integral given in [2], to which
Stein refers, involves a function Ω(𝑥) defined for 𝑥 ∈ ℝ𝑛

and assumed (i) to be homogeneous of degree zero, i.e.,
to depend only on 𝑥′ = 𝑥/|𝑥|; (ii) to satisfy the Hölder
condition with exponent 𝛼 ∈ (0, 1]; and (iii) to have the
zero mean value over the unit sphere in ℝ𝑛. Then

𝑆(𝑓)(𝑥) = lim
𝜖→0

∫
|𝑦|>𝜖

Ω(𝑦′)
|𝑦|𝑛 𝑓(𝑥 − 𝑦) d𝑦

exists almost everywhere provided 𝑓 ∈ 𝐿𝑝(ℝ𝑛), 𝑝 ∈ [1,∞).
Furthermore, this singular integral operator is bounded in
𝐿𝑝(ℝ𝑛) for 𝑝 > 1; i.e., the inequality ‖𝑆(𝑓)‖𝑝 ≤ 𝐴𝑝‖𝑓‖𝑝
holds with 𝐴𝑝 independent of 𝑓.

Moreover, in the section dealing with background facts,
Stein notes that 𝜇 is a nonlinear operator and writes (see
[17, p. 433]):

An “interpolation” theorem of Marcinkiewicz is
very useful in this connection.

In quoting the result of Marcinkiewicz, [. . . ] we
shall not aim at generality. For the sake of sim-
plicity we shall limit ourselves to the special case
that is needed.

After that the required form of the interpolation theorem
(see Theorem 1 above) is formulated and used later in the
paper, thus adding one of the first items in the now long
list of its applications. Since the term interpolation was
novel, quotation marks are used by Stein in the quoted
piece. Indeed, Zygmund’s proof of the Marcinkiewicz the-
orem had appeared in 1956, just two years earlier than
Stein’s article.

Stein begins his generalization of the Marcinkiewicz
function 𝜇(𝜏; 𝑓) with the case when 𝑓 ∈ 𝐿𝑝(ℝ𝑛), 𝑝 ∈ [1, 2].
Realizing the analogy described above, he puts

𝐹𝑡(𝑥) = ∫
|𝑦|≤𝑡

Ω(𝑦′)
|𝑦|𝑛−1 𝑓(𝑥 − 𝑦) d𝑦 , 𝑥 ∈ ℝ𝑛, (4)

whereΩ satisfies conditions (i)–(iii), and notes that if 𝑛 =
1 and Ω(𝑦) = sign 𝑦, then

𝐹𝑡(𝑥) = 𝐹(𝑥+𝑡)+𝐹(𝑥−𝑡)−2𝐹(𝑥) with 𝐹(𝑥) =∫
𝑥

0
𝑓(𝑠) d𝑠.

Therefore, it is natural to define the 𝑛-dimensional Marcin-
kiewicz function as follows:

𝜇(𝑥; 𝑓) = {∫
∞

0

[𝐹𝑡(𝑥)]2
𝑡3 d𝑡}

1/2
. (5)

Stein begins his investigation of properties of this func-
tion by proving that ‖𝜇(⋅; 𝑓)‖2 ≤ 𝐴‖𝑓‖2, where 𝐴 is
independent of 𝑓, and his proof involving Plancherel’s
theorem is not elementary at all. Even less elementary
is his proof that 𝜇(⋅; 𝑓) is of weak type (1, 1). Then
the Marcinkiewicz interpolation theorem (see Theorem 1
above) implies that ‖𝜇(⋅; 𝑓)‖𝑝 ≤ 𝐴‖𝑓‖𝑝 for 𝑝 ∈ (1, 2] pro-
vided 𝑓 ∈ 𝐿𝑝(ℝ𝑛). For all 𝑝 ∈ (1,∞) this inequality is
proved in [17] with assumptions (i)–(iii) changed to the
following ones: Ω(𝑥′) is absolutely integrable on the unit
sphere and is odd there, i.e.,Ω(−𝑥′) = −Ω(𝑥′). A few years
later, A. Benedek, A. P. Calderón, and R. Panzone demon-
strated that for a 𝐶1-functionΩ, condition (iii) implies the
last inequality for all 𝑝 ∈ (1,∞).

In another note, Stein obtained the following general-
ization of the one-dimensional result.

Let 𝑝 ∈ (2𝑛/(𝑛 + 2),∞) and 𝑛 ≥ 2. Then 𝑓 belongs to the
Sobolev space 𝑊 1,𝑝(ℝ𝑛) if and only if 𝑓 ∈ 𝐿𝑝(ℝ𝑛) and

{∫
ℝ𝑛

[𝑓(⋅ + 𝑦) + 𝑓(⋅ − 𝑦) − 2𝑓(⋅)]2
|𝑦|𝑛+2 d𝑦}

1/2
∈ 𝐿𝑝(ℝ𝑛).

For 𝑛 > 2 this does not cover 𝑝 ∈ (1, 2𝑛/(𝑛 + 2)] and so is
weaker than the assertion formulated above for 𝑛 = 1.

In the survey article [9, pp. 193–194], one finds a list of
papers concerning the Marcinkiewicz function. In particu-
lar, further properties of 𝜇 were considered by A. Torchin-
sky and S. Wang [19] in 1990, whereas T. Walsh [20] pro-
posed a modification of the definition (4), (5) in 1972.

Multipliers of Fourier Series and Integrals
During his stay in Lwów, Marcinkiewicz collaborated with
Stefan Kaczmarz and Juliusz Schauder,2 who had awak-
ened his interest inmultipliers of orthogonal series. Studies
in this area of analysis were initiated by Hugo Steinhaus in
the 1920s; in its general form, the problem of multipliers
is as follows. Let 𝐵1 be a Banach space with a Schauder
basis {𝑔𝑛}∞𝑛=1. The (linear) operator 𝑇 is called a multiplier
when there is a sequence {𝑚𝑛}∞𝑛=1 of scalars of this space
and 𝑇 acts as follows:

𝐵1 ∋ 𝑓 =
∞
∑
𝑛=1

𝑐𝑛𝑔𝑛 → 𝑇𝑓 ∼
∞
∑
𝑛=1

𝑚𝑛𝑐𝑛𝑔𝑛 .

Here ∼ means that the second sum assigned as 𝑇𝑓 can be-
long to the same space 𝐵1 or be an element of another Ba-
nach space 𝐵2; this depends on properties of the sequence.
Multipliers of Fourier series are of paramount interest, and
this was the topic of the remarkable paper [11] published
by Marcinkiewicz in 1939.

2Both perished in World War II. Being in the reserve, Kaczmarz was drafted
and killed during the first week of war; the circumstances of his death are un-
clear. Schauder was in hiding in occupied Lwów, and the Gestapo killed him in
1943 while he was trying to escape arrest.
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Not long before Marcinkiewicz’s visit to Lwów started,
Kaczmarz investigated some properties of multipliers in
the function spaces (mainly 𝐿𝑝(0, 1) and 𝐶[0, 1]) under
rather general assumptions about the system {𝑔𝑛}∞𝑛=1. Fur-
ther results about multiplier operators were obtained in
the joint paper [7] of Kaczmarz and Marcinkiewicz. It
was submitted to the Studia Mathematica in June 1937;
i.e., their collaboration lasted for another year after
Marcinkiewicz left Lwów. This paper has the same title as
that of Kaczmarz and concerns the case when 𝐿𝑝(0, 1) with
𝑝 ≠ ∞ is mapped to 𝐿𝑞(0, 1), 𝑞 ∈ [1,∞]; it occurs that the
case 𝑞 = ∞ is the simplest one. In this paper, it is assumed
that every function 𝑔𝑛 is bounded, whereas the sequence
{𝑔𝑛}∞𝑛=1 is closed in 𝐿1(0, 1). In each of four theorems that
differ by the ranges of 𝑝 and 𝑞 involved, certain conditions
are imposed on {𝑚𝑛}∞𝑛=1, and these conditions are neces-
sary and sufficient for the sequence to define a multiplier
operator 𝑇 ∶ 𝐿𝑝 → 𝐿𝑞.

After returning to Wilno, Marcinkiewicz kept on his
studies of multipliers initiated in Lwów, and in May 1938,
he submitted (again to the Studia Mathematica) the semi-
nal paper [11], in which the main results are presented in a
curious way. Namely, Theorems 1 and 2, concerning mul-
tipliers of Fourier series and double Fourier series, are for-
mulated in the reverse order. Presumably, the reason for
this is the importance of multiple Fourier series for appli-
cations and generalizations. Let us formulate Theorem 1
in a slightly updated form.

Let 𝑓 ∈ 𝐿𝑝(0, 2𝜋), 𝑝 ∈ (1,∞), be a real-valued function
and let its Fourier series be

𝑎0/2 +
∞
∑
𝑛=1

𝐴𝑛(𝑥), 𝑤ℎ𝑒𝑟𝑒 𝐴𝑛(𝑥) = 𝑎𝑛 cos 𝑛𝑥 + 𝑏𝑛 sin 𝑛𝑥.

If a bounded sequence {𝜆𝑛}∞𝑛=1 ⊂ ℝ is such that

2𝑘+1

∑
𝑛=2𝑘

|𝜆𝑛 − 𝜆𝑛+1| ≤ 𝑀 for all 𝑘 = 0, 1, 2, … , (6)

where𝑀 is a constant independent of 𝑘, then the mapping 𝑓 ↦
∑∞

𝑛=1 𝜆𝑛 𝐴𝑛 is a bounded operator in 𝐿𝑝(0, 2𝜋).
It is well known that for 𝑝 = 2 this theorem is true with

condition (6) omitted, but this is not mentioned in [11].
The assumptions that 𝑓 is real-valued and {𝜆𝑛}∞𝑛=1 ⊂ ℝ
were not stated in [11] explicitly but used in the proof.
This was noted by Solomon Grigorievich Mikhlin [15],
who extended this theorem to complex-valued multipliers
and functions. Also, he used the exponential form of the
Fourier expansion:

𝑓(𝑥) =
∞
∑

𝑛=−∞
𝑐𝑛 exp 𝑖𝑛𝑥 .

The trigonometric form was used by Marcinkiewicz for
double Fourier series as well, and his sufficient condi-
tions on bounded real multipliers {𝜆𝑚𝑛} look rather awk-
ward. Now, the restrictions on {𝜆𝑚𝑛} ⊂ ℂ are usually ex-
pressed in a rather condensed form by using the so-called
dyadic intervals; see, e.g., [18, sect. 5.1]. Applying these
conditions to multipliers acting on the expansion

∞
∑

𝑚,𝑛=−∞
𝑐𝑚𝑛 exp 𝑖{𝑚𝑥 + 𝑛𝑦}

of 𝑓 ∈ 𝐿𝑝((0, 2𝜋)2), 𝑝 ∈ (1,∞), one obtains an updated
formulation of themultiplier theorem; see, e.g., [9, p. 201].

A simple corollary derived by Marcinkiewicz from this
theorem is as follows (see [11, p. 86]). The fractions

𝑚2

𝑚2 + 𝑛2 ,
𝑛2

𝑚2 + 𝑛2 ,
|𝑚𝑛|

𝑚2 + 𝑛2 (7)

provide examples of multipliers in 𝐿𝑝 for double Fourier
series. The reason to include these examples was to an-
swer a question posed by Schauder, and this is specially
mentioned in a footnote. Moreover, after remarking that
his Theorem 2 admits an extension to multiple Fourier se-
ries, Marcinkiewicz added a straightforward generalization
of formulae (7) to higher dimensions, again referring to
Schauder’s question. This is evidence that the questionwas
an important stimulus for Marcinkiewicz in his work.

A natural way to generalize Marcinkiewicz’s theorems is
to consider multipliers of Fourier integrals. Study of these
operators was initiated by Mikhlin in 1956; see note [15],
in which the first result of that kind was announced. Sev-
eral years later, Mikhlin’s theorem was improved by Lars
Hörmander [5], and since then it has been widely used for
various purposes. To formulate this theorem we need the
𝑛-dimensional Fourier transform

𝐹(𝑓)(𝜉) = (2𝜋)−𝑛/2∫
ℝ𝑛
𝑓(𝑥) exp{−𝑖 𝜉 ⋅ 𝑥} d𝑥, 𝜉 ∈ ℝ𝑛,

defined for 𝑓 ∈ 𝐿2(ℝ𝑛) ∩ 𝐿𝑝(ℝ𝑛), 𝑝 ∈ (1,∞). It is clear
that any bounded measurable function Λ on ℝ𝑛 defines
the mapping

𝑇Λ(𝑓)(𝑥) = 𝐹−1[Λ(𝜉)𝐹(𝑓)(𝜉)](𝑥) , 𝑥 ∈ ℝ𝑛,
such that 𝑇Λ(𝑓) ∈ 𝐿2(ℝ𝑛). If 𝑇Λ(𝑓) is also in 𝐿𝑝(ℝ𝑛) and 𝑇Λ
is a bounded operator, i.e.,

‖𝑇Λ(𝑓)‖𝑝 ≤ 𝐵𝑝,𝑛‖𝑓‖𝑝 for all 𝑓 ∈ 𝐿𝑝(ℝ𝑛) (8)

with 𝐵𝑝 independent of 𝑓, then Λ is called a multiplier
for 𝐿𝑝.

The description of all multipliers for 𝐿2 is known as well
for 𝐿1 and 𝐿∞ (it is the same for these two spaces); see [18,
pp. 94–95]. However, the question about characterization
of the whole class of multipliers for other values of 𝑝 is far
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from resolved. The following assertion gives widely used
sufficient conditions.

Theorem (Mikhlin, Hörmander). Let Λ be a function of the
𝐶𝑘-class in the complement of the origin of ℝ𝑛. Here 𝑘 is the
least integer greater than 𝑛/2. If there exists 𝐵 > 0 such that

|𝜉|ℓ |||
𝜕ℓΛ(𝜉)

𝜕𝜉𝑗1𝜕𝜉𝑗2 ⋯𝜕𝜉𝑗ℓ
||| ≤ 𝐵 , 1 ≤ 𝑗1 < 𝑗2 < ⋯ < 𝑗ℓ ≤ 𝑛 ,

for all 𝜉 ∈ ℝ𝑛, ℓ = 0, … , 𝑘, and all possible ℓ-tuples, then
inequality (8) holds; i.e., Λ is a multiplier for 𝐿𝑝.

In various versions of this theorem, different assump-
tions are imposed on the differentiability of Λ. In par-
ticular, Hörmander [5, pp. 120–121] replaced the point-
wise inequality for weighted derivatives of Λ by a weaker
one involving certain integrals (see also [18, p. 96]). Re-
cently, Loukas Grafakos and Lenka Slavíková [4] obtained
new sufficient conditions for Λ in the multiplier theorem,
thus improving Hörmander’s result. Their conditions are
optimal in a certain sense explicitly described in [4].

Corollary. Every function that is smooth everywhere except at
the origin and is homogeneous of degree zero is a Fourier multi-
plier for 𝐿𝑝.

Its immediate consequence is the Schauder estimate

‖
‖‖

𝜕2𝑢
𝜕𝑥𝑗1𝜕𝑥𝑗2

‖
‖‖𝑝

≤ 𝐶𝑝,𝑛‖Δ𝑢‖𝑝 , 1 ≤ 𝑗1, 𝑗2 ≤ 𝑛 ,

valid for 𝑢 belonging to the Schwartz space of rapidly de-
caying infinitely differentiable functions. For this purpose
one has to use the equality

𝐹 ( 𝜕2𝑢
𝜕𝑥𝑗1𝜕𝑥𝑗2

) (𝜉) =
𝜉𝑗1𝜉𝑗2
|𝜉|2 𝐹(Δ𝑢)(𝜉) , 1 ≤ 𝑗1, 𝑗2 ≤ 𝑛 ,

and the fact that the function 𝜉𝑗1𝜉𝑗2/|𝜉|2 is homogeneous
of degree zero.
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des séries orthogonales, Studia Math. 7 (1938), 73–81. Also
[13, pp. 389–396].

[8] J.-L. Lions and J. Peetre, Sur une classe d’espaces
d’interpolation (French), Inst. Hautes Études Sci. Publ.
Math. 19 (1964), 5–68. MR165343
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The Emergence of the American Mathematical Research 
Community begins with an overview of American math-
ematics during its first one hundred years. During this 
period, American mathematics evolved in the context of 
general scientific structure building. Mathematical practi-
tioners in the United States worked alongside geologists, 
physicists, botanists, and other self-identified scientists to 
organize societies, develop employment opportunities, and 
provide outlets for scientific publication. The notion of 
research in academic disciplines emerged as practitioners 
looked to Europe as a model for scientific achievement. 
Specifically, German educational institutions introduced 
seminar-style instruction to train graduate students as 
future researchers. 

The foundation of The Johns Hopkins University in 
1876 marked a major change in American higher educa-
tion. Before that, American colleges were designed primar-
ily for undergraduate instruction and did little to encourage 
faculty research. Johns Hopkins, though, adopted the 
German vision for a university faculty charged to educate 
undergraduate students, conduct independent research, 
and train graduate students to be future researchers. This 
influential German model likewise informed Clark Univer-
sity when it started in 1889 and the University of Chicago, 
which opened for classes in 1892. The quarter century of 
central consideration in Parshall and Rowe thus begins in 
the year shared by the US centennial and the start of a new 
kind of academic institution in America. In the detailed 
discussion in the meaty middle eight chapters, Parshall and 
Rowe focus on James Joseph Sylvester at Johns Hopkins; 
Felix Klein at Leipzig, then Göttingen; and Eliakim Hast-
ings Moore (see Figure 1) at the University of Chicago. The 
authors articulate how their focus on students and research 
from these schools illustrates “the process of maturation 
of an American mathematical research community which 
had fully emerged by 1900” [Parshall and Rowe, p. xv].

In 1994, the AMS published The 
Emergence of the American Math-
ematical Research Community, 
1876–1900: J. J. Sylvester, Felix 
Klein, and E. H. Moore, written by 
Karen Parshall and David Rowe. 
This now classic work laid care-
fully documented groundwork 
for subsequent study and artic-
ulated a periodization for Amer-
ican mathematics. By targeting 
the years 1876–1900, Parshall 
and Rowe explicitly structure two 

other periods in the history of American mathematics—
one from 1776 to 1876 and at least one after 1900. Such 
periodization is frequently utilized as a helpful analytical 
framework in historical scholarship, and justifications for 
the selected start and end dates become part of a work’s 
historical argument.1

American Mathematics 1890–
1913: Catching Up to Europe
Reviewed by Deborah Kent 
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a range of existing literature, espe-
cially relevant recent work, and then 
either provide contextualized, care-
fully documented critical analysis of 
previously unstudied primary source 
material or articulate new, conclu-
sively argued insights or perspective 
on known sources. Reviewing a work 
of historical scholarship, then, in-
volves considering to what extent the 
work adds to the existing scholarship 
and how effectively the author builds 
a historical argument in support of 
stated claims.

With the title American Mathemat-
ics 1890–1913: Catching Up to Europe, 
Batterson implies two claims. First, 
that his book will justify this partic-
ular periodization in the history of 
American mathematics. Why choose 
these particular dates? What makes 
1890 and 1913 uniquely significant 
within the larger picture of American 

mathematics? Second, the title indicates that the text will 
demonstrate that American mathematics reaches what 
Batterson calls “parity with European nations” within the 
delineated period [Batterson, p. 197]. The preface confirms 
these expectations by stating that the book “examines the 
1890–1913 transformation in American mathematics” 
[Batterson, p. xii] and claiming that American mathematics 
achieved “international standing” between the years 1900 
and 1913 [Batterson, p. xiii]. If a transformation occurred, 
then there must be a before circumstance that is somehow 
demonstrably different from the situation after said trans-
formation. So any thoughtful review of Catching Up to 
Europe must take into consideration the degree to which 
the author situates his claims in the context of related liter-
ature and how effectively evidence is marshaled in support 
of these claims.

Some precedent exists for using Batterson’s chosen dates 
as significant timestamps in the development of American 
mathematics. At one end, AMS president Thomas Fiske gave 
a periodization of the development of pure mathematics 
in America in an address at the AMS meeting in 1904. Like 
Parshall and Rowe, Fiske drew a line at the establishment 
of Johns Hopkins University in 1876 to demarcate the first 
attempt made to “stimulate in a systematic manner research 
in the field of pure mathematics” [Fiske, p. 3].2 He ends the 
second, and thus begins the third, period in 1891, when 
the New York Mathematical Society (this would become 
the American Mathematical Society in 1894) assumed a 
broader scope and began to publish the Bulletin. On the 

In an epilogue chapter, Parshall 
and Rowe sketch developments 
in the American mathematical re-
search community during a period 
of consolidation and growth from 
1900 to 1933. The bookend year of 
1933 marks an influx of European 
mathematicians escaping the Nazi 
regime. Parshall and Rowe describe 
how, when scholars like Hermann 
Weyl and Albert Einstein joined 
the original faculty at the Institute 
for Advanced Study, they entered a 
mathematical community of similar 
quality to the one they’d left behind 
in Europe.

In title and content alike, The Emer-
gence of the American Mathematical 
Research Community, 1876-1900: J. J. 
Sylvester, Felix Klein, and E. H. Moore 
invited subsequent studies concern-
ing the development of American 
mathematics influenced by people 
beyond these “big three,” in places outside of Hopkins, 
Göttingen, and Chicago, as well as in times before and after 
the delineated quarter century.

American Mathematics 1890–1913: Catching Up to Eu-
rope aligns itself as exactly such scholarship. From the 
outset, Batterson states very accurately that his book “has 
a nontrivial overlap” with the one by Parshall and Rowe 
[Batterson, p. xii]. Batterson’s closing acknowledgments 
further note that “[r]eaders familiar with their work will 
undoubtedly recognize its impact” [Batterson, p. xii]. Such 
familiar readers might also wonder why so much similar 
material is revisited in this work. Batterson explains that his 
“1890–1913 periodization provides a different window for 
distinguishing the heroes” involved in “the coming of age 
of American mathematics” [Batterson, p. xiii]. Batterson 
especially wants to frame William Osgood and Maxime 
Bôcher as “intellectual pioneers” who “overcame the ob-
structions to change that were imposed by institutional 
culture and economic conditions at American universities” 
[Batterson, xii]. Batterson starts his periodization when he 
does because Osgood began an instructorship at Harvard 
in 1890, and Bôcher joined him the following year. Then 
E. H. Moore moved to the University of Chicago in 1892 
and, says Batterson, “American mathematics began an ex-
ponential rise” [Batterson, p. 89].

Building a historical argument is not unlike writing a 
mathematical paper. One frames a research question in the 
context of existing scholarship, then provides substantial 
evidence for a sustained and focused argument that builds 
to the stated conclusion, a claim that will advance the 
boundary of knowledge in the field. To add a contribution 
to historical scholarship, one first must be conversant with 

Figure 1. Eliakim Hastings Moore, 1902.

2Smith and Ginsberg also drew a line at the foundation of Johns Hopkins 
[Smith and Ginsberg, 1934].
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of Charles Eliot, president of Harvard from 1869 to 1909, 
and Daniel Coit Gilman, president of Johns Hopkins 
from the founding in 1876 until 1901. Again, for minimal 
examples, Batterson references neither a directly relevant 

2013 book on the history of math-
ematics at Harvard [Nadis and Yau, 
2013] nor a standard source with 
a critical perspective on Gilman’s 
contributions to American higher ed-
ucation [Cordasco, 1960]. Much like 
mathematical knowledge, historical 
scholarship is built up by researchers 
who tackle open questions—they 
find and fill gaps in existing work or 
illuminate entirely new directions, 
perhaps with new sources or new 
methodologies. Overall, Batterson 
adds little to the existing coverage of 
the efforts and impacts of both Eliot 
and Gilman. It is clear that he has 
conducted extensive archival work, 
although unfortunate that such effort 
and expense was not applied more 
uniformly to new material. There is 
no shortage of open questions or 
unmined archival material relevant to 
the history of American mathematics. 

Not until Chapter 4 does American 
Mathematics 1890–1913: Catching 
Up to Europe turn to the events on 
which Batterson based the start date 
for his periodization. This “Harvard 
and Chicago Hire Osgood, Bôcher, 
and Moore” chapter offers a few new 
insights into the Harvard careers of 
Osgood (see Figure 2) and Bôcher, 
expanding a bit on Batterson’s own 
previous work [Batterson, 2009]. It 
is unfortunate that in his efforts to 
champion Osgood, he includes no 
reference to Diann Porter’s recent 
biography, William Fogg Osgood at 
Harvard. Agent of a Transformation of 
Mathematics in the United States, even 
the title of which indicates this could 
be a rich source of evidence untapped 
by Batterson [Porter, 2013]. Whatever 
Batterson’s analysis of Porter’s work, 
current standards of historical schol-
arship dictate at least some mention 
of such closely aligned contemporary 

work, if for no other reason than to demonstrate the author 
is aware of it.

The most original part of the book comes in Chapter 
5, where Batterson delves into the archives of astronomer 

other end, Garret Birkhoff described the year 1912 as “a 
milestone marking the transition from primary emphasis 
on mathematical education at Harvard to primary emphasis 
on research” [G.D. Birkhoff in Duren, p. 27]. It is too bad 
that Batterson seems unaware of both 
Fiske’s and Birkhoff’s perspectives, 
when an appeal to either could have 
helped his cause and connected his 
work to foundational scholarship in 
the history of American mathematics.

The opening chapter, “An Amer-
ican Colony in Göttingen,” revisits 
narratives told elsewhere about the 
group of American graduate stu-
dents who studied in Europe (many 
with Felix Klein in Göttingen) in 
the 1880s. The second chapter is a 
somewhat uneven discussion labeled 
“19th-Century American Notions of 
Scholarship.” Presumably, the pur-
pose of this chapter is to articulate a 
picture of American mathematics be-
fore the transformation Batterson in-
tends to highlight. A tighter narrative 
rooted in existing scholarship could 
have sketched the contours more effi-
ciently to allow more space and focus 
on the primary stated argument of the 
book. For one example, in describing 
the well-known Neptune controversy, 
Batterson ignores work that focuses 
on how American mathematicians 
seized on this event as an opportu-
nity to assert their competence at a 
time of perceived European scientific 
superiority [Kent, 2011]. The long 
digression instead becomes unnec-
essarily detailed and loses the point 
about American involvement in the 
story [Batterson, pp. 30–36]. Batter-
son’s passages on Harvard and Yale 
similarly exclude most of the volumi-
nous literature on nineteenth-century 
higher education in America. For one 
example, Batterson seems not to have 
consulted Roger Geiger’s masterful 
treatise on the metamorphosis of 
American research universities into 
world leaders in scientific research be-
tween the years 1900 and 1940 [Gei-
ger, 2004]. Any relevant subsequent 
work, such as Catching Up to Europe, would stand firmer on 
the solid scholarly foundation provided by Geiger’s work. 

This trend of omitted sources continues in the third 
chapter, which focuses on the academic institution building  

Figure 2. William Fogg Osgood, 1896.

Figure 3. George David Birkhoff, 1913.
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There is no question that both the American-educated 
Birkhoff and Alexander achieved significant mathematical 
results. Even so, are two big results enough to “catch up” 
with Europe? It seems not, based on Veblen’s correspon-
dence during the period that depicts Hilbert alone at the 
pinnacle of mathematics [Barrow-Green, 2011]. It must 
be noted, too, that the 1912 ICM was hosted in Cam-
bridge, UK. Perhaps invitations to speak at a meeting in 
English-speaking Britain might not say much about the 
perception of Osgood and Bôcher and American mathe-
matics more generally within continental Europe. Prior to 
those 1912 invitations, Simon Newcomb gave an invited 
plenary lecture in applied mathematics and had been a 
vice president at the ICM in Rome in 1908.4 Batterson’s 
statement about how American mathematics appeared 
“to European eyes” heavily relies on a reference to a biog-
raphy [Reid, 1976] in which the author provides no actual 
attribution to Courant himself [Batterson, pp. 184–185]. 
Hence a key piece of Batterson’s claim is not substantiated 
by documented evidence. More, and more reliable, data 
would likely have presented a more accurate picture of 
the European perception of American mathematics. For 
example, it may have been helpful to include reports from 
Poincaré or Darboux during a 1904 visit [Zitarelli, 2011] or 
some other documented firsthand accounts.

There is a striking lack of data in the book overall. Some 
quantification related to numbers and types of publica-
tions, PhDs granted, and academic trajectories might have 
helped Batterson fortify his argument that a new era in 
American mathematics indeed began in 1913. Rich material 
along these lines is available in recent articles publishing 
data about participants in the American mathematical 
community, their educational attainments, and scholarly 
output [Fenster and Parshall, 1994; Zitarelli, 2001]. Mod-
ern search engines make it fairly straightforward to get a 
sense of data for years that may be missing in these studies. 
Considered as a whole, work on the history of American 
mathematics known to this reviewer still suggests that, 
in fact, American mathematics had “earned standing” by 
the time of the Second World War rather than the First as 
Batterson claims to prove [Batterson, p. xi].

The Catching Up to Europe book jacket claims that by 
the First World War, not only had the gap between math-
ematical research in European and American universities 
“largely closed” but also that “[i]t would remain so.” Reality 
is not so tidy. The twenty years from 1913 to 1933 brought 
internal tensions within the American mathematical com-
munity, significant institutional transitions, and a major 
world war, all of which resulted in a trajectory that is not 
strictly monotone increasing. To demonstrate that parity 
had, in fact, been sustained from 1913 onwards would  

Simon Newcomb and mathematician Henry White to ex-
plore discussions about the possibility that the AMS might 
take over the American Journal of Mathematics. J. J. Sylvester, 
the first professor of mathematics at Johns Hopkins, had 
founded the American Journal of Mathematics in 1878 in 
keeping with Gilman’s research university mandate. After 
almost seventy-five years of sporadic private publication of 
mathematical periodicals in the US, the American Journal 
of Mathematics was the first mathematical journal designed 
to circulate original research and backed by institutional 
support. It rapidly became the top publication outlet for 
increasingly research-minded American mathematicians. 
After Sylvester left America in 1883, “stories of sloppy 
editing and poor refereeing” demoralized a young cohort 
keen to publish original work [Batterson, p. 126]. In this 
well-written and carefully documented chapter, Batterson 
details how the politics and personalities in this situation 
led to a new research journal, the Transactions of the Amer-
ican Mathematical Society. A revised version of this chapter 
also appeared as an article in the May 2019 issue of the 
Notices.

The sixth chapter focuses on the preceptor program at 
Princeton. Woodrow Wilson introduced this program in 
1905 to improve undergraduate education by introducing 
some research-oriented instructors to the Princeton faculty. 
Oswald Veblen, Luther Eisenhart, and Joseph Wedderburn 
all started as Princeton preceptors. The former two later 
were particularly influential in establishing mathematics as 
a strength at Princeton, especially after National Research 
Council Fellowships in mathematics started in 1923. In 
the seventh chapter, Batterson examines events that moved 
George Birkhoff (see Figure 3) from his Princeton precep-
torship to his longtime Harvard faculty position in 1913. 
This final chapter title, “The Verge of Parity with Europe,” 
seems like a bit of a disclaimer. Those words belong to 
Veblen, who did not give a time frame or definition for 
parity with Europe [Batterson, p. xi].

Indeed, it is also not clear what Batterson means by 
“reaching international standing” [Batterson, p. xiii]. The 
evidence he presents for the claim that this happened for 
American mathematics by 1913 likewise invites closer 
examination. The main claims of having “caught up” to 
Europe seem to be Birkhoff’s publication of his proof of 
Poincare’s Geometric Theorem,3 James Alexander’s proof 
that different constructions of the same manifold must 
have the same Betti numbers and torsion coefficients [Bat-
terson, p. 187], the 1912 ICM plenary speaking invitations 
for Osgood and Bôcher, and a memory from Courant that 
in 1913 mathematicians in Göttingen looked admirably 
across the Atlantic for the first time. These claims invite a 
more nuanced and critical analysis than what is provided. 

3Poincaré’s Geometric Theorem can be stated as follows: If T is an area-pre-
serving and boundary-component-preserving homeomorphism of an annulus 
that rotates the inner boundary and outer boundary in opposite directions, 
then T has at least two fixed points [Batterson, p. 182].

4Other invited American speakers at the Rome ICM included David Eugene 
Smith and L. E. Dickson. Dickson had also been invited to speak at the 
Paris ICM in 1900. Americans Artemas Martin, Harris Hancock, and 
Irving Stringham were also invited to speak in Paris.
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involve acknowledging, addressing, and minimizing 
known evidence to the contrary. Significant work by Re-
inhard Siegmund-Schultze includes many sources that 
contradict the claim of parity by 1913 [Siegmund-Schultze, 
2001 and 2009]. Batterson neither addresses these coun-
terexamples nor much discusses the impact of World War 
I on either American mathematical research or Europe’s 
view of it. The 2014 book The War of Guns and Mathematics: 
Mathematical Practices and Communities in France and Its 
Western Allies around World War I could have shed some 
light on these matters [Aubin and Goldstein, 2014]. Work 
completed since the publication of Catching Up to Europe 
likewise reveals rich archives that also support the much 
more complex picture suggested by earlier scholarship on 
American mathematics during the first third of the twen-
tieth century.

As a contribution to historical scholarship, Catching 
Up to Europe leaves some things to be desired. A broader 
familiarity with relevant scholarship, both classic and 
current, could have both enriched and focused the signif-
icant archival endeavors of this project. Connecting with 
descendants of historical actors of interest can be a thrill 
for many historians—Batterson notably accomplished 
contact with a grandson of Osgood and a great-grandson 
of Bôcher. Beyond these efforts, more careful attention 
to building a historical argument may have altered the 
outcome of insufficient evidence necessary to justify the 
claim that American mathematics had indeed caught up 
to Europe by 1913. Or it might have altered the claim. As 
it stands, readers unfamiliar with much of the history of 
mathematics in the United States may nonetheless find in 
this well-written book some items of interest about “how 
life has evolved for research mathematicians in the United 
States” [Batterson, p. xiii].
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The Shape of a Life  
One Mathematician’s Search  
for the Universe’s Hidden Geometry  

by Shing-Tung Yau and Steve Nadis

The Shape of a Life is an autobiogra-
phy of Shing-Tung Yau, winner of 
the 1982 Fields Medal and many 
other prestigious awards. The 
book is coauthored with science 
writer and Discover contributing 
editor Steve Nadis, who previously 
collaborated with Yau in 2010 on 

the popular science book The Shape of Inner Space: String 
Theory and the Geometry of the Universe’s Hidden Dimensions. 
Although there is no explicit mathematics in the book, the 
writing style is clear enough that the mathematically literate 
reader will be able to understand, at an intuitive level, the 
stunning breakthroughs and remarkable discoveries that 
Yau and his collaborators contributed to.

The Shape of a Life is an interesting and engaging read, 
written in a detailed yet lively style. The book vividly docu-
ments Yau’s trials as a desperately poor child in Hong Kong; 
his unlikely path to the UC Berkeley graduate program; 
his deteriorating relationship with his doctoral advisor, 
Shiing-Shen Chern; the development of geometric analysis; 
the discovery of Calabi-Yau manifolds; and more. 

The Shape of a Life maintains an appropriate pace, never 
dragging its feet nor skipping important details. Yau is 
always frank and forthright. He has strong opinions and 
does not hesitate to share them. Whether one agrees with 
him or not, one must conclude that The Shape of a Life is a 
deeply personal reflection that provides a keen insight into 
the life and mind of one of the world’s top mathematicians.

99 Variations on a Proof  
by Philip Ording 

This entire book is de-
voted to 99 proofs, lib-
erally interpreted, of the 
following statement: “If 
x3-6x2+11x-6 = 2x-2, then 
x=1 or x=4.” It seems im-
probable that one could 
write more than a few 
pages on such a modest 
topic, but Ording has 

managed to parlay this simple question into a perceptive 
reflection on mathematics and its culture. Students and 
professors alike will enjoy this unusual book.

The inspiration for 99 Variations on a Proof comes from 
Raymond Queneau’s Exercises in Style, a 1947 work that 
retells the same story in 99 strikingly different ways. The 
book is divided into 99 short chapters, each of which ex-
plores a different “proof” of the main result. The word 
“proof” here appears in quotes since most would not pass 
muster in an undergraduate course. Each comes with a short 
parenthetical description. For example, Proof 36 (Social 
Media) appears in the form of a fictitious tweet by Girol-
amo Cardano: “Cube & 9 times first power equals 6 times 
square & 4 solved by reduction to @delferro’s equation 
arxiv.org/abs/4307.1160 #cubic #tartaglia”. Some ap-
proaches seem uncomfortably familiar, such as Proof 44 
(Omitted with Condescension): “There is a simply beauti-
ful theorem which provides all solutions of the equation 
x3-6x2+11x-6 = 2x-2. Alas, any further explanation would 
deny you the satisfaction of discovering it on your own…” 
and Proof 94 (Authority): “Of course, if x3-6x2+11x-6 = 2x-2, 
then it follows from Euler that the real number in question 
must be 1 or 4.” There are also some serious mathematical 
proofs, graphical proofs, proofs by experiment, and several 
unique expositions that demonstrate a great deal of artistry. 
For example, there are proofs in dialogue form and dog-
gerel, along with screenplays and blog entries. Fittingly, the 
book ends with Proof 99 (Prescribed): “The proof is left to 
the reader.”
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Real Analysis  
A Constructive Approach Through 
Interval Arithmetic  

by Mark Bridger

This book contains the clearest 
exposition of real analysis using 
constructivist principles that ex-
ists in English. The author un-
derstands how undergraduates 
think and meets them where 
they are. If you seek to avoid 
proofs by contradiction in your 
teaching of analysis, this text 

makes it possible. Every proof is constructive, in particular, 
existence is never established by proving that the assump-
tion of nonexistence leads to a contradiction.

But the constructivist philosophy is not the most in-
teresting feature of the book. Bridger develops the real 
numbers out of intervals of rational numbers using interval 
arithmetic. (This is an approach due to Gabriel Stolzen-
berg.) The appealing feature of this development is that 
it yields a clear analogy to scientific measurement. Any 
scientific measurement of known accuracy falls within an 
interval with rational endpoints because any measuring 
instrument yields an approximation. This makes the theory 
particularly appealing, and accessible, to students looking 
at further study in computer science or physical science. 
Computer scientists especially will realize that interval 
arithmetic, with its error bounds, is precisely what they 
need to trap an exact value inside a range of computed 
values. The constructivist law of ¡-trichotomy will especially 
resonate with them: Given real numbers x, y, and ¡ > 0, 
either x > y, x < y, or x and y are within ¡ of one another.

There is a strong argument to be made that this approach 
through intervals will feel much more natural and satis-
factory to physicists, engineers, applied mathematicians, 
and computer scientists than the standard mathematical 
approach. These students realize that every number they 
compute is an approximation and interval arithmetic tracks 
the error bounds for them. Even pure mathematicians who 
might not sympathize with the underlying philosophical 
principles of constructivism will be gratified by the satis-
fying solidity and practical utility of interval arithmetic.

A Passage to Modern Analysis 

by William J. Terrell

The author’s title reveals his pur-
pose—he wishes to give readers 
a thorough grounding in the 
rudiments of analysis so they 
can pursue further study in those 
areas of pure and applied math-
ematics that build upon it. The 
first third of the book is a careful 
development of the analysis of 
real-valued functions of a sin-

gle real variable. The middle third generalizes to Rn and 
introduces metric spaces and normed vector spaces. The 
final third presents some tools of advanced analysis: Fou-
rier series, ordinary and partial differential equations, the 
Lebesgue integral, and function spaces.

The exposition is careful and clear throughout. The 
defining feature is the author’s clear-eyed vision of where 
he wants his readers to go and his foresight in planning 
the path along this passage. Everything feels completely 
natural and inevitable because the ground in R and Rn 
has been so thoroughly prepared. Instructors will observe 
Terrell carefully laying this groundwork, students will just 
feel a natural progression to higher levels of abstraction. 
The nearly 600 exercises illuminate the exposition and give 
instructors plenty of opportunities to push and stretch their 
students. There is more than enough material here for three 
semesters of coursework, or instructors can pick and choose 
topics to construct a year-long course. The prerequisites are 
low—a few semesters of calculus, some linear algebra, and 
exposure to the notion of proof—but the end goal is lofty.  
Readers who study the entire book will be exceedingly well 
prepared for graduate study leading to research in pure or 
applied topics in analysis.
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2020 SECTIONAL SAMPLER
Mathematics of
Cellular Evolution
and Some Biomedical
Applications

Natalia L. Komarova
Background: Two Types of Genes
There are two types of genes whose evolution we would
like to understand because of these genes’ important role
in cancer. Tumor suppressor genes protect cells from acquir-
ing malignant properties. If a genetic mutation inactivates
one of the copies of such a gene, the other copy will still
protect the cell from becoming malignant. Therefore, in
the context of this pathway, it takes two independent ge-
netic “hits” to transform a cell. Oncogenes work differently.
A specific mutation in any of the two copies of such a gene
can turn on a malignant function, making the cell cancer-
ous. It takes only a single genetic hit to turn on this mech-
anism of cancerous transformation.

Many cancers evolve as a chain of several events that can
include mutations in one or both of these types of genes.
In this talk we will look at the mathematical methods to
study the evolution of cancerous populations and concen-
trate on these two gene types as building blocks of cancer.

The Moran Process of Cellular Turnover
Cellular populations are sometimes described by means
of the so-called Moran process. Assume that there are 𝑁
cells that undergo discrete rounds of divisions and deaths.
In each round, one division and one death occur. There
are two types of cells, which we will refer to as “wild type”
(type A) and “mutant” (type B) cells. All wild type cells
are characterized with a constant division rate, 𝑟𝐴, and a
constant death rate, 𝑑𝐴. Similarly, mutants have a constant
division rate, 𝑟𝐵, and a constant death rate, 𝑑𝐵, where in
general, 𝑟𝐴 ≠ 𝑟𝐵 and/or 𝑑𝐴 ≠ 𝑑𝐵. For each update, a cell is
selected for division with a probability that is proportional
to its division rate. For example, if there are𝑚mutants and
𝑁 −𝑚 wild type cells in the system, the probability that a
mutant cell will divide is given by

𝑃(mut. div.) = 𝑚𝑟𝐵
(𝑁 − 𝑚)𝑟𝐴 +𝑚𝑟𝐵

,
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and the probability that a wild type cell will divide is
given by 𝑃(w.t. div.) = 1 − 𝑃(mut. div.). A division is fol-
lowed by a death, with probabilities proportional to cells’
death rates (formulated similarly). The newly produced
offspring of the cell that divided then replaces the dead
cell, and the total population remains at 𝑁. In the sim-
plest case, the progeny cell retains the type of the parent
cells. If mutations are included, the progeny cell may be
of a different type compared to the parent cell.

If we are interested in oncogenes (or, more generally,
the production of one-hit mutants), we can study the sta-
tistics and dynamics of mutant generation and spread; we
can assume that the mutants can be advantageous (e.g.
𝑟𝐵 > 𝑟𝐴, 𝑑𝐵 = 𝑑𝐴), neutral (𝑟𝐵 = 𝑟𝐴, 𝑑𝐵 = 𝑑𝐴), or dis-
advantageous (e.g. 𝑟𝐵 < 𝑟𝐴, 𝑑𝐵 = 𝑑𝐴). In the context of
tumor suppressor genes (two consecutive mutations) we
can study the timing of the generation of two-hit mutants.

This basic process is as well understood as it is unreal-
istic [4, 7]. Adding more complexities leads to interesting
mathematical problems and opens up possibilities to an-
swer some biologically relevant questions.

Spatial Moran Process
One important modification is to include a network of in-
teractions. A reproducing cell can only replace a dying cell
if they are connected by an edge of a network. In particu-
lar, a geometric network can be used to describe 1D, 2D
(Figure 1), or 3D spatial systems. Do such spatial interac-
tions speed up or slow down evolution? In the context of
tumor-suppressor genes, the result is that under geomet-
ric networks, double-hit mutants are produced faster (and
this can be explained intuitively) [1, 5]. When it comes
to one-hit mutants (such as mutations in oncogenes), the
answer is less straightforward: spatial systems may have
fewer or more mutants compared to nonspatial systems of
the same size.

Figure 1. Nonspatial (a) and spatial (b) Moran process.
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Cellular Hierarchies
Even if we don’t consider mutations, not all cells are cre-
ated equal. In real tissues, we can distinguish the so-called
stem cells (SCs) and differentiated cells (DCs). Oversim-
plifying, we can say that SCs can divide into two SCs, two
DCs, or one of each. Differentiated cells do not divide at
all. What happens if we add cellular hierarchies to the ba-
sic Moran process (so, in the presence of a single type of
mutation, there are now four types of cells)? Does this hi-
erarchical structure change the speed of evolution? It turns
out that it has an effect that is opposite of that described
above. Cellular hierarchies slow down evolution consider-
ably [6]. Perhaps this is one of the reasons the organs of
multicellular organisms often have a hierarchical structure:
this is a type of protection against cancer.

Cooperation and Defection
Cells in organs can cooperate. For example, suppose two
consecutive mutations that occur in the same cell make
this cell very advantageous. It could happen that two cells
with complementary mutations, if they are found in each
other’s proximity, can share the products of the mutated
genes, and both act as a very advantageous cell. Does co-
operation speed up evolution? Yes, absolutely [3]. But
cheating (defection) can speed up evolution even more!

Random Environments
So far, all the properties conferred by genetic mutations
were fixed. For example, a disadvantageous mutant would
always have a reduced division rate. This is a simplification
which does not take into account the randomness of the
environment. Depending on time and/or space, a mutant
could have a higher or lower division rate compared to the
wild type. What consequences does this have for the evo-
lutionary process? Some very counterintuitive results can
be found in this area [2], which will be presented in the
lecture.
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KEYSTONES

Computer systems that need to account for uncertainty—
such as those enabled by artificial intelligence (AI)—require 
novel approaches to evaluate their trustworthiness. These 
systems exhibit probabilistic behavior that depends on 
data from sources (sensors and computation) with varying 
degrees of trust, uncertain availability, and complex sto-
chastic relations. Hence, describing the valid behavior of a 
probabilistic system and verifying that an implementation 
satisfies a formal specification require new approaches [1]. 
Furthermore, the problem becomes more challenging when 
adversaries can influence decisions (to induce erroneous 
detections or misinterpretation of the state of operations 
and more generally to force wrong decisions) by manip-
ulating observations or the results of actions taken by an 
AI-enabled system (a system designed to perform tasks that 
normally require human intelligence, such as visual per-
ception, threat assessment, or complex decision making). 
Therefore, evaluating trust in the presence of adversaries 
requires the triad of describing the relevant threats, estab-
lishing a set of assurance mechanisms to counter those 
threats, and characterizing valid behavior in a way that is 
amenable to verification. While a comprehensive solution 
to the problem of evaluating trustworthiness in adversar-
ial settings is an open problem, its solution will rely on 
mathematics at various levels, from modeling threat and 

counterthreat behaviors and valid behavior of a system 
to designing robust protection mechanisms and Bayesian 
inference engines needed to estimate trust.

The MITRE Corporation is addressing the trust inference 
question in two specific AI applications. First, we have de-
veloped a trust inference engine for the widely important 
problem of trust in positioning, navigation, and timing 
(PNT) information. Such inference considers multiple 
sources of information, such as the Global Positioning Sys-
tem (GPS) and other sensor inputs, situational awareness 
information, and auxiliary sources (e.g., network data). 
The challenge is to fuse trust assumptions and assessments 
of these sources into useful assurance metrics that can be 
scrutinized and refined. Our solution, PNTTING (PNT Trust 
Inference Engine) facilitates this trust fusion according to 
probabilistic models with rigorous semantics, leveraging 
the emerging work in probabilistic programming lan-
guages (e.g., languages such as Anglican [2] or Gen [3]). 
PNTTING’s probabilistic models describe relations between 
inputs and outputs and how inputs are transformed and 
combined. PNTTING encodes input transformations and 
other relations via probabilistic models developed by as-
surance model designers and PNT engineers.

Second, the work on PNTTING is being extended to 
address the problem of evaluating the extent to which we 
can trust the decisions made by autonomous vehicles (AVs) 
in adversarial environments. The goal of this new effort is 
to develop a similar formal framework and a probabilistic 
inference engine to assess AV decision-making platforms. 
Vehicles belong to a class of cyber-physical systems that 
can be exploited to cause serious harm. Thus, assessing the 
validity of an AV decision-making platform in adversarial 
conditions is a critical problem that requires modern prob-
abilistic modeling concepts [4], as well as state-of-the-art 
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probabilistic computing concepts [3], to attain rigor and 
practicality.

Our methods to evaluate trust leverage the vast research 
done in probabilistic modeling and inference [2], [3], [5], 
[6]. Adaptation of these methods leads to many open math-
ematical questions, including: What is the effect of our prior 
assumptions of trust? How much computation is needed 
for accurate trust inference? What is the dependence of this 
inference on the possible metrics for validity? Answering 
these questions requires logic, statistical methods, theory of 
algorithms, and advanced programming language concepts.
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Cole Prize in Algebra
This Prize recognizes a notable research work in algebra 
that has appeared in the last six years. The work must be 
published in a recognized, peer-reviewed venue.

About this Prize
This prize (and the Frank Nelson Cole Prize in Number 
Theory) was founded in honor of Professor Frank Nelson 
Cole upon his retirement after twenty-five years as secretary 
of the American Mathematical Society. Cole also served 
as editor-in-chief of the Bulletin for twenty-one years. The 
original fund was donated by Professor Cole from moneys 
presented to him on his retirement, and was augmented by 
contributions from members of the Society. The fund was 
later doubled by his son, Charles A. Cole, and supported 
by family members. It has been further supplemented by 
George Lusztig and by an anonymous donor.

The current prize amount is US$5,000 and the prize is 
awarded every three years.

Next Prize: January 2021

Nomination Period: March 1–June 30, 2020

To make a nomination, go to https://www.ams.org 
/cole-prize-algebra.

Mary P. Dolciani Prize 
for Excellence in Research
The AMS Mary P. Dolciani Prize for Excellence in Research 
recognizes a mathematician from a department that does 
not grant a PhD who has an active research program in 
mathematics and a distinguished record of scholarship. 
The primary criterion for the prize is an active research 
program as evidenced by a strong record of peer-reviewed 
publications.

AMS Prizes & Awards
Levi L. Conant Prize
This prize was established in 2000 in honor of Levi L. 
Conant to recognize the best expository paper published 
in either the Notices of the AMS or the Bulletin of the AMS 
in the preceding five years.

About this Prize
Levi L. Conant was a mathematician and educator who 
spent most of his career as a faculty member at Worcester 
Polytechnic Institute. He was head of the mathematics de-
partment from 1908 until his death and served as interim 
president of WPI from 1911 to 1913. Conant was noted as 
an outstanding teacher and an active scholar. He published 
a number of articles in scientific journals and wrote four 
textbooks. His will provided for funds to be donated to the 
AMS upon his wife’s death.

Prize winners are invited to present a public lecture 
at Worcester Polytechnic Institute as part of their Levi L. 
Conant Lecture Series, which was established in 2006. 
Find and download videos of previous Conant Lec-
tures at www.wpi.edu/academics/math/news/lconant 
-series.html.

The Conant Prize is awarded annually in the amount 
of US$1,000.

Next Prize: January 2021

Nomination Period: March 1–June 30, 2020

To make a nomination, go to https://www.ams.org 
/conant-prize.

http://www.wpi.edu/academics/math/news/lconant-series.html
http://www.wpi.edu/academics/math/news/lconant-series.html
https://www.ams.org/cole-prize-algebra
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Mathematics, Grenander received many honors. He was a 
Fellow of the American Academy of Arts and Sciences and 
the National Academy of Sciences and was a member of 
the Royal Swedish Academy of Sciences.

The current prize amount is US$5,000 and the prize is 
awarded every three years.

Next Prize: January 2021

Nomination Period: March 1–June 30, 2020

To make a nomination, go to https://www.ams.org 
/grenander-prize.

Bertrand Russell Prize 
of the AMS
The Bertrand Russell Prize honors research or service con-
tributions of mathematicians or related professionals to 
promoting good in the world and recognizes the various 
ways that mathematics furthers human values.

About this Prize
The Bertrand Russell Prize of the AMS was established in 
2016 by Thomas Hales. The prize looks beyond the con-
fines of the profession to research or service contributions 
of mathematicians or related professionals to promoting 
good in the world. It recognizes the various ways that math-
ematics furthers fundamental human values. Mathematical 
contributions that further world health, our understanding 
of climate change, digital privacy, or education in develop-
ing countries are some examples of the type of work that 
might be considered for the prize.

The current prize amount is US$5,000, awarded every 
three years.

Next Prize: January 2021

Nomination Period: March 1–June 30, 2020

To make a nomination, go to https://www.ams.org 
/russell-prize.

Ruth Lyttle Satter Prize 
in Mathematics
The Satter Prize recognizes an outstanding contribution to 
mathematics research by a woman in the previous six years.

Additional selection criteria may include the following:
 • Evidence of a robust research program involving 

undergraduate students in mathematics;
 • Demonstrated success in mentoring undergradu-

ates whose work leads to peer-reviewed publica-
tion, poster presentations, or conference presen-
tations;

 • Membership in the AMS at the time of nomina-
tion and receipt of the award is preferred but not 
required.

About this Prize
This prize is funded by a grant from the Mary P. Dolciani 
Halloran Foundation. Mary P. Dolciani Halloran was a 
gifted mathematician, educator, and author. She devoted 
her life to developing excellence in mathematics education 
and was a leading author in the field of mathematical 
textbooks at the college and secondary school levels. Read 
more about her and the Foundation at www.dolciani 
halloranfoundation.org/meet-mary/.

The prize amount is US$5,000, awarded every other year 
for five award cycles.

Next Prize: January 2021

Nomination Period: March 1–June 30, 2020

To make a nomination, go to https://www.ams.org 
/dolciani-prize.

Ulf Grenander Prize  
in Stochastic Theory  
and Modeling
The Grenander Prize recognizes exceptional theoretical and 
applied contributions in stochastic theory and modeling. 
It is awarded for seminal work, theoretical or applied, in 
the areas of probabilistic modeling, statistical inference, 
or related computational algorithms, especially for the 
analysis of complex or high-dimensional systems.

About this Prize
This prize was established in 2016 by colleagues of Ulf 
Grenander (1923–2016). Professor Grenander was an in-
fluential scholar in stochastic processes, abstract inference, 
and pattern theory. He published landmark works through-
out his career, notably his 1950 dissertation, Stochastic 
Processes and Statistical Interference at Stockholm University, 
Abstract Inference, his seminal Pattern Theory: From represen-
tation to inference, and General Pattern Theory. A long-time 
faculty member of Brown University’s Division of Applied 
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About this Award
One program is selected each year by the AMS Committee 
on the Profession and is awarded US$1,000 provided by 
the Mark Green and Kathryn Kert Green Fund for Inclusion 
and Diversity.

Preference is given to programs with significant partici-
pation by underrepresented minorities. Note that programs 
aimed at pre-college students are eligible only if there is 
a significant component of the program benefiting indi-
viduals from underrepresented groups at or beyond the 
undergraduate level.

Next Award: 2021

Nomination Deadline: September 15, 2020

The nomination procedure can be found at https://www 
.ams.org/make-a-diff-award. For questions, contact 
aed-mps@ams.org.

Joint Prizes & Awards
Birkhoff Prize in  
Applied Mathematics  
(AMS-SIAM George David 
Birkhoff Prize)
The Birkhoff Prize is awarded for an outstanding contribu-
tion to applied mathematics in the highest and broadest 
sense.

About this Prize
The prize was established in 1967 in honor of Professor 
George David Birkhoff, with an initial endowment con-
tributed by the Birkhoff family and subsequent additions 
by others. The American Mathematical Society (AMS) and 
the Society for Industrial and Applied Mathematics (SIAM) 
award the Birkhoff Prize jointly.

The current prize amount is US$5,000, awarded every 
three years to a member of AMS or SIAM.

Next Prize: January 2021

Nomination Period: March 1–June 30, 2020

To make a nomination, go to https://www.ams.org 
/birkhoff-prize.

About this Prize
This prize was established in 1990 using funds donated by 
Joan S. Birman in memory of her sister, Ruth Lyttle Satter. 
Professor Birman requested that the prize be established to 
honor her sister’s commitment to research and to encour-
age women in science. An anonymous benefactor added 
to the endowment in 2008.

The current prize amount is US$5,000 and the prize is 
awarded every two years.

Next Prize: January 2021

Nomination Period: March 1–June 30, 2020

To make a nomination, go to https://www.ams.org 
/satter-prize.

Albert Leon Whiteman 
Memorial Prize
The Whiteman Prize recognizes notable exposition and 
exceptional scholarship in the history of mathematics.

About this Prize
This prize was established in 1998 using funds donated by 
Mrs. Sally Whiteman in memory of her husband, Albert 
Leon Whiteman.

The US$5,000 prize is awarded every three years.

Next Prize: January 2021

Nomination Period: March 1–June 30, 2020

To make a nomination, go to https://www.ams.org 
/whiteman-prize.

Mathematics Programs  
that Make a Difference
This Award for Mathematics Programs that Make a Differ-
ence was established in 2005 by the AMS's Committee on 
the Profession to compile and publish a series of profiles 
of programs that:
1. aim to bring more persons from underrepresented 

backgrounds into some portion of the pipeline be-
ginning at the undergraduate level and leading to 
advanced degrees in mathematics and professional 
success, or retain them once in the pipeline;

2. have achieved documentable success in doing so; and
3. are replicable models.

https://www.ams.org/satter-prize
https://www.ams.org/make-a-diff-award
https://www.ams.org/make-a-diff-award
https://www.ams.org/birkhoff-prize
https://www.ams.org/birkhoff-prize
https://www.ams.org/satter-prize
https://www.ams.org/whiteman-prize
https://www.ams.org/whiteman-prize
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Frank and Brennie Morgan 
Prize for Outstanding 
Research in Mathematics by 
an Undergraduate Student
The Morgan Prize is awarded each year to an undergrad-
uate student (or students for joint work) for outstanding 
research in mathematics. Any student who was enrolled as 
an undergraduate in December at a college or university in 
the United States or its possessions, Canada, or Mexico is 
eligible for the prize.

The prize recipient’s research need not be confined to a 
single paper; it may be contained in several papers. How-
ever, the paper (or papers) to be considered for the prize 
must be completed while the student is an undergraduate. 
Publication of research is not required.

With MathPrograms.Org you can:
• Receive, read, rate, and respond to electronic applications for your 

mathematical sciences programs, such as undergraduate summer 
research programs and travel grant competitions.

• Customize your settings and control the application form; also set 
secure access for the admissions committee.

• Enter program announcements for public display.

• Download data to personal computers for use in word 
processing and spreadsheets or as a full permanent storage �le.

SERVICE IS FREE 
TO APPLICANTS

Institutions pay annually for one program 
or for multiple programs.

About this Prize
The prize was established in 1995. It is entirely endowed by 
a gift from Mrs. Frank (Brennie) Morgan. It is made jointly 
by the American Mathematical Society, the Mathematical 
Association of America, and the Society for Industrial and 
Applied Mathematics.

The current prize amount is US$1,200, awarded annu-
ally.

Next Prize: January 2021

Nomination Period: March 1–June 30, 2020

To make a nomination go to https://www.ams.org 
/morgan-prize.

https://www.ams.org/morgan-prize
http://MathPrograms.Org
https://www.ams.org/morgan-prize


Frank and Brennie Morgan
AMS-MAA-SIAM Prize
for Outstanding Research
in Mathematics
by an Undergraduate Student
The prize is awarded each year to an undergraduate student (or 
students for joint work) for outstanding research in mathematics. 
Any student who is an undergraduate in a college or university in the 
United States or its possessions, Canada, or Mexico is eligible to be 
considered for this prize.

The prize recipient’s research need not be confined to a single paper; 
it may be contained in several papers. However, the paper (or papers) 
to be considered for the prize must be completed while the student 
is an undergraduate; they cannot be written after the student’s 
graduation. The research paper (or papers) may be submitted for 
the committee’s consideration by the student or a nominator. Each 
submission for the prize must include at least one letter of support 
from a person, usually a faculty member, familiar with the student’s 
research. Publication of research is not required.

The recipients of the prize are to be selected by a standing joint 
committee of the AMS, MAA, and SIAM. The decisions of this 
committee are final. Nominations for the 2021 Morgan Prize are due 
no later than June 30, 2020. Those eligible for the 2021 prize must 
have been undergraduates in December 2019.

Questions may be directed to: 

 James Sellers, Secretary
 Mathematical Association
 of America

 Penn State University
 University Park, PA 16802

 Telephone: 814-865-7528
 Email: sellersj@psu.edu

Nominations and submissions
should be sent to: 

 Carla Savage, Secretary
 American Mathematical Society

 Computer Science Department
 North Carolina State University
 Raleigh, NC 27695-8206

 or uploaded via the form
 available at:
 www.mathprograms.org

20  21

Call for Nominations
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2020 Award for an 
Exemplary Program or 

Achievement in a 
Mathematics Department

Citation
The 2020 Award for an Exemplary Program or Achieve-
ment in a Mathematics Department is presented to the 
Department of Mathematics at the Massachusetts Institute 
of Technology. The MIT Mathematics Department is being 
honored for its Program for Research in Mathematics, En-
gineering, and Science for High School Students (PRIMES), 
which provides significant research experiences and 
mathematics enrichment to high school students locally 
and globally, with particular attention to increasing the 
representation of women and underrepresented minorities.

PRIMES is a free, year-long research and enrichment 
program for high school students, created in the MIT 
Mathematics Department in October 2010. The program’s 

innovative, year-long model for guiding high school 
student research is being used also in computer science, 
bioinformatics, computational and physical biology, 
genomics, and neuroscience. PRIMES students use their 
knowledge of mathematics and computer programming to 
solve problems related to cancer research, Internet security, 
traffic control, refugee migration, brain research, laser en-
gineering, and many other applied fields. PRIMES Circle 
and MathROOTS help attract members of underrepresented 
groups to pursue careers in the STEM fields. A 2015 article 
about PRIMES, which sums up its experience and provides 
advice for setting up similar programs in other institutions, 
published in the Notices of the AMS (Pavel Etingof, Slava 
Gerovitch, and Tanya Khovanova, “Mathematical Research 
in High School: The PRIMES Experience,” Notices of the AMS 

The Department of Mathematics at the Massachusetts Institute of Technology is the recipient of the 2020 AMS 
Award for an Exemplary Program or Achievement in a Mathematics Department.

Figure 1. PRIMES students at an annual conference at MIT.
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62, no. 8 (2015)), has been translated into Mandarin and 
summarized in Spanish. In 2017, the PRIMES-Switzerland 
program was established at the University of Geneva and 
ETH in Zürich. 

PRIMES includes five sections. MIT PRIMES offers 
research projects and guided reading to students living 
within driving distance from Boston. Program participants 
work with MIT researchers on exciting unsolved problems 
in mathematics, computer science, and computational 
biology. PRIMES-USA is a distance mentoring math re-
search program for high school juniors from across the 
United States (outside of Greater Boston). PRIMES Cir-
cle and MathROOTS are math enrichment programs for 
high-potential high school students from underrepresented 
backgrounds or underserved communities. PRIMES Circle 
is a spring-term program for local students from Greater 
Boston. MathROOTS is a free two-week residential summer 
program. CrowdMath, run jointly with Art of Problem 
Solving, is a massive collaborative year-long online research 
forum open to all high school and college students around 
the world.

PRIMES has three main goals:
1. To give talented high school students a unique oppor-

tunity to experience the joy and beauty of mathematical 
research

2. To inspire them to pursue careers in the mathematical 
sciences

3. To diversify the pool of students interested in mathemat-
ics by providing additional opportunities for promising 
young women and underrepresented groups.
Between 2011 and 2019, 281 students participated in MIT 

PRIMES and PRIMES-USA. All of the 276 research projects 
completed were presented at nine annual PRIMES confer-
ences, 179 research papers have been posted online, and at 

least 31 have been published in such journals as Representa-
tion Theory, Journal of Algebra, Journal of Algebraic Combina-
torics, Journal of Combinatorics, Journal of Integer Sequences, 
Electronic Journal of Combinatorics, International Journal of 
Game Theory, Transactions of the AMS, College Mathematics 
Journal, Topology and Its Applications, Involve, Math Horizons, 
Cell Reports, Letters in Biomathematics, Physical Review E, and 
PLoS Computational Biology. Several PRIMES students have 
won prizes and awards at the MAA Undergraduate Student 
Poster sessions, at the Intel International Science and Engi-
neering Fair, in the Siemens Competition in Math, Science, 
and Technology, and in the Intel/Regeneron Science Talent 
Search. Four Davidson Fellow Laureates and eight Davidson 
Fellows have been PRIMES participants.

From 2013 to 2019, eighty-four students completed the 
PRIMES Circle program, including sixty female, fourteen 
African American, and nine Latino students. From 2015 to 
2019, one hundred students completed the MathROOTS 
program, including forty-four female, forty-seven African 
American, and forty-nine Latino students. Among the 
eighty participants in the 2015 to 2018 summer programs, 
forty-two were admitted to MIT, and twenty-eight enrolled. 
In 2019, forty out of 112 PRIMES students were female, and 
twenty-one were minority students

About the Program
In October of 2020 MIT PRIMES, founded by Pavel Etingof 
and Slava Gerovitch, will celebrate its tenth anniversary. It 
started as an experiment in year-long math research by high 
school students with just twenty-one local participants. 
The experiment proved very successful, with the program 
growing more than fivefold in ten years and expanding 
both nationally and internationally.

Figure 2. PRIMES Circle students Laura Clervil and 
Sekai Carr giving a talk at an annual conference at 
MIT.

Figure 3. MathROOTS students at a study session on 
the roof of the MIT Math Department’s building.
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Female and minority students from PRIMES Circle 
commented in their survey: “My experience in MIT PRIMES 
Circle has allowed me to appreciate mathematics from 
a new perspective and become fascinated by how beau-
tifully simple a complex idea can become. The best part 
was walking out of the program with better developed 
critical thinking skills and a mathematical toolbox that I 
could apply to the real world.” “To me, PRIMES Circle is a 
wonderful opportunity to learn what it is like to be a real 
mathematician.”

Minority students attending MathROOTS also com-
mented on their experience: “Personally, I thought it was 
awesome seeing people from a multitude of backgrounds 
all interested and passionate about math.” “Before Math-
ROOTS, I was unsure about MIT, but now, I feel like it's my 
home. I hope I get to return there soon.”

About the Award
The Award for an Exemplary Program or Achievement in 
a Mathematics Department was established by the AMS 
Council in 2004 and was given for the first time in 2006.

This award recognizes a department that has distin-
guished itself by undertaking an unusual or particularly 
effective program of value to the mathematics community, 
internally or in relation to the rest of society. Departments 
of mathematical sciences in North America that offer at 
least a bachelor’s degree in mathematical sciences are 
eligible. Through the generous support of an anonymous 
donor, the award carries a cash prize of US$5,000. The 
award is presented by the AMS Council acting on the 
recommendation of a selection committee. The members 
of the 2020 selection committee were George E. Andrews, 
Maria M. Klawe, Richard S. Laugesen, Brea Ratliffe (Chair), 
and Ulrica Y. Wilson.

Credits
Figures 1 and 2 are by Slava Gerovitch.
Figure 3 is by Sandi Miller.

PRIMES offers real, not toy, research projects to high 
school students and provides academic mentorship for a 
full year. The program builds collaborative teams that in-
clude faculty, postdoctoral researchers, graduate students, 
undergraduates, and high school students, promoting part-
nership and wider outreach in the mathematical sciences 
community.

Keys to the PRIMES success are thorough preparation, 
continuous review of research projects, and effective men-
torship techniques. Choosing a research project for a high 
school student is no easy task. PRIMES’s experience shows 
that most fruitful are the projects that have an accessible 
beginning with relatively simple initial steps; flexibility in 
switching among several related questions; computer-assisted 
exploration aimed at finding patterns and making conjec-
tures; faculty advisor involvement; relation to the mentor’s own 
research area; understanding of the big picture and motivation; 
a learning component that encourages the student to study 
advanced mathematics; and doability within a year-long 
time frame.

Effective mentorship involves striking a balance between 
guiding the student and allowing independent thinking, 
being attuned to the learning and research style of every 
student, and regularly reviewing the project progress and 
adjusting its scope, if needed. Head mentor Tanya Khova-
nova regularly meets with students to gather their feedback 
and help with communication and motivation issues.

PRIMES has accumulated experience in supervising 
both individual and group (two to three students) research 
projects, guided reading groups, a larger research group 
(a six-student computer algebra lab), and an open online 
forum with a varying group of participants (CrowdMath). 
The program regularly conducts both internal and exter-
nal evaluations via surveys and interviews with student 
participants.

An award-winning student wrote in her testimonial: 
“PRIMES is an incredible opportunity that allows high 
schoolers to do what they would never normally have the 
chance to do: research, while also providing the guidance 
and encouragement that is crucial for success. Ultimately, 
PRIMES has truly cemented my interest in math, and it is for 
this reason that I would definitely encourage any student 
similarly passionate about mathematics to apply!”
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2020 Award for Impact 
on the Teaching and 
Learning of Mathematics

Citation
Dr. Darryl Yong is a profes-
sor of mathematics at Harvey 
Mudd College, where he also 
serves as the program director 
for the Mathematics Clinic. An 
accomplished mathematician 
who has written six books and 
several research papers that 
have appeared in top applied 
math and physics journals, Dr. 
Yong is also a prominent re-
searcher in math education, 
with a scholarly focus on active 

and inquiry-based learning, inclusive pedagogy, and train-
ing of high school math teachers.

In 2007, Dr. Yong started a nonprofit professional de-
velopment organization for math teachers called Math for 
America Los Angeles (MfA LA). This program has supported 
over 200 high school math and computer science teachers 
with multiyear fellowships for salary supplements, in addi-
tion to providing professional development opportunities 
and a supportive community. He is the primary author of 
four NSF Robert Noyce Scholarship Grants that have raised 
over US$12 million for MfA LA. Dr. Yong spent a sabbatical 
year teaching high school mathematics in the Los Angeles 
Unified School District, which he wrote about in a 2012 
AMS Notices article entitled “Adventures in Teaching: A Pro-
fessor Goes to High School to Learn about Teaching Math.” 
He has also worked with the Teacher Leadership Program 
at the IAS/Park City Mathematics Institute since 2007 and 
has cotaught a math course for elementary and secondary 
math teachers that led to a book series published by the 

AMS containing teacher development materials using a 
problem-based approach.

At the college level, Dr. Yong has become an expert 
on inquiry-based learning methods and participated in a 
four-year controlled study of flipped classroom instruction 
supported by the NSF, which led to several research articles 
in conference proceedings and peer-reviewed journals. Dr. 
Yong is regarded by his colleagues at Harvey Mudd and 
the other Claremont Colleges as a gifted teacher who will 
continue to have a profound influence on how students 
and teachers perceive mathematics. In particular, he was 
the founding director of the Claremont Colleges Center for 
Teaching and Learning and served as the associate dean for 
diversity at Harvey Mudd from 2011 to 2016.

For his many sustainable and replicable contributions 
to mathematics and mathematics education at both the 
precollege and college levels, the AMS Committee on Edu-
cation is delighted to award Dr. Darryl Yong the AMS Award 
for Impact on the Teaching and Learning of Mathematics.

Biographical Sketch
Darryl Yong earned his BS in mathematics at Harvey Mudd 
College, where he was also a piano performance major. He 
then earned a PhD in applied mathematics at the University 
of Washington under the supervision of Jirair Kevorkian. 
He served as a von Kármán Instructor at the California In-
stitute of Technology from 2001 to 2003 and has worked 
at Harvey Mudd College since 2003. At Mudd, Dr. Yong is 
currently a professor of mathematics, associate dean for 
diversity and faculty development, and Mathematics Clinic 
program director.

His previous applied mathematics research focused on 
multiple-scale analysis of hyperbolic partial differential 
equations. His scholarly activities now focus on the retention  

Darryl Yong of Harvey Mudd College has been named the recipient of the 2020 AMS Award for Impact on the Teach-
ing and Learning of Mathematics.

Darryl  Yong
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and professional development of secondary school mathe-
matics teachers and improving undergraduate mathematics 
education. He is regularly invited to speak and provide 
professional development for mathematics faculty on the 
teaching and learning of mathematics, broadening partic-
ipation in STEM, and helping institutions build capacity 
for increasing diversity and inclusion.

He received a Caltech ASCIT Teaching Award in 2002, a 
Pomona Unified School District Community Service Award 
in 2012, and the Mathematical Association of America 
Southern California–Nevada Section Teaching Award in 
2017.

Response
I am truly honored to receive this award and humbled 
to be included among the other award recipients. All of 
the different efforts that were mentioned above (Math for 
America Los Angeles, IAS/Park City Mathematics Institute, 
the Claremont Colleges Center for Teaching and Learning, 
and research projects) are/were collaborative efforts made 
possible by supportive and wonderful colleagues across 
many institutions. I am especially grateful to my colleagues 
at Harvey Mudd College for nominating me and supporting 
me in my work. And I am grateful to Kenneth I. and Mary 
Lou Gross and the AMS for their support of mathematics 
education at the precollege and college levels.

About the Award
The Award for Impact on the Teaching and Learning of 
Mathematics was established by the AMS Committee on 
Education (COE) in 2013. The award is given annually 
to a mathematician (or group of mathematicians) who 
has made significant contributions of lasting value to 
mathematics education. Priorities of the award include 
recognition of (a) accomplished mathematicians who 
have worked directly with precollege teachers to enhance 
teachers’ impact on mathematics achievement for all stu-
dents, or (b) sustainable and replicable contributions by 
mathematicians to improve the mathematics education 

of students in the first two years of college. The US$1,000 
award is given annually, and the recipient is selected by 
the COE. The endowment fund that supports the award 
was established in 2012 by a contribution from Kenneth 
I. and Mary Lou Gross in honor of their daughters Laura 
and Karen. The award is presented by the AMS COE acting 
on the recommendation of a selection subcommittee. For 
the 2020 award, the members of the subcommittee were: 

 • Douglas Ensley
 • Michael Dorff
 • Jon Wilkening (Chair)

A listing of the previous recipients of the Impact Award 
can be found on the AMS website at: https://www.ams 
.org/ams-awards/impact.

Credit
Photo of Darryl Yong is courtesy of Harvey Mudd College.
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2020 Mathematics 
Programs That Make 
a Difference Award

Citation
The American Mathematical Society, 
through its Committee on the Pro-
fession, is pleased to recognize the 
Graduate Research Opportunities for 
Women (GROW) Program with the 
2020 Mathematics Programs That 
Make a Difference Award. GROW is an 
annual series of conferences that nur-
ture, mentor and expose undergradu-
ate women to the opportunities that 
await a career in mathematics. Funded 
by the National Science Foundation 
and participating universities, the 
GROW Program is in its fifth year and 
has served hundreds of participants. 
Over this short span, GROW has built 
a community which, as much as the 
conference programming itself, has 
helped to make the mathematics 
profession a more appealing place 
for women to live and work. Through 
feedback, GROW steadily improves 
and creates best practices for future 
iterations as well as for replication. 
Activities at GROW include research 
talks where scholars discuss not only 
their results but their varied routes 
through academics, giving a personal 
touch and dispelling the straight-and-
narrow myth around career paths. 
There are also panel discussions 
about graduate admissions. Con-
ference-goers come with questions  

about preparation, the importance 
(or not) of GRE scores, how to ap-
proach letter writers, and so forth. 
Other meet-and-greet activities aim 
to connect participants to experts in 
a potential field of interest. The com-
munity-building aspect of the gath-
ering is crucial for female students in 
a majority-male profession; the feel-
ing that one is not alone can boost 
confidence. The program includes 
inspirational talks by iconic female 
speakers that make a big impression 
on the participants. As one confer-
ence attendee who is now in graduate 
school writes in her support letter: “I 
gained confidence, personal and pro-
fessional connections, and exposure 
to various careers in mathematics.… 
I met many women who assuaged 
my mounting fears about applying 
and succeeding in graduate school.… 
Sharing my fears and concerns about 
graduate school with other women 
who were either entering or attending 
graduate school was one of the most 
helpful aspects of GROW.” The AMS 
commends the GROW Program for 
its success in bringing more persons 
from underrepresented backgrounds 
into the mathematical profession.

The Graduate Research Opportunities for Women program is the recipient of the 2020 AMS Mathematics Programs 
That Make a Difference Award.

GROW 2017. Left to right: 
Emmy Murphy, Ben Antieau, Bryna Kra.

GROW 2019 participants.
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About the Program
The GROW workshop series encourages female-identifying 
undergraduates to consider research in mathematics as a 
discipline and a career. For the past five years, approxi-
mately eighty students have gathered over a weekend in 
October for a mixture of research talks, panel discussions, 
and opportunities to meet students and scholars from 
across the country. The participants share meals and have 
numerous opportunities for networking and mentoring.  
GROW is designed to encourage women to think and 
know about mathematics and to feel confident about the 
options for graduate students, as well as providing them 
with resources for their future success.

The first iteration of the GROW series was designed by 
Bryna Kra at Northwestern University, and she, along with 
more than forty volunteers, led organization of the con-
ferences at Northwestern from 2015 to 2017. Since then, 
GROW has moved first to the University of Michigan in 
2018, with Sarah Koch and Karen Smith as lead organizers, 
and then to the University of Illinois at Urbana-Champaign 
in 2019, with Zoi Rapti as the lead organizer. The next it-
eration will be at the University of Chicago in 2020. Over 
350 students from across the United States have already 
participated in GROW, and participants have represented 
more than seventy-five undergraduate institutions.

The panel discussions cover what constitutes research 
in mathematics, with panelists sharing stories of their tra-
jectories, an introduction to the varied options for careers 
in academia, and a wealth of information on the nuts and 
bolts of applying to graduate school in mathematics. A 
highlight of each meeting has been the Saturday evening 
dinner, with leading figures (including Alexandra Bellow, 
Dusa McDuff, Ingrid Daubechies, Kristin Lauter, and Marisa 
Eisenberg) giving inspirational talks.

About the Award
In 2005, the American Mathematical Society, acting upon 
the recommendation of its Committee on the Profession 
(CoProf), established the Mathematics Programs That 
Make a Difference Award in order to profile those programs 
that are succeeding and could serve as a model for others. 
Specifically, the committee seeks to honor programs that:
1. aim to bring more persons from underrepresented mi-

nority backgrounds into some portion of the pipeline 
beginning at the undergraduate level and leading to 
an advanced degree in mathematics and professional 
success, or retain them once in the pipeline;

2. have achieved documentable success in doing so; and
3. are replicable models.

Preference is given to programs with significant partici-
pation by underrepresented minorities.

This recognition includes an award of US$1,000 pro-
vided by the Mark Green and Kathryn Kert Green Fund for 
Inclusion and Diversity.

For a list of previous recipients of the Mathematics Pro-
grams That Make a Difference Award, see the AMS website 
at https://www.ams.org/make-a-diff-award.

—Elaine Kehoe with information from Bryna Kra

Credits
Photo from GROW 2017 is courtesy of the Department of 

Mathematics, Northwestern University.
Photo from GROW 2019 is courtesy of Zoi Rapti.

Read more about the Graduate Research Opportunities 
for Women Program on page 724.
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University of Chicago for the sixth iteration. Hundreds 
of young women have participated in GROW and been 
encouraged to consider graduate school in mathematics. 
“Ultimately, the main point of GROW is to increase the 
comfort that bright women undergraduates have with the 
idea of doing a doctorate in the mathematical sciences, 
that it is something available to them,” says Ezra Getzler, 
one of Kra’s colleagues at Northwestern and co-organizer 
of the conference when it took place there. Kra says that 
many alumnae have told her GROW gave them the nudge 
they needed to apply to graduate school.

Genesis
Putting on a conference for dozens of undergraduates in 
just a few months was no small feat. Kra and her co-orga-
nizers Getzler and Laura De Marco had the resources and 
connections to make GROW happen on their condensed 
timeline. They used funds from a Research Training Group 
(RTG) grant, in addition to university-level funding that 
they could secure on short notice. “Part of the purpose of 
an RTG is to create a vertical conveyor belt for mathematics 
in the United States, and so here we’re dealing with a key 
transition point from undergraduate to graduate school,” 
Getzler says. “It’s a continual struggle to make sure that 
people are trained at the graduate level in mathematical 
sciences in the United States, and [GROW] is a very good 
way of increasing awareness among an important and to 
some degree underserved group.”

Once the plans were in place, the organizers had to get 
the word out. “I sent information about the conference to 
everybody we knew,” Kra says. “In two months, we had 
120 applications from students at 40 schools.” The first 
year, they accepted 50 students. In subsequent years, they 
increased attendance to 80 undergraduates to balance their 
goals of reaching as many people as possible while allow-
ing as much one-on-one interaction as possible between 
attendees.

Organizers wanted to make sure to welcome students 
from communities that do not have good access to infor-
mation about graduate school, including first-generation 
college students, women from underrepresented racial or 

Bryna Kra was frustrated. It was early 2015, and the 
math professor at Northwestern University had seen the 
number of women applying to her program decline for 
several years, even as the total number of applications was 
increasing. Anecdotally, her colleagues at other institu-
tions were reporting similar problems. She wanted to do 
something to reverse the trend. After talking with other 
mathematicians at Northwestern, she decided to organize 
a conference specifically focused on encouraging women 
to apply for graduate school in math. A few months later, 
fifty undergraduate women descended on Evanston for the 
first iteration of the Graduate Research Opportunities for 
Women, or GROW, conference in October 2015. This year, 
it received the Programs that Make a Difference award from 
the American Mathematical Society. “It’s an honor and 
rewarding to know that the program has been recognized 
only five years after it was established, and it makes it clear 
how valuable such programs are,” Kra says. “My hope is 
that this will give the impetus for other institutions to take 
charge of the program in future years, hosting GROW and 
building more diverse departments.”

In the five years since the first conference, GROW has 
taken place three times at Northwestern and once each at 
the University of Michigan and the University of Illinois 
at Urbana-Champaign. In October, it will move to the  
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Figure 1. GROW participants at the 2017 conference.
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As the daughter of an academic mathematician, Kra 
knew plenty about how graduate school worked and what 
a career as a researcher could look like. But when she was 
an undergraduate, she was nevertheless uncertain if going 
to graduate school would be the right choice for her. “It cer-
tainly didn’t feel so welcoming that I’d never seen a class by 
a woman,” she said. “I think it’s important that people see 
that there are other women out there.” She hopes that the 
conference gives women, whether they are already graduate 
school savvy or not, a way to see themselves as having the 
potential to have fulfilling careers in mathematics.

The organizers chose not to include presentations of 
undergraduate student research during the weekend in 
order to keep the focus more on the decision of whether 
to go to graduate school and how to get there. “It’s not an 
undergraduate conference. It’s a conference about going to 
graduate school in math,” Koch says. “If we had the under-
graduates present their work, I think that would have kind 
of detracted from getting together and thinking about going 
to graduate school. What does that look like mathemati-
cally? What does that look like practically?” Undergraduate 
presentations add a layer of stress for students, distracting 
them from those questions. “We wanted them to be looking 
forward and looking at the graduate students, looking at 
the postdocs, looking at the math talks,” Koch says. “It’s 
really about the next step for them instead of what they’re 
already working on.”

A highlight of each conference for Kra was the Saturday 
evening banquet, which featured a plenary talk by an august 
senior woman mathematician about her career journey. In 
2015, the speaker was Alexandra Bellow, the first tenured 
woman mathematics professor at Northwestern. Eighty 
years old, she spoke softly, even with the microphone. “The 

ethnic groups, and those who come from socioeconomi-
cally disadvantaged backgrounds. “There are a lot of middle 
class assumptions baked into the PhD, which means there’s 
a cultural divide for people not coming from that back-
ground. So I would hope that part of the role of GROW is to 
bridge that divide as well as the gender divide,” Getzler says. 

They advertised to departments all over the country, in-
cluding historically Black colleges and universities, schools 
without graduate programs in math, and schools that rarely 
send students to graduate school in mathematics. They 
wanted to reach as broad a group as possible of interested 
undergraduates who could benefit from the conference. “I 
was extremely impressed at what a cross section of America 
these students were,” Getzler says of the women who par-
ticipated. (There have been some international participants 
as well, but the majority have been American women.)

The Conference  Weekend
GROW is a weekend event with a mix of talks from invited 
speakers, panels about topics such as how to apply to grad-
uate school and what to expect from a career in research 
mathematics, and less-structured time for one-on-one 
interactions. The organizers invited a large number of men-
tors—about one for every two students—to participate over 
the course of the weekend. Some mentors were on panels, 
and some were local professors and graduate students who 
were available for informal chats with undergraduates.

“I think here in this conference, anyone can approach 
anyone else,” says Zoi Rapti, one of the organizers of GROW 
when it went to UIUC. She says the atmosphere at GROW, 
especially the amount of time given for undergraduates to 
talk with older students and professors, made them feel 
comfortable approaching speakers and asking questions.

“One thing that I have always done in my career, and 
will continue to do, is if I have to do something new, like 
apply to grad school, or apply for this job, or apply for this 
fellowship, I will always seek the counsel of older people 
who have done it before me,” says Sarah Koch, who co-or-
ganized the conference when it moved to Michigan. “I think 
these conversations are really special and can make a huge 
difference in the direction that somebody wants to go.”

One of the key events was the “nuts and bolts” panel 
about how to apply to graduate school. (The panel was 
so popular that the organizers made it significantly lon-
ger after the first year in response to feedback after the 
conference.) Panelists gave students information about 
how to apply and answered specific questions about ev-
erything from GRE scores to graduate stipends. A panel 
like that would have been helpful to Karen Smith, another 
Michigan conference organizer, as a student. “When I was 
an undergraduate, I had never heard of graduate school,” 
she says. “Even after I had heard of it, I thought I would 
have to pay for it. I had never heard of getting funding for 
graduate school.”

Figure 2. Sarah Koch describes her work to participants at 
GROW.

Figure 3. Bryna Kra talks with students at GROW.
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room was so silent,” Kra says. “Everybody was just glued to 
her stories. It was quite moving.”

Evolution and GROWth
As the conference moves around to different universities, 
each organizing committee makes their own tweaks to 
GROW, and the experience will continue to evolve. “I think 
it’s taken on its own life,” Kra says. In 2018, after hosting 
three GROW conferences, she and her colleagues handed 
the duties off to Koch, Smith, and Mel Hochster at the 
University of Michigan.

Koch was a panelist and mentor at the 2017 conference. 
“It was such a positive, hopeful atmosphere,” she says. She 
went back to Michigan enthusiastic about continuing the 
tradition. She and her co-organizers adapted the struc-
ture of previous GROW conferences to their own setting, 
modifying some parts of it to match their goals more 
closely. They kept Northwestern’s emphasis on one-on-
one mentoring opportunities and expanded the idea by 
creating booklets with pictures and short biographies of 
the allies and mentors who were attending the conference 
so students could get some relevant information, such as 
their institutions and research areas, before meeting them 
in person. “We only had a weekend with all these students, 
and we wanted them to get the most out of their experi-
ence,” Koch says.

The Michigan organizers also decided to bring other 
scientists on board as they were planning the meeting. They 
consulted with researchers in the university’s psychology 
department who study retention in STEM PhD programs. 
They wanted to get advice from the experts on what they 
could do to make the conference as effective as possible in 
encouraging interested women to apply for graduate school 
and helping them succeed when they got there.

The psychologists made a few recommendations. First, 
they recommended that the conference include people in 
a variety of roles on career panels, not just professors. The 
organizers included panelists from government agencies, 
the tech industry, and a nonprofit math education organi-
zation to broaden the perspectives offered. “It wasn’t just 
about becoming a professor,” Smith says.

They also broadened the scope of the colloquium-style 
talks, incorporating more applications of math to biology 
and social justice. In addition to standard theoretical math 
talks, they had a colloquium by an entrepreneur who de-
signed an app that uses math to help people manage or 
prevent jet lag and one about gerrymandering, a hot-button 
political issue with connections to interesting problems and 
solutions in theoretical mathematics.

Second, the psychologists recommended an even greater 
focus on early career role models, “making sure that the 
participants saw people that were just a little bit older 
than they were succeeding in those roles,” Smith says. “So 
instead of having a lot of programming where professors, 

Figure 4. Ingrid Daubechies and Emmy Murphy serve on a 
panel at the 2017 GROW conference.

Figure 5. Dusa McDuff speaks to the 2016 GROW conference.

Figure 6. Participants at the 2015 GROW conference.
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continues in her career. “It has a community effect, and it 
shows you that the community can be diverse.”

Emilee Cardin knew she wanted to go to graduate school 
when she applied for GROW in 2018. She was a student 
at the College of William and Mary and had participated 
in an REU at the University of Michigan–Dearborn the 
summer before she attended the conference. She was eager 
to continue studying math, but she worried that she might 
not get into the graduate programs she was interested in. 
“I felt like I was here to get as much advice and learn from 
as many people as possible,” she says.

Friday afternoon, before GROW even officially started, 
she ended up in a conversation with Koch about recom-
mendation letters. “I had a moment with Sarah, where she 
helped me take a breath and not be stressed out about it,” 
she says. “She took the time to be helpful, even though I 
wasn’t even a student there yet.” Talking with Koch, Smith, 
and other Michigan faculty and students at GROW influ-
enced her graduate application decisions. “I think it made 
me more confident in applying to Michigan,” Cardin says. 
“I felt like it would be a more welcoming place after I went 
to GROW. It seemed less unapproachable.”

Cardin is now in her first year of graduate work at Mich-
igan. When we talked on the phone for this article, she was 
standing in the atrium where another favorite moment at 
GROW took place. She was sitting with a Boston College 
graduate student for lunch. “I remember her talking about 
how she loved it and she was so happy to have the people 
she was with [in graduate school], and I thought, ‘Yes, that’s 
what I’d like.’” She says the graduate school application 
process had felt like a constant competition, but talking 
with graduate students and faculty members about their 
experiences helped her prioritize the community she would 
find in graduate school and beyond. The Boston College 
student told her about how she was working to prioritize 
mental health in graduate school and how her cohort had 
helped her out when she needed it. “I hear those words 
ringing in my ears a lot,” Cardin says.

Work/Life
“Work-life balance” can be a bit of a cliché, but the fact is 
that people of all genders have to consider how they will 
manage the demands of their careers, their other interests 
and hobbies, and the needs of their partners or family 
members when they are considering their potential career 
paths. Despite changes in American society in the past few 
decades, women still spend more time on childcare and 
caregiving for infirm relatives than men do, and they are 
more likely to face negative repercussions for it in profes-
sional settings. 

It’s no surprise, then, that conversations about family 
and career are common at GROW. “More 20-year-old 
women think about having a family than 20-year old men, 
or at least that is my impression,” Getzler says. GROW 

even female professors, were presenting their work, it was 
very important to have first-year graduate students present-
ing their work, people who would be just one step ahead.”

When mathematicians at UIUC were approached about 
hosting GROW 2019, “of course we jumped on it,” Rapti 
says. Jeremy Tyson, their department chair, attended the 
2018 conference as a panelist and to help prepare for 
hosting the next year. The team at UIUC adopted the same 
conference structure and added more of an emphasis on 
helping undergraduate students learn about potential 
departments to apply to for graduate school. “They got 
to think about particular graduate programs, and maybe 
compare them and see what would be a good or a bad fit 
for them,” Rapti says.

The UIUC GROW conference also continued Michigan’s 
emphasis on graduate students mentoring undergraduates. 
One of the most popular events that year was a mentoring 
session run by the local Association for Women in Mathe-
matics (AWM) chapter. Faculty members left the room so 
undergraduate and graduate students could talk privately 
about the graduate application process. “It was a huge 
success,” Rapti says. “People just wouldn’t leave the room.”

The Student Experience
Priyanka Nanayakkara attended the first GROW conference 
as a sophomore at UCLA. She enjoys both math and writing 
and wanted to find a way to combine those interests, even-
tually deciding on statistics. “I was so focused on figuring 
out my major in undergrad, but the time to apply for grad 
school comes pretty quickly, so I think it was helpful to 
hear, ‘You could really do this. It’s not out of your reach. 
You’re capable of it,’” she says.

Nanayakkara was impressed at the generosity of the 
mentors she talked with at the conference and believes they 
helped her see a future as an academic. “I knew it existed. I 
knew I wanted to go to grad school, but GROW helped me 
actually do it,” she says. “That space to really feel confident 
was so useful, and I don’t think it can be understated how 
valuable that is.”

Nanayakkara is now working on a PhD in technology 
and social behavior at Northwestern as part of a joint pro-
gram between the computer science department and com-
munication studies. “I go to Northwestern now, and every 
time I walk past Tech [Technological Institute, a building on 
campus], I always think about eating lunch right there with 
all the people from GROW,” she says. “I think about that 
conference as a turning point in my early college career.”

She also feels like GROW helped her understand the 
importance of community in her academic discipline. “It 
was a really important step in introducing the idea of a co-
hort: these are the people who will be progressing with you 
throughout your life and career, and you’ll see them again 
and again,” Nanayakkara says. GROW’s demographics give 
her hope that she can be part of an inclusive cohort as she 
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Moreover, men need to be part of the solution if the 
proportion of women mathematicians is going to change. 
“By not including male grad students, we would miss out 
on future vectors for this kind of program,” Getzler says. 
“But we indeed have male grad students—who have now 
become junior faculty—who have taken this level of activ-
ism across the country.”

Kra also hoped the conference would provide a valuable 
change of perspective to men who participated. “The men 
came away with a lot from it,” she says. “A colleague said 
to me, ‘You know, I never knew what it felt like to be in 
the minority, and that was a great feeling to understand.’”

Getzler agrees that GROW has encouraged this kind of 
introspection among men who have participated. “I think a 
huge problem is that women have a tendency to be silenced 
if there are men in the room. And part of the power of the 
program is that now, since women are the vast majority, it’s 
a corrective for the men in the room, to remind them that 
being a little bit quieter could be a good fit for everybody, 
that voices which aren’t always encouraged to take charge 
do so,” Getzler says.

One of the criticisms Kra read in a post-conference 
survey after the first conference was about the number of 
men involved. “For the future, I addressed that straight 
up from the beginning, saying men are involved because 
there are many men actively working to change who’s in 
the room. We can’t do it on our own, and it shouldn’t just 
be on women,” she says. “And we never got another com-
plaint about it.”

Broader Impacts
GROW is still a young conference. As such, there are no 
longitudinal studies tracking its effect on participants, 
though surveys done before and after each conference do 
show positive effects. Kra and other organizers believe it 
has already made a difference, not only to participants, but 
also to the schools that have hosted the conference and the 
broader profession.

provides a safe environment for women to talk with other 
women, both fellow students and women who are further 
along in their careers, about how they have managed or 
plan to manage the sometimes competing demands of 
career and family. “These things have to be thought over 
a bit more deeply when we’re discussing women grad stu-
dents,” Getzler says.

Dusa McDuff and Ingrid Daubechies gave plenary ad-
dresses at GROW in 2016 and 2017, respectively. McDuff 
talked about taking time off from her career to raise chil-
dren, and Daubechies spoke about weathering unexpected 
events in life that may mean you have to put your work on 
the back burner. “I think the students were really impressed 
by listening to these senior women talking about things 
that they also worry about,” Kra says.

Cardin got to the conference preoccupied with getting 
into graduate school but says the panels and career talks 
helped her think about the process more holistically. “It 
was so good to hear you can be a human as well as being 
in a math graduate program,” she says.

What About the Men?
Kra deliberately included men as panelists and mentors 
when she started GROW. Women are disproportionately 
asked to participate in service and outreach events in STEM 
fields. Even if the events are important and the women 
enthusiastic about participating, the volume of service 
requests can be a burden. “I did not want the conference 
to be more of a ‘service tax’ on women and other people 
from underrepresented groups,” she says.

The organizers also wanted students to be able to inter-
act with a diverse group of panelists and mentors. “One of 
the things [Kra] was very firm about is that these programs 
should expose prospective graduate students to a realistic 
atmosphere of what graduate school will be like,” Getzler 
says. “For that reason, she did not want the weekend to be 
heavily dominated by contact only with other women.”

Figure 8. Laura De Marco talks about her work at the 2015 
GROW conference.

Figure 7. Students participate in a workshop at the 2015 GROW 
conference.
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schools. “This is not any one department’s problem; it’s a 
problem in the field,” Kra says. “If we fix it at Northwestern 
and get to parity, well that’s great, but it doesn’t do much 
for the field. I would rather see things fixed more broadly.”

Credits
Figures 1–4 are courtesy of Mike Jue.
Figures 5–8 are courtesy of the Department of Mathematics, 

Northwestern University.
Author photo is courtesy of the author.

As is the case with most conferences, person-to-person 
networking is one of the most valuable aspects. “GROW is 
exactly what it sounds like. It’s GROW-ing a network, which 
I think is really awesome,” Koch says.

Attendees have expanded their professional networks, 
creating connections with both their peers and more senior 
women mathematicians. “I’m still friends with some of the 
people I met at GROW,” Cardin says.

GROW has also helped connect attendees to other ex-
isting programs and conferences for mathematicians. Nan-
ayakkara learned about the AWM at GROW. When she got 
back to LA, she started looking up more information about 
the organization and learned about its annual essay contest 
for students. Her essay about Loyola Marymount University 
mathematician Alissa Crans won the undergraduate contest 
in 2016. “Before GROW, I don’t think I really knew about 
the Association for Women in Mathematics. That was a 
direct result [of attending the conference].”

Cardin met mathematician Ruthi Hortsch, who works 
at Bridge to Enter Advanced Mathematics (BEAM), when 
she attended GROW. BEAM is a math education nonprofit 
organization for middle school students from underserved 
communities in New York City and Los Angeles. It provides 
enrichment for math-interested students and helps them 
progress in mathematics as they continue their education, 
primarily through summer programs.

“BEAM is probably one of the coolest math-related 
things I’ve ever done,” Cardin says. After learning about 
BEAM from Hortsch, she spent part of the summer before 
starting graduate school in New York working at BEAM, 
and she has plans to join them again this year. Meeting 
Hortsch at GROW gave her “an immediate connection to 
something I fell in love with,” she says.

Kra and other GROW organizers have also found that 
the conference has a positive effect on their departments. 
“I think it really did change the culture of the department,” 
Kra says. Northwestern is creating a post-baccalaureate 
program for students from underrepresented groups in 
mathematics. “As much as it’s a problem that there are 
very few women, it’s a much bigger problem that there are 
so few people from other underrepresented groups,” she 
says. A year-long program is very different from a weekend 
conference, but they are using some of their lessons from 
GROW as they shape the new program.

Both Northwestern and Michigan have seen the number 
of women who have applied to graduate school increase. 
“Our department got a lot out of it in many different ways, 
one of which was that we had this large number of really 
strong, really qualified female graduate student applicants 
last year,” Koch says. “I wasn’t really thinking of it as re-
cruiting for Michigan per se,” Smith says. “That was more 
of a side benefit for us.”

Kra says the effect the conference has had at Northwest-
ern is a reason it should continue to travel to different 
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renamed to honor the late Maryam Mirzakhani. It honors 
exceptional contributions to the mathematical sciences 
by a midcareer mathematician. It carries a cash award of 
US$20,000.

—From an NAS announcement

2020 AWM Prizes Awarded
The Association for Women in Mathematics (AWM) pre-
sented several awards at the Joint Mathematics Meetings 
held in Denver, Colorado, in January 2020.

Erika Camacho of Arizona State 
University was honored with the Lou-
ise Hay Award for Contribution to 
Mathematics Education “in recogni-
tion of her leadership and contribu-
tions as a mathematical scholar and 
educator.” The prize citation reads: 
“Dr. Camacho has a passion for men-
toring, especially the mentoring of 
underrepresented students. Her men-
toring begins with her excitement for 
mathematics based in her research in 

mathematical physiology. This research involves develop-
ing mathematical models that describe the interactions of 
photoreceptors in the retina. Dr. Camacho brings graduate 
and undergraduate students into her research and also finds 
opportunities for students with other researchers.

“She created the Applied Mathematical Sciences Summer 
Institute and has codirected both this institute (2004–2007) 
and the Mathematical and Theoretical Biology Institute 
(2011–2013). Through these institutes and her other men-
toring programs she has impacted over 600 undergraduates, 
including supervising the research of 89 of these students, 
with 30 receiving conference award recognitions. 

“Through her work Dr. Camacho changes perceptions. 
Her own story is an existence proof that someone from an 
underprivileged and Latina background can earn a PhD 
in mathematics and be a successful mathematician. In 
over sixty-five plenary and panel presentations, she uses 
her story to inspire students to persevere and succeed in 
mathematics. Beyond presenting, Dr. Camacho meets 

Guth Awarded  
Mirzakhani Prize

Larry Guth of the Massachusetts 
Institute of Technology has been 
awarded the newly named Maryam 
Mirzakhani Prize in Mathematics 
“for developing surprising, origi-
nal, and deep connections between 
geometry, analysis, topology, and 
combinatorics, which have led to 
the solution of, or major advances 
on, many outstanding problems 
in these fields.” The citation reads: 

“Guth has made spectacular contributions to many areas 
of mathematics, including systolic geometry, analysis, and 
combinatorics. He has developed surprising, original, and 
deep connections between geometry, analysis, topology, 
and combinatorics, leading to major advances or solutions 
for many outstanding problems in these fields. His accom-
plishments include the introduction of a new cell decom-
position of Euclidean space, writing the authoritative book 
on the polynomial method, and creating a new induction 
on scales algorithm called the Bourgain-Guth method.”

Guth received his PhD from MIT in 2005 under the 
supervision of Tomasz Mrowka. He held a postdoctoral 
position (2005–2006) and an assistant professorship 
(2006–2008) at Stanford University. He was assistant 
professor (2008–2011) at the University of Toronto, a 
member of the Institute for Advanced Study (2010–2011), 
and professor at the Courant Institute of New York Uni-
versity before joining MIT in 2012. His honors and awards 
include an NSF Postdoctoral Fellowship (2006–2008), a 
Sloan Fellowship (2010), the Salem Prize (2013), the MIT 
School of Science Prize for Excellence in Graduate Teaching 
(2015), a Clay Research Prize (with Nets Katz, 2015), the 
New Horizons in Mathematics Prize (2015), and the AMS 
Bôcher Prize (2020). He was named a Simons Investigator 
in 2014 and is a Fellow of the AMS and of the American 
Academy of Arts and Sciences. He is the author of the book 
Polynomial Methods in Combinatorics.

The prize, awarded by the National Academy of Sciences 
and formerly called the NAS Award in Mathematics, was 

Larry Guth

Erika Camacho
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2020 MAA Awards
The Mathematical Association of America (MAA) awarded 
several prizes at the Joint Mathematics Meetings in Denver, 
Colorado, in January 2020. 

Vladimir Pozdnyakov of the Uni-
versity of Connecticut and J. Michael 
Steele of the University of Pennsyl-
vania were awarded the Chauvenet 
Prize for their article “Buses, Bullies, 
and Bijections,” Mathematics Maga-
zine 89 (2016), no. 3. The prize cita-
tion reads in part: “Pozdnyakov and 
Steele show the remarkable utility 
of bijections by considering seating 
assignments on a bus. Everyone has 
a designated seat, but all except the 
last passenger take seats at random. 
Then the final passenger—a bit of a 
bully—boards, not only wanting his 
own seat, but demanding that each 
subsequently displaced person finds 
his correct seat as well. What is the 
probability that the first person to 
board will need to change seats?

“The authors obtain the answer 
via a brute-force combinatorial argu-

ment, but then find the solution in an easier, more reveal-
ing way by making elegant use of permutation cycles. The 
authors then use bijections to derive even more surprising 
and beautiful results including the mean and variance of 
the number of cycles in a random permutation. This well-
crafted paper, which introduces the reader to the theory of 
permutation patterns, flows naturally and easily, providing 
a journey that is interesting and insightful. This bus is 
available for all—professor and student alike—delighting 
the rider with the simple power of bijections.”

Pozdnyakov received his PhD from the University of 
Pennsylvania in 2001 under the supervision of J. Michael 
Steele. He is currently professor of statistics and director 
of the Applied Financial Mathematics graduate program at 
Connecticut. He tells the Notices: “I’m an enthusiastic soccer 
player—an old one.” J. Michael Steele received his PhD 
from Stanford University in 1975 under Kai Lai Chung. 
He is currently professor emeritus at the University of 
Pennsylvania. Steele and Pozdnyakov were jointly awarded 
the MAA’s Carl Allendorfer Award in 2017. Steele tells the 
Notices: “I’m now retired from teaching, but I am still in-
volved in writing.  I am also passionate about languages 
and language learning. French is in focus for the moment, 
and most recently it absorbs four or more hours of my day.”

Aubrey D. N. J. de Grey of SENS Research Foundation 
and AgeX Therapeutics has been awarded the 2020 David P. 

with attendees individually afterwards to learn about their 
stories and give them advice based on their own interests 
and passions. By inspiring more women and members of 
underrepresented groups to continue in their mathematical 
pursuits, she enlarges the scope of what we see as successful 
mathematicians.” Camacho received her PhD in 2003 from 
Cornell University under the direction of Richard H. Rand. 
Among her many recognitions are the SACNAS Distin-
guished Undergraduate Institution Mentor Award (2012), 
the Outstanding Latino/a Faculty in Higher Education: 
Research/Teaching in Higher Education (Research Insti-
tutions) (2018), the Presidential Award for Excellence in 
Science, Mathematics, and Engineering Mentoring (2014), 
and the American Association for the Advancement of Sci-
ence Mentor Award (2019). She tells the Notices: “I grew 
up in East Los Angeles, the fourth of five children, where I 
was taught by Jaime Escalante (of Stand and Deliver fame). I 
enjoy spending time with my husband and three children.”

Margaret Robinson of Mount 
Holyoke College has been named 
the recipient of the 2020 M. Gweneth 
Humphreys Award for Mentorship 
of Undergraduate Women in Math-
ematics. According to the prize cita-
tion, “Margaret Robinson has been 
a mainstay of caring and thoughtful 
teaching and mentoring for many 
years at Mount Holyoke College, 
an institution whose mission is to 
educate women. Her focus is not 

just on the top students but on making a meaningful (and 
joyful) mathematical intervention for all the generations 
of learners that have crossed her path. As one student put 
it, ‘she saw me in a way that no mathematics teacher had 
before.’ Her impactful involvement in the Carleton Summer 
Math Program and the resounding response from a range of 
former mentees speak to her effectiveness and her ability to 
forge personal connections.” Robinson received her PhD in 
1986 from Johns Hopkins University under the supervision 
of Jun-Ichi Igusa. Her honors include the Mount Holyoke 
Faculty Teaching Award (2010), the NES/MAA Award for 
Distinguished Teaching of Mathematics (2012), and the 
MAA Haimo Award for Distinguished Teaching of Math-
ematics (2013). Robinson tells the Notices: “My favorite 
quote (that I tell my students and children) comes from 
The Once and Future King by T. H. White: ‘“The best thing 
for being sad,” replied Merlin, beginning to puff and blow, 
“is to learn something. That’s the only thing that never fails. 
… Learning is the only thing for you. Look what a lot of 
things there are to learn.”’”

—From AWM announcements

Margaret Robinson

Vladimir Pozdnyakov

J. Michael Steele
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across the United States, as well as in Panama, South Korea, 
Japan, and Holland.”

The 2020 Deborah and Franklin Tepper Haimo Awards 
for Distinguished College or University Teaching of Math-
ematics were awarded to Federico Ardila of San Francisco 
State University, Mark Tomforde of the University of 
Houston, and Suzanne L. Weekes of Worcester Polytechnic 
Institute.

Ardila was recognized for inspiring students “from all 
walks of life to recognize and realize their potential in 
mathematics.” He is a “leader in the movement to broaden 
and deepen diversity in research mathematics.” He is 
director of the Mathematical Sciences Research Institute–
Undergraduate Program (MSRI-UP), the largest Research 
Experiences for Undergraduates (REU) program in the 
United States and the one that serves the largest number 
of students from underrepresented groups. He conceived 
the SFSU-Colombia Combinatorics Initiative, through 
which he developed seven new courses to promote interna-
tional scholarly collaboration among undergraduates and 
master’s students, including many from underrepresented 
groups, at SFSU and the Universidad de Los Andes. He has 
published a wide range of expository articles in English, 
Spanish, and German. His YouTube channel contains more 
than 240 hours of freely available advanced mathematics, 
and his viewers come from over 150 countries. His article 
“Todos Cuentan: Cultivating Diversity in Combinatorics” 
was published in the Notices in November 2016. Ardila 
received his PhD from the Massachusetts Institute of Tech-
nology in 2003 under the direction of Richard P. Stanley. 
He is a Fellow of the AMS and of the Simons Foundation 
and the recipient of an NSF CAREER Award and of the 
Premio Nacional de Ciencias and the Premio Nacional de 
Matemáticas in Colombia. His research is in combinatorics 
and its connections to geometry, algebra, topology, and 
applications. He enjoys reading, fútbol, playing records, or 
playing marimba de chonta.

Tomforde “has had a deep and 
positive impact at all levels of math-
ematics education.” According to 
the prize citation, he has “recruited, 
retained, and mentored members 
of underrepresented groups spec-
tacularly” at all levels, including by 
enrolling over seventy University 
of Houston students in the Math 
Alliance, the goal of which is to en-
sure that every underrepresented or 
underserved American student with 

talent and ambition has the opportunity to earn a doctoral 
degree in a mathematical science. He is a cofounder and 
coorganizer of Gulf States Math Alliance (GSMath), one 
of seven regional alliances, composed of members of the 
Math Alliance in Texas, Louisiana, and Mississippi. He  

Robbins Prize for his article “The Chromatic Number of the 
Plane Is at Least 5,” Geombinatorics 28 (2018), no. 1, which 
addresses the question, What is the minimum number of 
colors needed to color the points of a Euclidean plane so 
that no two points at distance exactly 1 have the same color? 
This is “often known as the Hadwiger–Nelson problem; 
Hadwiger, several years earlier and for other reasons, had 
been the first to discuss the simplest coloring of the plane 
that demonstrates the upper bound.” De Grey received 
his PhD in biology from the University of Cambridge. His 
research interests encompass the characterization of all the 
types of self-inflicted cellular and molecular damage that 
constitute mammalian aging and the design of interven-
tions to repair and/or obviate that damage. He is particu-
larly interested in combinatorics, especially graph theory.

Tim Chartier of Davidson College 
was awarded the 2020 Euler Book 
Prize for Math Bytes (Princeton Uni-
versity Press, 2014). The prize citation 
reads: “Math Bytes gives readers a taste 
of the mathematics and computing 
applications that underlie many as-
pects of everyday life. With a wide 
array of topics—including fractals, 
fonts, tweets, basketball, Google, dig-
ital images, movies, and more—the 
book exposes readers to a satisfying 

assortment of mathematical ideas, many of which will be 
new to nonmathematical audiences. That said, even more 
mathematically inclined readers should find plenty of in-
teresting material, including new ways of thinking about 
and applying familiar mathematical concepts. Chartier’s 
exposition is clear, accessible, and fun. Regular challenge 
problems encourage readers to explore for themselves 
the ideas introduced in the text. All in all, Math Bytes is 
an engaging and stimulating read that is sure to broaden 
horizons and increase appreciation for the ubiquitous and 
invaluable role of computational mathematics in modern 
society.” Chartier received his PhD from the University 
of Colorado, Boulder. He specializes in numerical linear 
algebra, with his recent work focusing on data science. He 
has been a consultant on data analytics for ESPN, the New 
York Times, the US Olympic Committee, and teams in the 
NBA, NFL, and NASCAR. He was the first chair of the Ad-
visory Council for the National Museum of Mathematics. 
In K–12 education, he has worked with Google and Pixar 
on their educational initiatives. He was the recipient of the 
MAA Daniel Solow Author’s Award in 2019. Chartier tells 
the Notices: “My wife and I have professional training in 
mime, which includes master classes with Marcel Marceau. 
In fact, we paid for our wedding just over twenty-five years 
ago with a performance tour along the East Coast of the 
United States. We also have developed a mime show that 
introduces mathematical ideas and have performed it 

Tim Chartier

Mark  Tomforde
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community to mathematics and statistics work done in 
business, industry, and government, and with broadening 
the participation and success of students in mathematical 
sciences.

Gerald J. Porter of the Univer-
sity of Pennsylvania received the 
2020 Gung and Hu Award for Dis-
tinguished Service to Mathematics 
for his service in “teaching, teacher 
education, research, MAA adminis-
tration, and, most importantly of all, 
in leading the profession, especially 
the MAA, to value racial and gender 
diversity in all activities.” The prize 
citation reads in part: “Jerry Porter 

has spent decades in service to the MAA. His service in 
terms of years and variety at the national level is extensive 
but his service and care for the organization goes far be-
yond the lengthy list of committees on which he served 
and positions he has held. His is the service that, while 
not appearing on any list, has made the difference in the 
MAA and our profession. He pursued this service while 
providing strong support to Executive Directors, learning 
and sharing his great expertise, and being a change agent 
in the areas in which he was involved. He has been a men-
tor to many young mathematicians and has nominated 
them for awards and committees, welcomed them at both 
section and national meetings, and shown by example 
the importance of inclusivity. For many years he was the 
only male member of the Joint Committee on Women; as 
always, Jerry strengthened MAA’s role on this committee. 
Jerry welcomed the women and minorities who attend our 
meetings and encouraged them to take an active role in the 
Association.” With Jim White, he directed the Interactive 
Mathematics Text Project, which funded the creation of 
computer laboratories in six colleges to encourage the 
creation of computer-based algebra materials in teaching. 
Porter received his PhD from Cornell University in 1963 
under the direction of William Browder. He is a life mem-
ber of the AMS and the MAA. Porter has been retired from 
teaching since 2006. He enjoys traveling and has visited 
about seventy-five countries and all fifty states in the United 
States. He is an avid photographer and has had six photo 
shows at Penn. Since his retirement he has audited courses 
and seminars at Penn, including courses in ethnomusi-
cology, art, and literature. In June, he and his wife, Judy, 
will celebrate their sixtieth wedding anniversary. Together 
they funded the public lecture given each year at the Joint 
Mathematics Meetings with the goal of increasing public 
awareness and appreciation of mathematics.

—From MAA announcements

facilitates and promotes associated opportunities in the 
Gulf Coast region. He developed the Cougars and Houston 
Area Math Program (CHAMP), working in collaboration 
with neighborhood high schools and middle schools to 
provide a wide variety of mathematical activities. CHAMP 
received the AMS Award for Mathematics Programs That 
Make a Difference in 2018, as well as a Phi Beta Kappa 
award for broadening participation in STEM. He developed 
a multifaceted collaboration between the University of 
Houston and Texas Southern University, recruited faculty 
members from Houston as Math Alliance members, has 
served as a Project NExT consultant, and maintains mul-
tiple websites with a wide variety of materials for faculty 
and students. Tomforde received his PhD from Dartmouth 
College under the supervision of Dana P. Williams in 2002, 
held a postdoctoral fellowship at the University of Iowa, 
and has also taught at the College of William and Mary. 
He was a Project NExT Fellow in 2002. He tells the Notices: 
“I am a cinephile, and in my spare time I enjoy watching a 
wide variety of movies from different genres.”

Weekes “has had an extraordinary 
impact on the mathematics commu-
nity via superlative teaching, advis-
ing, and mentoring of students and 
faculty at Worcester Polytechnic In-
stitute (WPI), regionally, and nation-
ally.” She designed and organized the 
Applied and Industrial Mathematics 
Institute for Secondary Teaching at 
WPI, which offers workshops for 
high school mathematics teachers. 
As a member of the Math Advisory 

Group of Transforming Postsecondary Education in Math-
ematics (TPSE Math), she coorganized and hosted the New 
England Regional Meeting on Upper-Division Pathways at 
WPI, now a model for such workshops in other regions. 
She directed the Center for Industrial Mathematics and 
Statistics and also directed its WPI Research Experiences for 
Undergraduates (REU) Program in Industrial Mathemat-
ics and Statistics. She is a cofounder of the Mathematical 
Sciences Research Institute Undergraduate Program (MS-
RI-UP) and of the MAA’s Preparation for Industrial Careers 
in Mathematical Sciences (PIC Math) program, which has 
increased awareness of nonacademic career options and 
preparing students for industrial careers. Weekes grew up 
in the Republic of Trinidad and Tobago, received her BS in 
mathematics from Indiana University, and earned her PhD 
in 1995 from the University of Michigan. She was awarded 
the M. Gweneth Humphries Award of the Association for 
Women in Mathematics (AWM) in 2019. Her research 
work is in numerical methods for differential equations, 
including applications to spatiotemporal composites/
dynamic materials and cancer growth. She is involved in 
several initiatives connecting the academic mathematics 

Suzanne L. Weekes

Gerald J. Porter
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Legatiuk Awarded  
Clifford Prize

Dmitrii Legatiuk of Bauhaus-Univer-
sität Weimar has been selected as the 
recipient of the 2020 W. K. Clifford 
Prize for his “significant contribu-
tions in Clifford analysis, including 
interpolation of monogenic func-
tions, quaternionic operator calculus, 
and construction of advanced numer-
ical methods.” Legatiuk’s “interest 
in Clifford analysis, particularly its 
potential to solve difficult applied 

problems, has led him to such advances as using quaterni-
onic operator calculus to construct representation formulas 
for solutions of boundary value problems in advanced 
elasticity theories, interpolation of monogenic functions 
by various tools, and developing a finite element exterior 
calculus based on script geometry. His interests span math-
ematics, computer science, and engineering, reflecting the 
broad applicability of Clifford algebras and echoing the 
wide-ranging interests of W. K. Clifford himself.” Legatiuk 
earned his PhD from Bauhaus-Universität Weimar, where 
his doctoral research earned him the 2015 University Prize 
for Young Scientists.

The W. K. Clifford Prize is an international scientific 
prize intended to encourage young researchers to compete 
for excellence in research in theoretical and applied Clifford 
algebras and their analysis and geometry. It is awarded every 
three years at the International Conference on Clifford 
Algebras and Their Applications in Mathematical Physics, 
held this year in Hefei, China.

—G. Stacey Staples
Southern Illinois University

Chuzhoy Awarded  
NAS Held Prize
Julia Chuzhoy of Toyota Technological Institute, Chicago, 
has been named the recipient of the 2020 Michael and 
Sheila Held Prize of the National Academy of Sciences. 
According to the prize citation, Chuzhoy “has conducted 
influential work in the fields of graph algorithms, hardness 
of approximation, and structural graph theory, which have 
introduced powerful new techniques and resolved deep 
open questions.

“Chuzhoy and her coauthors achieved remarkable re-
sults in designing algorithms for graph routing problems, 
which are among the most studied and important problems 

Bombieri Awarded Crafoord 
Prize in Mathematics

Enrico Bombieri of the Institute for 
Advanced Study has been awarded 
the 2020 Crafoord Prize in Mathe-
matics “for outstanding and influ-
ential contributions in all the major 
areas of mathematics, particularly 
number theory, analysis and alge-
braic geometry.” The prize is awarded 
by the Royal Swedish Academy of 
Sciences and the Crafoord Founda-

tion; the disciplines rotate every year. The prize carries a 
cash award of 6 million Swedish krona (approximately 
US$618,000).

The prize citation reads in part: “Enrico Bombieri be-
longs to an increasingly rare group of mathematicians who 
can solve problems in almost all areas of mathematics. 
However, his greatest passion has always been number 
theory, which is the study of integers. He was just sixteen 
years old when he published his first work in number the-
ory and, among other things, he is a leading expert on the 
Riemann hypothesis on the distribution of prime numbers.

“Enrico Bombieri has made significant contributions in 
algebra, advanced geometry, and complex analysis. He has 
also contributed to solving Bernstein’s problem. This is a 
variation of Plateau’s problem, about how to mathemati-
cally describe the shape of the soap film that forms when 
a wire frame is dipped into a soap solution.”

Bombieri was born in 1940 in Milan, Italy, and received 
his PhD in 1963 from the Università degli Studi di Milano. 
He has been professor at the University of Pisa (1966–
1974) and Scuola Normale Superiore, Pisa (1974–1977). 
He joined the faculty at the IAS in 1977, where he is now 
professor emeritus. He was awarded the Fields Medal in 
1974. His honors also include the Feltrinelli Prize (1976), 
the Balzan Prize (1980), the Cavaliere di Gran Croce al 
Merito della Repubblica, Italy (2002), the Premio Internazi-
onale Pitagora (2006), the AMS Joseph Doob Prize (2008), 
the King Faisal International Prize (2010), and the Lifetime 
Achievement Award of the Italian Scientists and Scholars 
of North America Foundation (2015). He is a member of 
the American Academy of Arts and Sciences, the National 
Academy of Sciences, and the Royal Swedish Academy of 
Arts and Sciences, among many others. 

—From a Royal Swedish Academy announcement

Enrico Bombieri Dmitrii Legatiuk
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made major contributions. The prize committee consisted 
of A. Basmajian, Y. Movsisyan, and V. Pambuccian.   

—Victor Pambuccian
New College, Arizona State University

Borodin and Petrov Awarded 
2020 Bernoulli Prize
Alexei Borodin of the Massachusetts Institute of Technol-
ogy and Leonid Petrov of the University of Virginia have 
been awarded the 2020 Bernoulli Prize for an Outstand-
ing Survey Article in Probability or Statistics. They were 
honored for their article “Integrable Probability: From 
Representation Theory to Macdonald Processes,” Probabil-
ity Surveys 11 (2014). The prize recognizes authors of an 
influential survey publication in the areas of probability 
and statistics.

—Bernoulli Society announcement

National Academy of 
Engineering Elections
The National Academy of Engineering (NAE) has elected 
eighty-seven new members and eighteen international 
members for 2020. Below are the new members whose 
work involves the mathematical sciences.

 • Graham V. Candler, University of Minnesota, Minneap-
olis, for development and validation of computational 
models for high-fidelity simulation of supersonic and 
hypersonic interactions.

 • Kenneth C. Hall, Duke University, for development of 
unsteady aerodynamic and aeromechanics theories and 
analysis for internal and external aerodynamic flows.

 • Mrdjan Jankovic, Ford Motor Company, for contri-
butions to nonlinear control theory and automotive 
technology.

 • Sallie Ann Keller, University of Virginia, Charlottesville, 
for development and application of engineering and 
statistical techniques in support of national security 
and industry.

 • Ioannis G. Kevrekidis, Johns Hopkins University, for 
research on multiscale mathematical modeling and 
scientific computation for complex, nonlinear reaction, 
and transport processes.

 • Tamara G. Kolda, Sandia National Laboratories, for con-
tributions to the design of scientific software, including 
tensor decompositions and multilinear algebra.

in optimization. Insights from this work led to further 
significant impacts on structural graph theory, including 
an exponential strengthening of the parameters of the 
Excluded Grid theorem.

“Chuzhoy’s work on graph routing problems settled cen-
tral open questions in graph optimization and introduced 
powerful new graph decomposition and routing tech-
niques, opening up the potential for future applications in 
algorithm design and structural graph theory. The improved 
parameters for the Excluded Grid theorem led to faster al-
gorithms for a host of graph optimization problems, and 
stronger bounds for a number of graph theoretic results.”

The prize carries a cash award of US$100,000. It honors 
outstanding, innovative, creative, and influential research 
in the areas of combinatorial and discrete optimization, or 
related parts of computer science, such as the design and 
analysis of algorithms and complexity theory.

—From an NAS announcement

Borodin and Viazovska 
Awarded Fermat Prize
Alexei Borodin of the Massachusetts Institute of Technol-
ogy and Maryna Viazovska of the École Polytechnique 
Fédérale de Lausanne have been awarded the 2019 Fermat 
Prize for research in mathematics. Borodin was honored for 
the invention of integrable probability theory, a new area at 
the interface of representation theory, combinatorics, and 
statistical physics. Viazovska was honored for her original 
solution of the famous sphere packing problem in dimen-
sions 8 and 24. The prize rewards mathematicians under 
forty-five years old whose research works are in number 
theory, analytic geometry, probability, and research related 
to the variational principles.

—Fermat Prize announcement

Haykazyan Awarded  
Emil Artin Junior Prize
Levon Haykazyan of Oxford Asset Management has been 
awarded the 2020 Emil Artin Junior Prize in Mathematics. 
Haykazyan was chosen for his paper “Spaces of Types in 
Positive Model Theory,” Journal of Symbolic Logic 84 (2019).

 Established in 2001, the Emil Artin Junior Prize in Math-
ematics carries a cash award of US$1,000 and is presented 
usually every year to a student or former student of an Ar-
menian educational institution under the age of thirty-five 
for outstanding contributions to algebra, geometry, topol-
ogy, and number theory—the fields in which Emil Artin 
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 • Ila Varma, University of Toronto
 • Cynthia Vinzant, North Carolina State University
 • Alexander Wright, University of Michigan
 • Yao Yao, Georgia Institute of Technology
 • Zhizhen Zhao, University of Illinois, Urbana-Cham-

paign

—From a Sloan Foundation announcement
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 • Muriel Médard, Massachusetts Institute of Technology, 
for contributions to the theory and practice of network 
coding.

 • Jorge Nocedal, Northwestern University, for contri-
butions to the theory, design, and implementation of 
optimization algorithms and machine learning software.

 • Alexander A. Shapiro, Georgia Institute of Technology, 
for contributions to the theory, computation, and ap-
plication of stochastic programming.

 • Peter W. Shor, Massachusetts Institute of Technology, 
for pioneering contributions to quantum computation.

 • Charles W. Wampler II, General Motors Corporation, 
for leadership in robotic systems in manufacturing, 
mathematical methods for robot motion and machine 
design, and traction battery modeling.

 • Elected as an international member was Wolfgang Mar-
quardt, Forschungszentrum Jülich GmbH, Germany, 
for contributions to process systems engineering and 
large-scale computations and for national leadership in 
science/technology policy and management.

—From an NAE announcement

2020 Sloan Fellows
The Alfred P. Sloan Foundation has announced the names 
of 126 recipients of the 2020 Sloan Research Fellowships. 
Each year the foundation awards fellowships in the fields of 
mathematics, chemistry, computational and evolutionary 
molecular biology, computer science, economics, neurosci-
ence, physics, and ocean sciences. Grants of US$75,000 for 
a two-year period are administered by each Fellow’s insti-
tution. Once chosen, Fellows are free to pursue whatever 
lines of inquiry most interest them, and they are permitted 
to employ fellowship funds in a wide variety of ways to 
further their research aims.

Following are the names and institutions of the 2020 
awardees in the mathematical sciences. 

 • Jeff Calder, University of Minnesota
 • Roger Casals, University of California, Davis
 • Otis Chodosh, Stanford University
 • Damek Davis, Cornell University
 • Tarek M. Elgindi, University of California, San Diego
 • Peter Hintz, Massachusetts Institute of Technology
 • Robert Hough, Stony Brook University
 • Hao Huang, Emory University
 • Sebastian Hurtado-Salazar, University of Chicago
 • Aleksandr Logunov, Princeton University
 • Linquan Ma, Purdue University
 • Sung-Jin Oh, University of California, Berkeley
 • Weijie Su, University of Pennsylvania
 • Omer Tamuz, California Institute of Technology
 • Samuel Taylor, Temple University

1
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AMS Department 
Chairs Workshop

The AMS held its annual Department Chairs Workshop on 
January 14, 2020, in Denver, Colorado, just prior to the 
start of the 2020 Joint Mathematics Meetings.

Workshop leaders were: Luca Capogna, Head, Depart-
ment of Mathematical Sciences, Worcester Polytechnic 
Institute (WPI); Kevin Knudson, Chair, Department of 
Mathematics, University of Florida; Gloria Marí-Beffa, As-
sociate Dean for the Natural, Physical and Mathematical 
Sciences, University of Wisconsin–Madison; and Jennifer 
Zhao, Associate Dean for the College of Arts, Sciences and 
Letters, University of Michigan–Dearborn.

What makes a chair different from any other engaged 
faculty member in the department? This workshop exam-
ined the chair’s role in leading a department. The day was 
structured to include and encourage networking and shar-
ing of ideas among participants. There were four sessions:  

 • Modernizing mathematics and mathematicians 
 • Evaluating teaching 
 • Difficult conversations  
 • The “entrepreneurial” mathematics department. 

The 2020 workshop was attended by sixty-eight department 
chairs and leaders from across the country.

—Anita Benjamin
AMS Office of Government Relations

Every Generation Helps  
the Next
In 2017, an energetic group of twenty mathematicians at 
the American Mathematical Society launched a special 
fundraising campaign to create a new endowment called 
the Next Generation Fund. The goal of the Next Generation 
Fund is to support hundreds of early career mathematicians 
each year at modest but impactful levels.

Many donors contributed toward the $1.5 million 
matching gift challenge with donations that ranged from 
one dollar to more than two hundred thousand. Thanks 
to their personal commitment and community spirit, the 
campaign raised over three million dollars to inaugurate 
the Fund.

Initially, the Next Generation Fund will support pro-
grams such as travel grants to AMS meetings, Mathematics 
Research Communities, Child Care Grants, and Student 
Chapters. It is designed to be flexible over time to meet 
the changing needs of mathematicians as they begin their 
professional careers.

With the inaugural campaign now accomplished, the 
Next Generation Fund will continue to be a fundraising 
priority at the AMS. All members of the mathematics 
community are welcomed and encouraged to support it 
through their ongoing donations. For more information, 
contact the Development staff at 401-455-4111, or visit www 
.ams.org/support. 

—Robin Marek

Deaths of AMS Members
K. CHANDRASEKHARAN, of Switzerland, died on April 13, 

2017. Born on November 21, 1920, he was a member of 
the Society for 69 years.

HARRY D. HUSKEY, of Santa Cruz, California, died on  
April 9, 2017. Born on January 19, 1916, he was a member 
of the Society for 74 years.

Credit
Photo is courtesy of Anita Benjamin. 
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Listings for upcoming mathematics opportunities to appear in Notices may be submitted to notices@ams.org.

Early Career Opportunity

NSF Research Training Groups  
in the Mathematical Sciences

The National Science Foundation (NSF) Research Training 
Groups in the Mathematical Sciences (RTG) program pro-
vides funds for the training of US students and postdoctoral 
associates through structured research groups that include 
vertically integrated activities spanning the entire spectrum 
of educational levels from undergraduate through postdoc-
toral. The deadline for full proposals is June 2, 2020. See 
www.nsf.gov/funding/pgm_summ.jsp?pims_id=5732.

—NSF announcement

Early Career Opportunity

International Mathematics 
Competition for  
University Students

The Twenty-seventh International Mathematics Competi-
tion for University Students will be held July 24–30, 2020, 
at American University in Blagoevgrad, Bulgaria. Students 
completing their first, second, third, or fourth years of 
university education are eligible. See www.imc-math.org 
.uk/. 

—John Jayne, University College London

IPAM Call for Proposals

The Institute for Pure and Applied Mathematics (IPAM) 
seeks program proposals from the mathematical, statistical, 
and scientific communities for long programs and work-
shops, to be reviewed at IPAM’s Science Advisory Board 
meeting in November. For more information, go to www 
.ipam.ucla.edu/propose-a-program/ or contact the 
IPAM director at director@ipam.ucla.edu. Proposals 
should also address the inclusion of women and members 

Early Career Opportunity

NSF Postdoctoral  
Research Fellowships

The National Science Foundation (NSF) awards Mathemat-
ical Sciences Postdoctoral Research Fellowships (MSPRF) 
in all areas of the mathematical sciences, including appli-
cations to other disciplines. Awards are either Research 
Fellowships or Instructorships. The Research Fellowship 
provides full-time support for any eighteen academic-year 
months in a three-year period. The Research Instructorship 
provides either two academic years of full-time support 
or one academic year of full-time and two academic years 
of half-time support. The deadline for proposals is Oc-
tober 21, 2020. See www.nsf.gov/funding/pgm_summ 
.jsp?pims_id=5301&org=NSF.

—NSF announcement

Early Career Opportunity

NRC Research Associateship Programs

The National Academy of Sciences, Engineering, and Med-
icine offers postdoctoral and senior research awards on 
behalf of twenty-three US federal research agencies and 
affiliated institutions with facilities at over 100 locations 
throughout the United States and abroad. Applications 
are sought from highly qualified candidates, including re-
cent doctoral recipients and senior researchers. Upcoming 
deadlines are May 1, 2020, and August 1, 2020. See sites 
.nationalacademies.org/pga/rap/.

—NRC announcement

The most up-to-date listing of NSF funding opportunities from the Division 
of Mathematical Sciences can be found online at www.nsf.gov/dms 
and for the Directorate of Education and Human Resources at www.nsf 
.gov/dir/index.jsp?org=ehr. To receive periodic updates, subscribe 
to the DMSNEWS listserv by following the directions at www.nsf.gov 
/mps/dms/about.jsp. 
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http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=5301&org=NSF
http://www.imc-math.org.uk/
http://www.imc-math.org.uk/
http://sites.nationalacademies.org/pga/rap/
http://sites.nationalacademies.org/pga/rap/
http://www.nsf.gov/dir/index.jsp?org=ehr
http://www.nsf.gov/dir/index.jsp?org=ehr
http://www.nsf.gov/mps/dms/about.jsp
http://www.nsf.gov/mps/dms/about.jsp
http://www.ipam.ucla.edu/propose-a-program/
http://www.ipam.ucla.edu/propose-a-program/
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NEWS

Mathematics Opportunities

place once a month in different museums, parks, and malls 
of the Republic of Panama.

The Panamanian Foundation for the Promotion of 
Mathematics (FUNDAPROMAT) invites you to get in-
volved. You can volunteer to visit our beautiful country and 
give a presentation to a general audience or participate in 
one of our math outreach events. You can donate funds to 
cover the expenses of running the Foundation. You can mail 
us math puzzles to use in our activities. You can share ideas 
of new ways to have a greater impact on a general audience 
and to successfully reach those who might not consider 
themselves math enthusiasts. If you know of someone who 
might be interested in sponsoring our educational efforts 
in Panama and would benefit from having an international 
presence, please do not hesitate to contact us.

You can follow us on Instagram as @fundapromat and 
through our public Facebook page known as “Fundapro-
mat.” You can also access more information on our website 
www.fundapromat.org or you can email us directly at 
info@fundapromat.org. 

—Jeanette Shakalli, PhD

of underrepresented minorities as speakers, organizers, and 
participants.

—IPAM announcement

Call for Papers for Haifa Workshop 

The Twentieth Haifa Workshop on Interdisciplinary Appli-
cations of Graphs, Combinatorics, and Algorithms will be 
held June 7–9, 2020, at the University of Haifa, Caesarea 
Rothschild Institute. Contributed talks are invited. The 
workshop emphasizes the diversity of the use of combi-
natorial algorithms and graph theory in application areas. 
Abstracts of one to two pages should be sent by April 27, 
2020, to HaifaGraphWorkshop@gmail.com. See the web-
site cri.hevra.haifa.ac.il. 

—Martin Golumbic, General Chair  
University of Haifa

A New Panamanian Foundation  
for Mathematics

The Panamanian Foundation for the Promotion of Mathe-
matics (FUNDAPROMAT) is a private nonprofit foundation 
whose mission is to promote the study of mathematics in 
the Republic of Panama. The official launch of the Foun-
dation was on April 14, 2020, in Panama City and on April 
15 in the province of Chiriquí, outside of the capital city. 
The keynote speaker of the event was Dr. Michael Dorff, 
president of the Mathematical Association of America 
(MAA), who gave his public presentation on “Math on 
Soap Bubbles.”

The presentations to a general audience of the Program 
on Math Outreach are among the most popular events 
organized by the Foundation. The purpose of these math 
presentations given by prominent international mathema-
ticians is to convince kids and adults of all ages that math is 
not only fun but it also has many interesting applications. 
We also want to inspire Panamanian youth to study math 
or to follow a scientific career. Talented public speakers 
like Eugenia Cheng, Robert Lang, and Colin Wright have 
travelled to Panama to share their passion for mathematics 
with the Panamanian population.

The Math Carnivals that highlight female Panamanian 
mathematicians are also in demand. The goal of these 
events is to inspire Panamanian youth, in particular girls, 
to study math by showing them real-life examples of female 
Panamanian mathematicians who are successful in their 
careers. The first Math Carnival took place on May 12, 2019, 
in the Biomuseum to celebrate the International Day for 
Women in Mathematics. These events are currently taking 

www.ams.org/authors

AMS AUTHOR 
RESOURCE CENTER
The Author Resource Center is a collection of 
information and tools available to assist you to 
successfully write, edit, illustrate, and publish 
your mathematical works.

To begin utilizing 
these important 
resources, visit:

http://cri.hevra.haifa.ac.il
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algorithmic and computational optimization, analysis of 
complex networks, etc.) by the time of the appointment, 
a record of or a strong potential for excellent and inde-
pendent research that will attract external funding and an 
active program of fundamental and applied research in 
mathematical methods in data and information processing 
with applications to science and engineering problems. The 
successful candidate must demonstrate the ability to teach 
both undergraduate and graduate courses in theoretical and 
computational discrete mathematics with applications to 
the data sciences, and the ability and the commitment to 
supervise graduate students.

Applicants should submit through the Brock Careers 
website at the link below by March 31, 2020 (indicating 
file number stated above), a cover letter, a curriculum 
vitae, samples of recent publications, statements of re-
search and teaching interests: https://brocku.wd3 
.myworkdayjobs.com/brocku_careers/job/St 
-Catharines-Main-Campus/Assistant-Professor 
--Mathematics-of-Data-Science_JR-1005178.

Learn more about Brock University by visiting www 
.brocku.ca.

08

CANADA

Brock University 
Department of Mathematics & Statistics 

Faculty Position in Mathematics of Data Science

The Department of Mathematics and Statistics at Brock Uni-
versity invites applications for a probationary tenure-track 
position as Assistant Professor in the mathematics of data 
science, effective July 1, 2020.

About the position
The Department currently offers a BSc and an MSc in 

Mathematics and Statistics and is preparing to launch a 
new trans-disciplinary BSc in Data Sciences and Analytics as 
well as a new PhD Program in Computational, Mathemat-
ical, and Statistical Sciences jointly with the Department 
of Computer Science. The Department will also be con-
tributing to the development and delivery of engineering 
programs at Brock University. The successful candidate is 
expected to have a primary role in the development of these 
current and new programs in mathematics, data sciences 
and engineering.

Qualifications
The successful candidate must have recently completed 

a PhD (since 2015) in an area of mathematics related to 
data science (e.g., computational discrete mathematics, 

https://brocku.wd3.myworkdayjobs.com/brocku_careers/job/St-Catharines-Main-Campus/Assistant-Professor--Mathematics-of-Data-Science_JR-1005178
https://brocku.wd3.myworkdayjobs.com/brocku_careers/job/St-Catharines-Main-Campus/Assistant-Professor--Mathematics-of-Data-Science_JR-1005178
https://brocku.wd3.myworkdayjobs.com/brocku_careers/job/St-Catharines-Main-Campus/Assistant-Professor--Mathematics-of-Data-Science_JR-1005178
https://brocku.wd3.myworkdayjobs.com/brocku_careers/job/St-Catharines-Main-Campus/Assistant-Professor--Mathematics-of-Data-Science_JR-1005178
http://www.brocku.ca
http://www.brocku.ca
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Brock University 
Faculty Position in Data Science and Statistical  Theory

The Department of Mathematics and Statistics at Brock Uni-
versity invites applications for a probationary tenure-track 
position as Assistant Professor in data science and statistical 
theory, effective July 1, 2020.

About the Position
The Department currently offers a BSc and MSc in 

Mathematics and Statistics and is preparing to launch a 
new trans-disciplinary BSc in Data Sciences and Analytics 
as well as a new PhD Program in Computational, Math-
ematical, and Statistical Sciences jointly with the Depart-
ment of Computer Science. Statistics graduates within 
the department have an outstanding placement record as 
professional statisticians with high reputation, working in 
diverse fields. The successful candidate will bring expertise 
in Data Science and Statistical Theory, providing a bridge 
between the existing Statistics program and the new Data 
Science program and will help to translate the former's 
success to the latter.

Qualifications
The successful candidate must have recently completed a 

PhD (since 2015) in statistics (or a related field) by the time 
of the appointment, a proven record of research excellence, 
and an active research program that will attract external 
funding. The successful candidate must demonstrate the 
ability to teach both undergraduate and graduate courses 
in statistical theory (e.g., experiment design, sampling 
theory) and will be tasked with modernizing these courses 
and integrating them with the new Data Science program. 
The candidate must demonstrate the ability to supervise 
graduate students and will have a primary role in extending 
our existing MSc in Statistics to include a stream in Data 
Science.

Applicants should submit through the Brock Careers 
website at the link below by March 31, 2020 (indicating 
file number stated above), a cover letter, a curriculum 
vitae, samples of recent publications, statements of re-
search and teaching interests: https://brocku.wd3 
.myworkdayjobs.com/brocku_careers/job/St 
-Catharines-Main-Campus/Assistant-Professor 
--Data-Science---Statistical-Theory_JR-1005177.

Learn more about Brock University by visiting www 
.brocku.ca.

10

Brock University 
Department of Mathematics & Statistics 
Faculty Position in Financial Mathematics 

and Mathematical Modeling

The Department of Mathematics and Statistics at Brock Uni-
versity invites applications for a probationary tenure-track 
position as Assistant Professor in Financial Mathematics 
and Mathematical Modeling, effective July 1, 2020.

About the position
The Department currently offers a BSc and an MSc in 

Mathematics and Statistics. The successful candidate is 
expected to have a primary role in the development of a 
new undergraduate program in Financial Mathematics, 
sustain and expand existing financial math courses, and 
teach undergraduate courses in the MICA (Mathematics 
Integrated with Computers and Applications) concentra-
tion. The successful candidate will also build a modern 
transdisciplinary research program which will strengthen 
and broaden the Department's MSc program, as well as 
contribute to a proposed joint PhD program with the De-
partment of Computer Science. Commitment to develop 
new graduate courses and supervise graduate students 
in the areas of financial mathematics and mathematical 
modeling is anticipated.

Qualifications
The successful candidate must have recently com-

pleted a PhD (since 2015) with expertise in analytical 
and computational aspects of Financial Mathematics and 
computer-based Mathematical Modeling. A strong record 
of independent research in these areas which will attract 
external funding is desired. The successful candidate must 
have a demonstrated teaching ability.

Applicants should submit through the Brock Careers 
Website at the link below by March 31, 2020, (indicating 
file number stated above), a cover letter, a curriculum 
vitae, samples of recent publications, statements of re-
search and teaching interests: https://brocku.wd3 
.myworkdayjobs.com/brocku_careers/job/St 
-Catharines-Main-Campus/Assistant-Professor 
--Financial-Mathematics---Mathematical 
-Modeling_JR-1005179-1.

Learn more about Brock University by visiting www 
.brocku.ca.

09

http://www.brocku.ca
http://www.brocku.ca
https://brocku.wd3.myworkdayjobs.com/brocku_careers/job/St-Catharines-Main-Campus/Assistant-Professor--Data-Science---Statistical-Theory_JR-1005177
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https://brocku.wd3.myworkdayjobs.com/brocku_careers/job/St-Catharines-Main-Campus/Assistant-Professor--Financial-Mathematics---Mathematical-Modelng_JR-1005179-1
https://brocku.wd3.myworkdayjobs.com/brocku_careers/job/St-Catharines-Main-Campus/Assistant-Professor--Financial-Mathematics---Mathematical-Modelng_JR-1005179-1
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CHINA

Tianjin University, China 
Tenured/Tenure-Track/Postdoctoral Positions at 

the Center for Applied Mathematics

Dozens of positions at all levels are available at the recently 
founded Center for Applied Mathematics, Tianjin Univer-
sity, China. We welcome applicants with backgrounds in 
pure mathematics, applied mathematics, statistics, com-
puter science, bioinformatics, and other related fields. We 
also welcome applicants who are interested in practical 
projects with industries. Despite its name attached with 
an accent of applied mathematics, we also aim to create a 
strong presence of pure mathematics.

Light or no teaching load, adequate facilities, spacious 
office environment and strong research support. We are 
prepared to make quick and competitive offers to self-mo-
tivated hard workers, and to potential stars, rising stars, as 
well as shining stars.

L E A R N  A B O U T

A
M

S eBOOKS

Did you know that most
of our titles are now

available in eBook form?

Browse both our print and electronic 
titles at bookstore.ams.org.

The Center for Applied Mathematics, also known as the 
Tianjin Center for Applied Mathematics (TCAM), located 
by a lake in the central campus in a building protected as 
historical architecture, is jointly sponsored by the Tianjin 
municipal government and the university. The initiative 
to establish this center was taken by Professor S. S. Chern. 
Professor Molin Ge is the Honorary Director, Professor 
Zhiming Ma is the Director of the Advisory Board. Professor 
William Y. C. Chen serves as the Director.

TCAM plans to fill in fifty or more permanent faculty 
positions in the next few years. In addition, there are a 
number of temporary and visiting positions. We look for-
ward to receiving your application or inquiry at any time. 
There are no deadlines.

Please send your resume to mathjobs@tju.edu.cn.
For more information, please visit cam.tju.edu.cn or 

contact Ms. Erica Liu at mathjobs@tju.edu.cn, telephone: 
86-22-2740-6039.

01

http://cam.tju.edu.cn
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NEW BOOKS

New Books Offered by the AMS

37C70, 35B20, 37D15, List US$140, AMS members 
US$112, MAA members US$126, Order code SURV/246

bookstore.ams.org/surv-246

Geometry and Topology

Topological Persistence in 
Geometry and Analysis
Leonid Polterovich, Tel Aviv 
University, Israel, Daniel Rosen, 
Ruhr-Universität Bochum, Ger-
many, Karina Samvelyan, Tel 
Aviv University, Israel, and Jun 
Zhang, Université de Montréal, 
Canada

The theory of persistence mod-
ules originated in topological 
data analysis and became an 

active area of research in algebraic topology. This book 
provides a concise and self-contained introduction to 
persistence modules and focuses on its interactions with 
pure mathematics, bringing the reader to the cutting edge 
of current research. In particular, the authors present appli-
cations of persistence to symplectic topology, including the 
geometry of symplectomorphism groups and embedding 
problems. Furthermore, they discuss topological function 
theory, which provides new insight into oscillation of 
functions. The book is accessible to readers with a basic 
background in algebraic and differential topology.

This item will also be of interest to those working in applications.

University Lecture Series, Volume 74
June 2020, 140 pages, Softcover, ISBN: 978-1-4704-5495-
1, LC 2019059052, 2010 Mathematics Subject Classification: 
55U99, 58Cxx, 53Dxx, List US$55, AMS members US$44, 
MAA members US$49.50, Order code ULECT/74

bookstore.ams.org/ulect-74

Analysis

Attractors Under 
Autonomous and 
Non-autonomous 
Perturbations
Matheus C. Bortolan, Universi-
dade Federal de Santa Catarina, 
Florianópolis SC, Brazil, Alexan-
dre N. Carvalho, Universidade de 
São Paulo, São Carlos SP, Brazil, 
and José A. Langa, Universidad 
de Sevilla, Seville, Spain

This book provides a compre-
hensive study of how attractors behave under perturbations 
for both autonomous and non-autonomous problems. 
Furthermore, the forward asymptotics of non-autonomous 
dynamical systems is presented here for the first time in a 
unified manner.

When modelling real world phenomena imprecisions 
are unavoidable. On the other hand, it is paramount that 
mathematical models reflect the modelled phenomenon, 
in spite of unimportant neglectable influences discounted 
by simplifications, small errors introduced by empirical 
laws or measurements, among others.

The authors deal with this issue by investigating the per-
manence of dynamical structures and continuity properties 
of the attractor. This is done in both the autonomous (time 
independent) and non-autonomous (time dependent) 
framework in four distinct levels of approximation: the 
upper semicontinuity, lower semicontinuity, topological 
structural stability and geometrical structural stability.

This book is aimed at graduate students and researchers 
interested in dissipative dynamical systems and stability 
theory, and requires only a basic background in metric 
spaces, functional analysis and, for the applications, tech-
niques of ordinary and partial differential equations.

Mathematical Surveys and Monographs, Volume 246
July 2020, 254 pages, Hardcover, ISBN: 978-1-4704-5308-
4, 2010 Mathematics Subject Classification: 34D45, 35B41; 

http://bookstore.ams.org/surv-246
http://bookstore.ams.org/ulect-74
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New in Contemporary 
Mathematics
Applications

Topological Phases 
of Matter and 
Quantum Computation
Paul Bruillard, Pacific North-
west National Laboratory, Rich-
land, WA, Carlos Ortiz Mar-
rero, Pacific Northwest National 
Laboratory, Richland, WA, and 
Julia Plavnik, Indiana University, 
Bloomington, IN, Editors

This volume contains the pro-
ceedings of the AMS Special Ses-

sion on Topological Phases of Matter and Quantum Com-
putation, held from September 24–25, 2016, at Bowdoin 
College, Brunswick, Maine.

Topological quantum computing has exploded in pop-
ularity in recent years. Sitting at the triple point between 
mathematics, physics, and computer science, it has the 
potential to revolutionize sub-disciplines in these fields. 
The academic importance of this field has been recognized 
in physics through the 2016 Nobel Prize. In mathematics, 
some of the 1990 Fields Medals were awarded for develop-
ments in topics that nowadays are fundamental tools for 
the study of topological quantum computation. Moreover, 
the practical importance of this discipline has been under-
scored by recent industry investments.

The relative youth of this field combined with a high 
degree of interest in it makes now an excellent time to 
get involved. Furthermore, the cross-disciplinary nature 
of topological quantum computing provides an unprec-
edented number of opportunities for cross-pollination of 
mathematics, physics, and computer science. This can be 
seen in the variety of works contained in this volume. With 
articles coming from mathematics, physics, and computer 
science, this volume aims to provide a taste of different 
sub-disciplines for novices and a wealth of new perspectives 
for veteran researchers. Regardless of your point of entry 
into topological quantum computing or your experience 
level, this volume has something for you.

Contemporary Mathematics, Volume 747
May 2020, 240 pages, Softcover, ISBN: 978-1-4704-4074-
9, LC 2019040079, 2010 Mathematics Subject Classification: 
81R50, 16D90, 81T05, 20G42, 18D10, 19D23, List US$120, 

Extrinsic Geometric Flows
Ben Andrews, The Australian Na-
tional University, Canberra, Aus-
tralia, Bennett Chow, University 
of California, San Diego, La Jolla, 
CA, Christine Guenther, Pacific 
University, Forrest Grove, OR, and 
Mat Langford, University of Ten-
nessee, Knoxville, TN

Extrinsic geometric flows are 
characterized by a submanifold 
evolving in an ambient space 

with velocity determined by its extrinsic curvature. The 
goal of this book is to give an extensive introduction to 
a few of the most prominent extrinsic flows, namely, the 
curve shortening flow, the mean curvature flow, the Gauß 
curvature flow, the inverse-mean curvature flow, and fully 
nonlinear flows of mean curvature and inverse-mean curva-
ture type. The authors highlight techniques and behaviors 
that frequently arise in the study of these (and other) flows. 
To illustrate the broad applicability of the techniques devel-
oped, they also consider general classes of fully nonlinear 
curvature flows.

The book is written at the level of a graduate student 
who has had a basic course in differential geometry and 
has some familiarity with partial differential equations. It 
is intended also to be useful as a reference for specialists. 
In general, the authors provide detailed proofs, although 
for some more specialized results they may only present 
the main ideas; in such cases, they provide references for 
complete proofs. A brief survey of additional topics, with 
extensive references, can be found in the notes and com-
mentary at the end of each chapter.

Graduate Studies in Mathematics, Volume 206
May 2020, 790 pages, Hardcover, ISBN: 978-1-4704-5596-
5, LC 2019059835, 2010 Mathematics Subject Classification: 
53C44, 58J35, 53A07, 52A20, 35K20, List US$98, AMS 
members US$78.40, MAA members US$88.20, Order 
code GSM/206

bookstore.ams.org/gsm-206

Extrinsic 
Geometric Flows 

Ben Andrews
Bennett Chow
Christine Guenther
Mat Langford

GRADUATE STUDIES
IN MATHEMATICS 206

ONTEMPORARY
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Paul Bruillard
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New AMS-Distributed 
Publications
Algebra and 
Algebraic Geometry

Algebraic Combinatorics, 
Resurgence, Moulds 
and Applications 
(CARMA): Volume 1
Frédéric Chapoton, Université 
de Strasbourg, France, Frédéric 
Fauvet, Université de Strasbourg, 
France, Claudia Malvenuto, Uni-
versitá di Roma La Sapienza, Italy, 
and Jean-Yves Thibon, Université 
Paris-Est Marne-la-Vallée, France, 
Editors

This is volume 1 of a 2-volume work comprising a total of 
14 refereed research articles which stem from the CARMA 
Conference (Algebraic Combinatorics, Resurgence, Moulds 
and Applications), held at the Centre International de 
Rencontres Mathématiques in Luminy, France, from June 
26–30, 2017. The conference did notably emphasize the 
role of Hopf algebraic techniques and related concepts (e.g. 
Rota-Baxter algebras, operads, and Ecalle’s mould calculus) 
which have lately proved pervasive in combinatorics, but 
also in many other fields, from multiple zeta values to the 
algebraic study of control systems and the theory of rough 
paths.

The volumes should be useful to researchers or graduate 
students in mathematics working in these domains and 
to theoretical physicists involved with resurgent functions 
and alien calculus.

This item will also be of interest to those working in discrete 
mathematics and combinatorics.

A publication of the European Mathematical Society. Distributed within 
the Americas by the American Mathematical Society.

IRMA Lectures in Mathematics and Theoretical Physics, 
Volume 31
March 2020, 354 pages, Hardcover, ISBN: 978-3-03719-
204-7, 2010 Mathematics Subject Classification: 05Exx, 81T15, 
81T18, 81Q30, 34C20, 37C10, 18D50, 34M40, 34M60, 

AMS members US$96, MAA members US$108, Order 
code CONM/747

bookstore.ams.org/conm-747

Differential Equations

Advances in Harmonic 
Analysis and Partial 
Differential Equations
Donatella Danielli, Purdue Uni-
versity, West Lafayette, IN, and 
Irina Mitrea, Temple University, 
Philadelphia, PA, Editors

This volume contains the pro-
ceedings of the AMS Special Ses-
sion on Harmonic Analysis and 
Partial Differential Equations, 
held from April 21–22, 2018, at 

Northeastern University, Boston, Massachusetts.
The book features a series of recent developments at the 

interface between harmonic analysis and partial differential 
equations and is aimed toward the theoretical and applied 
communities of researchers working in real, complex, and 
harmonic analysis, partial differential equations, and their 
applications.

The topics covered belong to the general areas of the 
theory of function spaces, partial differential equations of 
elliptic, parabolic, and dissipative types, geometric optics, 
free boundary problems, and ergodic theory, and the em-
phasis is on a host of new concepts, methods, and results.

This item will also be of interest to those working in analysis.

Contemporary Mathematics, Volume 748
May 2020, 210 pages, Softcover, ISBN: 978-1-4704-4896-
7, LC 2019040080, 2010 Mathematics Subject Classification: 
31A10, 33C10, 35G20, 35P20, 35S05, 39B72, 42B35, 
46E30, 76D03, 78A05, List US$120, AMS members US$96, 
MAA members US$108, Order code CONM/748

bookstore.ams.org/conm-748
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An Excursion into p-Adic 
Hodge Theory
From Foundations to Recent 
Trends
Fabrizio Andreatta, Universita 
degli Studi di Milano, Milano, 
Italy, Riccardo Brasca, Institut 
de Mathématiques de Jussieu, Uni-
versité Paris Diderot, Paris, France, 
Olivier Brinon, Université de 
Bordeaux, Talence, France, Xavier 
Caruso, Université de Bourdeaux, 
Talence, France, Bruno Chiarel-

lotto, University of Padova, Italy, Gerard Freixas i Montplet, 
Institut de Mathématiques de Jussieu, Université Paris Diderot, 
Paris, France, Shin Hattori, Tokyo City University, Tokyo, 
Japan, Nicola Mazzari, Université de Bourdeaux, Talence, 
France, Simone Panozzo, Universita degli Studi di Milano, 
Milano, Italy, Marco Seveso, Universita degli Studi di Milano, 
Milano, Italy, and Go Yamashita, Research Institute for Math-
ematical Sciences, Kyoto University, Kyoto, Japan

This volume offers a progressive and comprehensive intro-
duction to p-adic Hodge theory. It starts with Tate’s works 
on p-adic divisible groups and the cohomology of p-adic 
varieties which constitutes the main concrete motivations 
for the development of p-adic Hodge theory. It then moves 
smoothly to the construction of Fontaine’s p-adic period 
rings and their apparition in several comparison theorems 
between various p-adic cohomologies. Applications and 
generalizations of these theorems are subsequently dis-
cussed. Finally, Scholze’s modern vision on p-adic Hodge 
theory, based on the theory of perfectoids, is presented.

This item will also be of interest to those working in geometry 
and topology.

A publication of the Société Mathématique de France, Marseilles (SMF), 
distributed by the AMS in the US, Canada, and Mexico. Orders from other 
countries should be sent to the SMF. Members of the SMF receive a 30% 
discount from list.

Panoramas et Synthèses, Number 54
January 2020, 268 pages, Softcover, ISBN: 978-2-85629-
913-5, 2010 Mathematics Subject Classification: 14F30, 
14F40, 11G25, 11F80, List US$75, AMS members US$60, 
Order code PASY/54

bookstore.ams.org/pasy-54

11M32, 30D60, List US$68, AMS members US$54.40, 
Order code EMSILMTP/31

bookstore.ams.org/emsilmtp-31

Algebraic Combinatorics, 
Resurgence, Moulds 
and Applications 
(CARMA):  Volume 2
Frédéric Chapoton, Universitë 
de Strasbourg, France, Frédéric 
Fauvet, Université de Strasbourg, 
France, Claudia Malvenuto, Uni-
versitá di Roma La Sapienza, Italy, 
and Jean-Yves Thibon, Université 
Paris-Est Marne-la-Vallée, France, 
Editors

This is volume 2 of a 2-volume work comprising a total of 
14 refereed research articles which stem from the CARMA 
Conference (Algebraic Combinatorics, Resurgence, Moulds 
and Applications), held at the Centre International de 
Rencontres Mathématiques in Luminy, France, from June 
26–30, 2017. The conference did notably emphasize the 
role of Hopf algebraic techniques and related concepts (e.g. 
Rota-Baxter algebras, operads, and Ecalle’s mould calculus) 
which have lately proved pervasive in combinatorics, but 
also in many other fields, from multiple zeta values to the 
algebraic study of control systems and the theory of rough 
paths.

The volumes should be useful to researchers or graduate 
students in mathematics working in these domains and 
to theoretical physicists involved with resurgent functions 
and alien calculus.

This item will also be of interest to those working in discrete 
mathematics and combinatorics.

A publication of the European Mathematical Society. Distributed within 
the Americas by the American Mathematical Society.

IRMA Lectures in Mathematics and Theoretical Physics, 
Volume 32
March 2020, 396 pages, Hardcover, ISBN: 978-3-03719-
205-4, 2010 Mathematics Subject Classification: 05Exx, 81T15, 
81T18, 81Q30, 34C20, 37C10, 18D50, 34M40, 34M60, 
11M32, 30D60, List US$68, AMS members US$54.40, 
Order code EMSILMTP/32

bookstore.ams.org/emsilmtp-32

http://bookstore.ams.org/emsilmtp-31
http://bookstore.ams.org/pasy-54
http://bookstore.ams.org/emsilmtp-32
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A publication of Wellesley-Cambridge Press. Distributed within the 
Americas by the American Mathematical Society.

The Gilbert Strang Series, Volume 2
May 2016, 573 pages, Hardcover, ISBN: 978-0-9802327-
7-6, 2010 Mathematics Subject Classification: 15–01, List 
US$95, AMS members US$76, Order code STRANG/2

bookstore.ams.org/strang-2

K3 Surfaces
Shigeyuki Kondo, Nagoya Uni-
versity, Japan

K3 surfaces are a key piece in 
the classification of complex 
analytic or algebraic surfaces. 
The term was coined by A. Weil 
in 1958, a result of the initials 
Kummer, Kähler, Kodaira, and 
the mountain K2 found in Kara-
koram. The most famous exam-
ple is the Kummer surface dis-

covered in the 19th century. K3 surfaces can be considered 
as a 2-dimensional analogue of an elliptic curve, and the 
theory of periods—called the Torelli-type theorem for K3 
surfaces—was established around 1970. Since then, several 
pieces of research on K3 surfaces have been undertaken and 
more recently K3 surfaces have even become of interest in 
theoretical physics.

The main purpose of this book is an introduction to the 
Torelli-type theorem for complex analytic K3 surfaces, and 
its applications. The theory of lattices and their reflection 
groups is necessary to study K3 surfaces, and this book 
introduces these notions. The book contains, as well as 
lattices and reflection groups, the classification of complex 
analytic surfaces, the Torelli-type theorem, the subjectivity 
of the period map, Enriques surfaces, an application to the 
moduli space of plane quartics, finite automorphisms of 
K3 surfaces, Niemeier lattices and the Mathieu group, the 
automorphism group of Kummer surfaces and the Leech 
lattice.

The author seeks to demonstrate the interplay between 
several sorts of mathematics and hopes the book will prove 
helpful to researchers in algebraic geometry and related 
areas, and to graduate students with a basic grounding in 
algebraic geometry.

A publication of the European Mathematical Society (EMS). Distributed 
within the Americas by the American Mathematical Society.

EMS Tracts in Mathematics, Volume 32
April 2020, 250 pages, Hardcover, ISBN: 978-3-03719-208-
5, 2010 Mathematics Subject Classification: 14J28, 14C34, 

Differential Equations 
and Linear Algebra
Gilbert Strang, Massachusetts 
Institute of Technology

Differential equations and lin-
ear algebra are the two crucial 
courses in undergraduate math-
ematics. This new textbook de-
velops those subjects separately 
and together. The complete book 
is a year’s course and includes 
Fourier and Laplace transforms, 

as well as the Fast Fourier Transform and Singular Value 
Decomposition.

Undergraduate students in courses covering differential 
equations and linear algebra, either separately or together, 
will find this material essential to their understanding.

This item will also be of interest to those working in differential 
equations.

A publication of Wellesley-Cambridge Press. Distributed within the 
Americas by the American Mathematical Society.

The Gilbert Strang Series, Volume 1
January 2014, 502 pages, Hardcover, ISBN: 978-0-9802327-
9-0, 2010 Mathematics Subject Classification: 15–01; 34–
01, List US$87.50, AMS members US$70, Order code 
STRANG/1

bookstore.ams.org/strang-1

Introduction to 
Linear Algebra
Fifth Edition
Gilbert Strang, Massachusetts 
Institute of Technology

This book is designed to help 
students understand and solve 
the four central problems of 
linear algebra that involve: (1) 
linear systems, (2) least squares, 
(3) eigenvalues, and (4) singular 
values.

The diagram on the front cover shows the four funda-
mental subspaces for the matrix A. Those subspaces lead 
to the Fundamental Theorem of Linear Algebra: (1) The 
dimensions of the four subspaces, (2) The orthogonality of 
the two pairs, and (3) The best bases for all four subspaces.

http://bookstore.ams.org/strang-2
http://bookstore.ams.org/strang-1
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14J10, 14J15, 14J50, 32G20, List US$88, AMS members 
US$70.40, Order code EMSTM/32

bookstore.ams.org/emstm-32

Linear Algebra and 
Learning from Data
Gilbert Strang, Massachusetts 
Institute of Technology

This is a textbook to help readers 
understand the steps that lead 
to deep learning. Linear algebra 
comes first, especially singular 
values, least squares, and matrix 
factorizations. Often the goal is a 
low rank approximation A = CR 
(column-row) to a large matrix 

of data to see its most important part. This uses the full 
array of applied linear algebra, including randomization 
for very large matrices.

Then deep learning creates a large-scale optimization 
problem for the weights solved by gradient descent or better 
stochastic gradient descent. Finally, the book develops the 
architectures of fully connected neural nets and of Con-
volutional Neural Nets (CNNs) to find patterns in data.

This item will also be of interest to those working in applications.

A publication of Wellesley-Cambridge Press. Distributed within the 
Americas by the American Mathematical Society.

The Gilbert Strang Series, Volume 3
January 2019, 432 pages, Hardcover, ISBN: 978-0-692-
19638-0, 2010 Mathematics Subject Classification: 15–01; 
68–01, List US$95, AMS members US$76, Order code 
STRANG/3

bookstore.ams.org/strang-3

Differential Equations

Primitive Forms and 
Related Subjects—Kavli 
IPMU 2014
Kentaro Hori, Kavli Institute for 
the Physics and Mathematics of the 
Universe (IPMU), Changzheng 
Li, Sun Yat-sen University, Si Li, 
Tsinghua University, and Kyoji 
Saito, Kavli Institute for the Physics 
and Mathematics of the Universe 
(IPMU), Editors

This volume contains the pro-
ceedings of the conference “Primitive Forms and Related 
Subjects”, held at the Kavli Institute for the Physics and 
Mathematics of the Universe (IPMU), the University of 
Tokyo, February 10–14, 2014.

The principal aim of the conference was to discuss 
the current status of rapidly developing subjects related 
to primitive forms. In particular, Fukaya category, Gro-
mov-Witten and FJRW invariants, mathematical formu-
lation of Landau-Ginzburg models, and mirror symmetry 
were discussed. The conference had three introductory 
courses by.experts and 12 lectures on more advanced topics. 
This volume contains two survey articles and 11 research 
articles based on the conference presentations.

This item will also be of interest to those working in geometry 
and topology.

Published for the Mathematical Society of Japan by Kinokuniya, Tokyo, 
and distributed worldwide, except in Japan, by the AMS.

Advanced Studies in Pure Mathematics, Volume 83
December 2019, 415 pages, Hardcover, ISBN: 978-4-86497-
085-3, 2010 Mathematics Subject Classification: 53Dxx; 
14N35, List US$82, AMS members US$65.60, Order code 
ASPM/83

bookstore.ams.org/aspm-83
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Primitive Forms and Related Subjects
— Kavli IPMU 2014

http://bookstore.ams.org/emstm-32
http://bookstore.ams.org/strang-3
http://bookstore.ams.org/aspm-83
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Discrete Mathematics 
and Combinatorics

Séminaire Bourbaki
Volume 2017–2018 Exposés 
1136-1150
This 70th volume of the Bour-
baki Seminar gathers the texts 
of the 15 survey lectures deliv-
ered during the year 2017/2018. 
Among the topics addressed, 
the reader will find the Zimmer 
program, Deligne-Lusztig vari-
eties, cocompact-convex groups, 
Soergel bimodules, the Gan-
Gross-Prasad conjectures, expo-

nential sums, Bernoulli convolutions, the Navier-Stokes 
equations, the combinatorics of matroids, the dynamics 
of Schrödinger equations, the asymptotic distribution of 
Frobenius eigenvalues, stability conditions in birational 
geometry, the Monge-Ampére equation, harmonic maps in 
negative curvature, and the Fargues-Fontaine curves.

This item will also be of interest to those working in geometry 
and topology.

A publication of the Société Mathématique de France, Marseilles (SMF), 
distributed by the AMS in the US, Canada, and Mexico. Orders from other 
countries should be sent to the SMF. Members of the SMF receive a 30% 
discount from list.

Astérisque, Number 414
January 2020, 626 pages, Softcover, ISBN: 978-2-85629-
915-9, 2010 Mathematics Subject Classification: 22E40, 
37C85, 37C40, 53C24, 20C20, 20C33, 20G05, 20G40, 
18E30, 37B05, 20H10, 53C35, 51E24, 22F30, 37D40, 
57S30, 20C08, 20F55, 11F70, 11F67, 11F27, 11T24, 11L05, 
11G25, 14F05, 14F20, 28A80, 42A85, 35Q30, 60F99, 
82C22, 05A99, 05E99, 14F43, 14F99, 14M25, 14T05, 
35P20, 35J10, 35S15, 58J50, 11B05, 14D20, 14E05, 14J28, 
35J96, 35B65, 35J60, 53C43, 31B05, 31B25, 31B35, 58E20, 
14G20, 11F80, 14G22, List US$120, AMS members US$96, 
Order code AST/414

bookstore.ams.org/ast-414

JOIN THE AMS...
or renew your membership today

MEMBER BENEFITS:

• Individual AMS members receive 
free standard shipping on orders 
delivered to addresses in the 
United States (including Puerto 
Rico) and Canada

• Discounts on AMS publications 
including MAA Press books

• Subscriptions to Notices 
and Bulletin 

• Discounted registration 
for world-class meetings 
and conferences

• Access to online AMS 
Member Directory

Learn more and join online at 
www.ams.org/membership.

Photos by Kate Aw
trey, Atlanta Convention Photography.

http://bookstore.ams.org/ast-414
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Meetings & Conferences of the AMS
May Table of Contents

Meetings in this Issue

  2020  
September 12–13 El Paso, Texas p. 752
October 3–4 State College, PA p. 753
October 10–11 Chattanooga, Tennessee  p. 755
October 24–25 Salt Lake City, Utah p. 756

  2021  
January 6–9 Washington, DC p. 757
March 13–14 Atlanta, Georgia p. 757
March 20–21 Providence, Rhode Island p. 757
April 17–18 Cincinnati, Ohio p. 758
May 1–2 San Francisco, California p. 758
July 5–9 Grenoble, France p. 759
July 19–23 Buenos Aires, Argentina p. 759
September 18–19 Buffalo, New York p. 759
October 9–10 Omaha, Nebraska p. 759
October 23–24 Albuquerque, NM p. 760
November 20 Mobile, Alabama p. 760

  2022  
January 5–8 Seattle, Washington p. 760

  2023  
January 4–7 Boston, Massachusetts p. 760

See www.ams.org/meetings for the most up-to-date  
information on the meetings and conferences that we offer.

The AMS strives to ensure that participants in its activities 
enjoy a welcoming environment. Please see our full Policy 

on a Welcoming Environment at https://www.ams 
.org/welcoming-environment-policy.

The Meetings and Conferences section of the Notices gives 
information on all AMS meetings and conferences ap-
proved by press time for this issue. Please refer to the page 
numbers cited on this page for more detailed information 
on each event. Paid meeting registration is required to submit 
an abstract to a sectional meeting.

Invited Speakers and Special Sessions are listed as soon 
as they are approved by the cognizant program committee; 
the codes listed are needed for electronic abstract sub-
mission. For some meetings the list may be incomplete. 
Information in this issue may be dated. 

The most up-to-date meeting and conference informa-
tion can be found online at www.ams.org/meetings.

Important Information About AMS Meetings: Poten-
tial organizers, speakers, and hosts should refer to page 
110 in the January 2020 issue of the Notices for general 
information regarding participation in AMS meetings and 
conferences.

Abstracts: Speakers should submit abstracts on the 
easy-to-use interactive Web form. No knowledge of LATEX 
is necessary to submit an electronic form, although those 
who use LATEX may submit abstracts with such coding, and 
all math displays and similarly coded material (such as 
accent marks in text) must be typeset in LATEX. Visit www.ams 
.org/cgi-bin/abstracts/abstract.pl. Questions 
about abstracts may be sent to abs-info@ams.org. Close 
attention should be paid to specified deadlines in this issue. 
Unfortunately, late abstracts cannot be accommodated.

Associate Secretaries of the AMS
Central Section: Georgia Benkart, University of Wiscon-
sin–Madison, Department of Mathematics, 480 Lincoln 
Drive, Madison, WI 53706-1388; email: benkart@math 
.wisc.edu; telephone: 608-263-4283.

Eastern Section: Steven H. Weintraub, Department of 
Mathematics, Lehigh University, Bethlehem, PA 18015-
3174; email: steve.weintraub@lehigh.edu; telephone: 
610-758-3717.

Southeastern Section: Brian D. Boe, Department of Math-
ematics, University of Georgia, 220 D W Brooks Drive, 
Athens, GA 30602-7403; email: brian@math.uga.edu; 
telephone: 706-542-2547.

Western Section: Michel L. Lapidus, Department of Math-
ematics, University of California, Surge Bldg., Riverside, CA 
92521-0135; email: lapidus@math.ucr.edu; telephone: 
951-827-5910.

http://www.ams.org/cgi-bin/abstracts/abstract.pl
http://www.ams.org/cgi-bin/abstracts/abstract.pl
https://www.ams.org/welcoming-environment-policy
https://www.ams.org/welcoming-environment-policy
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Meetings & Conferences 
of the AMS

IMPORTANT information regarding meetings programs: AMS Sectional Meeting programs do not appear in the print 
version of the Notices. However, comprehensive and continually updated meeting and program information with links 
to the abstract for each talk can be found on the AMS website. See https://www.ams.org/meetings. 

Final programs for Sectional Meetings will be archived on the AMS website accessible from the stated URL.

New: Sectional Meetings Require Registration to Submit Abstracts. In an effort to spread the cost of the sectional 
meetings more equitably among all who attend and hence help keep registration fees low, starting with the 2020 fall 
sectional meetings, you must be registered for a sectional meeting in order to submit an abstract for that meeting. 
You will be prompted to register on the Abstracts Submission Page. In the event that your abstract is not accepted or 
you have to cancel your participation in the program due to unforeseen circumstances, your registration fee will be 
reimbursed.

El Paso, Texas
University of Texas at El Paso

September 12–13, 2020
Saturday – Sunday

Meeting #1159
Central Section
Associate secretary: Georgia Benkart
Announcement issue of Notices: June 2020

Program first available on AMS website: July 28, 2020
Program issue of electronic Notices: To be announced
Issue of Abstracts: Volume 41, Issue 3

Deadlines
For organizers: Expired
For abstracts: July 14, 2020

The scientific information listed below may be dated. For the latest information, see https://www.ams.org/amsmtgs 
/sectional.html.

Invited Addresses
Caroline Klivans, Brown University, Title to be announced.
Brisa Sanchez, Drexel University, Title to be announced.
Alejandra Sorto, Texas State University, Title to be announced.

Special Sessions
If you are volunteering to speak in a Special Session, you should send your abstract as early as possible via the abstract submission 
form found at https://www.ams.org/cgi-bin/abstracts/abstract.pl.

Algebraic, geometric and topological combinatorics (Code: SS 6A), Art Duval, University of Texas at El Paso, Caroline 
Klivans, Brown University, and Jeremy Martin, University of Kansas.

Algebraic structures in topology, logic, and arithmetic (Code: SS 3A), John Harding, New Mexico State University, and Emil 
Schwab, The University of Texas at El Paso.
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Commutative Algebra (Code: SS 12A), Sara Faridi, Dalhousie University, and Susan Morey, Texas State University.
Fixed point theory and its applications (Code: SS 5A), Monther R. Alfuraidan, King Fahd University of Petroleum & 

Minerals, KSA, Mohamed A. Khamsi, The University of Texas at El Paso, Poom Kumam, King Mongkut’s University of 
Technology, Thonburi, Thailand, and Osvaldo Mendez, The University of Texas at El Paso.

Free Resolutions, Combinatorics, and Geometry (Code: SS 17A), Anton Dochtermann, Texas State University, and Sean 
Sather-Wagstaff, Clemson University.

Geometric Inequalities and Nonlinear Partial Differential Equations (Code: SS 20A), Joshua Flynn, University of Connecti-
cut, Jungang Li, Brown University, and Guozhen Lu, University of Connecticut.

Geometry of Submanifolds and Integrable Systems (Code: SS 21A), Magdalena Toda and Hung Tran, Texas Tech University.
Groups and Their Cohomological Invariants in Arithmetic and Geometry (Code: SS 13A), Stefan Gille and Nikita Karpenko, 

University of Alberta, and Jan Minac, Western University.
High-Frequency data analysis and applications (Code: SS 1A), Maria Christina Mariani and Michael Pokojovy, University 

of Texas at El Paso, and Ambar Sengupta, University of Connecticut.
Leibniz Algebras and related topics (Code: SS 7A), Guy Biyogmam, Georgia College and State University, and Jerry Lod-

der, New Mexico State University.
Low-dimensional topology and knot theory (Code: SS 4A), Mohamed Ait Nouh and Luis Valdez-Sanchez, University of 

Texas at El Paso.
Methods and applications in data Science (Code: SS 9A), Sangjin Kim, Ming-Ying Leung, Xiaogang Su, and Amy Wagler, 

The University of Texas at El Paso.
Nonlinear analysis and optimization (Code: SS 2A), Behzad Djafari-Rouhani, University of Texas at El Paso, and Akhtar 

A. Khan, Rochester Institute of Technology.
Non-Linear Evolution Equations (Code: SS 19A), Irena Lasiecka and Roberto Triggiani, University of Memphis, and 

Xiang Wan, George Washington University.
Numerical partial differential equations and applications (Code: SS 10A), Son-Young Yi and Xianyi Zeng, The University 

of Texas at El Paso.
Recent advances in scientific computing and applications (Code: SS 11A), Natasha Sharma, University of Texas at El Paso, 

and Annalisa Quaini, University of Houston.
Recent Developments in Commutative Algebra (Code: SS 15A), Louiza Fouli and Jonathan Montaño, New Mexico State 

University.
Statistical methodology and applications (Code: SS 8A), Ori Rosen and Suneel Chatla, University of Texas at El Paso.
Stochastic Modeling in Mathematical Biology (Code: SS 16A), Mary Ballyk, New Mexico State University, Si Tang, Lehigh 

University, and Jianjun Paul Tian, New Mexico State University.
Theoretical and Computational Studies of PDEs Related to Fluid Mechanics (Code: SS 14A), Phuong Nguyen, Texas Tech 

University, Andrei Tarfulea, Louisiana State University, and Kazuo Yamazaki, Texas Tech University.
Undergraduate Teaching and Learning of Mathematics (Code: SS 18A), Paul Dawkins and Samuel Obara, Texas State 

University.

State College, Pennsylvania
Pennsylvania State University, University Park Campus

October 3–4, 2020
Saturday – Sunday

Meeting #1160
Eastern Section
Associate secretary: Steven H. Weintraub
Announcement issue of Notices: August 2020

Program first available on AMS website: August 25, 2020
Program issue of electronic Notices: To be announced
Issue of Abstracts: Volume 41, Issue 3

Deadlines
For organizers: Expired
For abstracts: August 11, 2020
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The scientific information listed below may be dated. For the latest information, see https://www.ams.org/amsmtgs 
/sectional.html.

Invited Addresses
Melody Chan, Brown University, Title to be announced.
Steven J. Miller, Williams College, Title to be announced.
Tadashi Tokieda, Stanford University, Title to be announced.

Special Sessions
If you are volunteering to speak in a Special Session, you should send your abstract as early as possible via the abstract submission 
form found at https://www.ams.org/cgi-bin/abstracts/abstract.pl.

Advances in Mathematical Modeling of Infection (Code: SS 21A), Jessica M. Conway, Pennsylvania State University, Troy 
Day, Queen's University, and Timothy C. Reluga, Pennsylvania State University.

Algebraic and Analytic Theory of Elliptic Curves (Code: SS 22A), Alina Cojocaru, University of Illinois at Chicago, Seoyung 
Kim, Queen's University, Steven J. Miller, Williams College, and Jesse Thorner, University of Florida.

Algebraic Singularities in Arbitrary Characteristic (Code: SS 12A), Rankeya Datta, University of Illinois at Chicago, and 
Takumi Murayama, Princeton University.

Analytic Number Theory (Code: SS 11A), Angel V. Kumchev, Towson University, and Siddhi S. Pathak and Robert C. 
Vaughan, Pennsylvania State University.

Automorphic Forms and Galois Representations (Code: SS 3A), Jim Brown, Occidental College, and Krzysztof Klosin, 
Queens College, CUNY.

Cluster Algebras and Plabic Graphs (Code: SS 16A), Chris Fraser, University of Minnesota, and Max Glick, Google Inc.
Combinatorics and Computing (Code: SS 17A), Saúl A. Blanco, Indiana University, and Charles Buehrle, Notre Dame 

of Maryland University.
Commutative Algebra and Connections to Algebraic Geometry and Combinatorics (Code: SS 4A), Ayah Almousa, Cornell 

University, and Kuei-Nuan Lin, Pennsylvania State University, Greater Allegheny.
Configuration Spaces across Combinatorics and Topology (Code: SS 18A), Florian Frick and Michael Harrison, Carnegie 

Mellon University.
Conservation Laws and Nonlinear Wave Equations (Code: SS 14A), Alberto Bressan, Pennsylvania State University, Geng 

Chen, University of Kansas, and Qingtian Zhang, West Virginia University.
Drinfeld Modules, Modular Varieties and Arithmetic Applications (Code: SS 10A), Mihran Papikian, Pennsylvania State 

University, and Dinesh Thakur, University of Rochester.
Geometric Dynamics (Code: SS 23A), Mark Levi, Pennsylvania State University, and Sergei Tabachnikov, Pennsylvania 

State University.
Geometry and Arithmetic of Algebraic Varieties (Code: SS 8A), Jack Huizenga, John Kopper, and John Lesieutre, Penn-

sylvania State University.
Geometry of Groups and 3-manifolds (Code: SS 2A), Abhijit Champanerkar, College of Staten Island and The Graduate 

Center, CUNY, and Hongbin Sun, Rutgers University.
Homological Methods in Algebra (Code: SS 5A), Ela Celikbas and Olgur Celikbas, West Virginia University, and Saeed 

Nasseh, Georgia Southern University.
Legendrian Knots and Surfaces (Code: SS 6A), Honghao Gao, Michigan State University, and Dan Rutherford, Ball State 

University.
Nonlinear Scientific Computing and Applications (Code: SS 1A), Wenrui Hao, Pennsylvania State University.
q-Series and Related Areas in Combinatorics and Number Theory (Code: SS 7A), George Andrews, David Little, and Ae Ja 

Yee, Pennsylvania State University.
Recent Developments in Gauge Theory (Code: SS 19A), Siqi He, Stony Brook University, and Ákos Nagy, Duke University.
Recent Probabilistic Advances in Mathematical Physics (Code: SS 20A), Alexei Novikiov, Izabella Stuhl, and Yuri Suhov, 

Pennsylvania State University.
Turbulence and Mixing in Fluid Dynamics (Code: SS 15A), Yuanyuan Feng, Anna Mazzucato, and Alexei Novikov, 

Pennsylvania State University.
Variational Aspects of Geometric Analysis (Code: SS 13A), Jeffrey Case, Pennsylvania State University, Casey Kelleher, 

Princeton University, Chao Li, Princeton University, and Siyi Zhang, University of Notre Dame.
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Chattanooga, Tennessee
University of Tennessee at Chattanooga

October 10–11, 2020
Saturday – Sunday

Meeting #1161
Southeastern Section
Associate secretary: Brian D. Boe
Announcement issue of Notices: August 2020

Program first available on AMS website: September 1, 2020
Program issue of electronic Notices: To be announced
Issue of Abstracts: Volume 41, Issue 4

Deadlines
For organizers: Expired
For abstracts: August 18, 2020

The scientific information listed below may be dated. For the latest information, see https://www.ams.org/amsmtgs 
/sectional.html.

Invited Addresses
Giulia Saccà, Columbia University, Title to be announced.
Chad Topaz, Williams College, Title to be announced.
Xingxing Yu, Georgia Institute of Technology, Title to be announced.

Special Sessions
If you are volunteering to speak in a Special Session, you should send your abstract as early as possible via the abstract submission 
form found at https://www.ams.org/cgi-bin/abstracts/abstract.pl.

Active Learning Methods and Pedagogical Approaches in Teaching College Level Mathematics (Code: SS 20A), Hashim A. 
Saber, University of North Georgia.

Advances in Graph Theory (Code: SS 5A), Xiaofeng Gu, University of West Georgia, and Dong Ye, Middle Tennessee 
State University.

Advances in Image Reconstruction Algorithms for Inverse Tomography Problems (Code: SS 22A), Sanwar Uddin Ahmad, 
Colorado State University, and Taufiquar R Khan, Clemson University.

Advances in the Modeling and Computation of Fluid Flows and Fluid-Structure Interactions (Code: SS 11A), Jin Wang and 
Eleni Panagiotou, University of Tennessee at Chattanooga.

Applicable Analysis of PDE Systems which Govern Fluid Flows and Flow-Structure Interactions (Code: SS 12A), Pelin Guven 
Geredeli, Iowa State University, and George Avalos, University of Nebraska-Lincoln.

Applied Knot Theory (Code: SS 4A), Jason Cantarella, University of Georgia, Eleni Panagiotou, University of Tennessee 
at Chattanooga, and Eric Rawdon, University of St Thomas.

Boundary Value Problems for Differential, Difference, and Fractional Equations (Code: SS 2A), John R Graef and Lingju 
Kong, University of Tennessee at Chattanooga, and Min Wang, Kennesaw State University.

Coding Theory, Cryptography, and Number Theory (Code: SS 16A), Ryann Cartor, Shuhong Gao, Kevin James, and Felice 
Manganiello, Clemson University.

Commutative Algebra (Code: SS 1A), Simplice Tchamna, Georgia College, and Lokendra Paudel, University of South 
Carolina, Salkehatchie.

Convexity and Probability in High Dimensions (Code: SS 21A), Steven Hoehner, Longwood University, Stanislaw Szarek, 
Case Western Reserve University, and Elisabeth Werner, Case Western Reserve University.

Geometric and Topological Generalization of Groups (Code: SS 19A), Bikash C Das, University of North Georgia.
Homological Commutative Algebra (Code: SS 9A), Hugh Geller, James Gossell, and Sean Sather-Wagstaff, Clemson 

University.
Interactions Between Algebra, Geometry and Topology in Low Dimensions (Code: SS 6A), Alex Casella and Lorenzo Ruffoni, 

Florida State University at Tallahassee, and Michelle Chu, University of Illinois at Chicago.
Mathematics in Industry and National Laboratories (Code: SS 15A), Samantha Erwin and John Gounley, Oak Ridge 

National Laboratory.
Modern Applied Analysis (Code: SS 8A), Boris Belinskiy, University of Tennessee at Chattanooga.
Nonstandard Elliptic and Parabolic Regularity Theory with Applications (Code: SS 10A), Hongjie Dong, Brown University, 

and Tuoc Phan, University of Tennessee, Knoxville.
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Polynomials, Approximation Theory, and Potential Theory (Code: SS 13A), Aaron Yeager, College of Coastal Georgia, and 
Erik Lundberg, Florida Atlantic University.

Probability and Statistical Models with Applications (Code: SS 7A), Sher Chhetri, University of South Carolina, Sumter, 
and Cory Ball, Florida Atlantic University.

Quantitative Approaches to Social Justice (Code: SS 17A), Chad Topaz, Williams College.
Structural and Extremal Graph Theory (Code: SS 3A), Hao Huang, Emory University, and Xingxing Yu, Georgia Institute 

of Technology.
Title to be Announced (Code: SS 18A), Giulia Saccà, Columbia University.
Topological Data Analysis and Artificial Intelligence (Code: SS 14A), Vasilios Maroulas, University of Tennessee, Knox-

ville, Farzana Nasrin, University of Tennessee, Knoxville, Eleni Panagiotou, University of Tennessee at Chattanooga, and 
Theodore Papamarkou, Oak Ridge National Laboratory.

Salt Lake City, Utah
University of Utah

October 24–25, 2020

Saturday – Sunday

Meeting #1162

Western Section

Associate secretary: Michel L. Lapidus

Announcement issue of Notices: August 2020

Program first available on AMS website: September 17, 
2020
Program issue of electronic Notices: To be announced
Issue of Abstracts: Volume 41, Issue 4

Deadlines
For organizers: Expired
For abstracts: September 1, 2020

The scientific information listed below may be dated. For the latest information, see https://www.ams.org/amsmtgs 
/sectional.html.

Invited Addresses
Bhargav Bhatt, University of Michigan, Ann Arbor, Title to be announced.
Jonathan Brundan, University of Oregon, Eugene, Title to be announced.
Andrei Okounkov, Columbia University, Title to be announced (Erdo ˝s Memorial Lecture).
Mariel Vazquez, University of California, Davis, Title to be announced.

Special Sessions
If you are volunteering to speak in a Special Session, you should send your abstract as early as possible via the abstract submission 
form found at https://www.ams.org/cgi-bin/abstracts/abstract.pl.

Algebraic combinatorics and applications in harmonic analysis (Code: SS 4A), Joseph Iverson and Sung Y. Song, Iowa State 
University, and Bangteng Xu, Eastern Kentucky University.

Building bridges between commutative algebra and nearby areas (Code: SS 6A), Benjamin Briggs and Josh Pollitz, Uni-
versity of Utah.

Commutative Algebra (MSC 13) (Code: SS 5A), Adam Boocher, University of San Diego, Eloísa Grifo, University of 
California, Riverside, and Jennifer Kenkel, University of Michigan.

Extremal Graph Theory (Code: SS 1A), József Balogh, University of Illinois, and Bernard Lidicky ́ , Iowa State University.
Geometry and Representation Theory of Quantum Algebras and Related Topics (Code: SS 7A), Mee Seong Im, United States 

Military Academy, West Point, Bach Nguyen, Temple University, and Arik Wilbert, University of Georgia.
Monoidal Categories in Representation Theory (associated with the Invited Address by Jon Brundan) (Code: SS 2A), Jonathan 

Brundan, Ben Elias, and Victor Ostrik, University of Oregon.
PDEs, data, and inverse problems (Code: SS 3A), Vira Babenko, Drake University, and Akil Narayan, University of Utah.
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Washington, District of Columbia
Walter E. Washington Convention Center

January 6–9, 2021
Wednesday – Saturday

Meeting #1163
Joint Mathematics Meetings, including the 127th Annual 
Meeting of the AMS, 104th Annual Meeting of the Mathe-
matical Association of America (MAA), annual meetings of 
the Association for Women in Mathematics (AWM) and the 
National Association of Mathematicians (NAM), and the win-
ter meeting of the Association of Symbolic Logic (ASL), with 
sessions contributed by the Society for Industrial and Applied 
Mathematics (SIAM).

Associate secretary: Brian D. Boe

Announcement issue of Notices: October 2020

Program first available on AMS website: November 1, 2020

Program issue of electronic Notices: To be announced

Issue of Abstracts: To be announced

Deadlines

For organizers: April 16, 2020

For abstracts: To be announced

Atlanta, Georgia
Georgia Institute of Technology

March 13–14, 2021
Saturday – Sunday

Meeting #1164
Southeastern Section
Associate secretary: Brian D. Boe
Announcement issue of Notices: To be announced

Program first available on AMS website: To be announced
Program issue of electronic Notices: To be announced
Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced

The scientific information listed below may be dated. For the latest information, see https://www.ams.org/amsmtgs 
/sectional.html.

Special Sessions
If you are volunteering to speak in a Special Session, you should send your abstract as early as possible via the abstract submission 
form found at https://www.ams.org/cgi-bin/abstracts/abstract.pl.

Differential Graded Methods in Commutative Algebra (Code: SS 1A), Saeed Nasseh, Georgia Southern University, and 
Adela Vraciu, University of South Carolina, Columbia.

Providence, Rhode Island
Brown University

March 20–21, 2021
Saturday – Sunday

Meeting #1165
Eastern Section
Associate secretary: Steven H. Weintraub
Announcement issue of Notices: To be announced

Program first available on AMS website: To be announced
Program issue of electronic Notices: To be announced
Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced
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The scientific information listed below may be dated. For the latest information, see https://www.ams.org/amsmtgs 
/sectional.html.

Special Sessions
If you are volunteering to speak in a Special Session, you should send your abstract as early as possible via the abstract submission 
form found at https://www.ams.org/cgi-bin/abstracts/abstract.pl.

Commutative Algebra, Laura Ghezzi, Department of Mathematics, New York City College of Technology-CUNY, Saeed 
Nasseh, Georgia Southern University, and Oana Veliche, Northeastern University.

Recent Advances in Schubert Calculus and Related Topics (Code: SS 2A), Cristian Lenart and Changlong Zhong, State 
University of New York at Albany.

Cincinnati, Ohio
University of Cincinnati

April 17–18, 2021
Saturday – Sunday

Meeting #1166
Central Section
Associate secretary: Georgia Benkart
Announcement issue of Notices: To be announced

Program first available on AMS website: To be announced
Program issue of electronic Notices: To be announced
Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced

San Francisco, California
San Francisco State University

May 1–2, 2021
Saturday – Sunday

Meeting #1167
Western Section
Associate secretary: Michel L. Lapidus
Announcement issue of Notices: To be announced

Program first available on AMS website: To be announced
Program issue of electronic Notices: To be announced
Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced

The scientific information listed below may be dated. For the latest information, see https://www.ams.org/amsmtgs 
/sectional.html.

Special Sessions
If you are volunteering to speak in a Special Session, you should send your abstract as early as possible via the abstract submission 
form found at https://www.ams.org/cgi-bin/abstracts/abstract.pl.

Differential Geometry and Geometric PDE, Alfonso Agnew, Nicholas Brubaker, Thomas Murphy, Shoo Seto, and Bog-
dan Suceava  ̆, California State University, Fullerton.
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Grenoble, France
Université de Grenoble-Alpes

July 5–9, 2021
Monday – Friday

Meeting #1168
Associate secretary: Michel L. Lapidus
Announcement issue of Notices: To be announced

Program first available on AMS website: Not applicable
Program issue of electronic Notices: Not applicable
Issue of Abstracts: Not applicable

Deadlines
For organizers: September 16, 2020
For abstracts: To be announced

Buenos Aires, Argentina
The University of Buenos Aires

July 19–23, 2021
Monday – Friday

Meeting #1169
Associate secretary: Steven H. Weintraub
Announcement issue of Notices: To be announced

Program first available on AMS website: Not applicable
Program issue of electronic Notices: Not applicable
Issue of Abstracts: Not applicable

Deadlines
For organizers: To be announced
For abstracts: To be announced

Buffalo, New York
University at Buffalo (SUNY)

September 18–19, 2021
Saturday – Sunday
Eastern Section
Associate secretary: Steven H. Weintraub
Announcement issue of Notices: To be announced
Program first available on AMS website: To be announced

Program issue of electronic Notices: To be announced
Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced

Omaha, Nebraska
Creighton University

October 9–10, 2021
Saturday – Sunday
Central Section
Associate secretary: Georgia Benkart
Announcement issue of Notices: To be announced
Program first available on AMS website: To be announced

Program issue of electronic Notices: To be announced
Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced
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Albuquerque, New Mexico
University of New Mexico

October 23–24, 2021
Saturday – Sunday
Western Section
Associate secretary: Michel L. Lapidus
Announcement issue of Notices: To be announced
Program first available on AMS website: To be announced

Program issue of electronic Notices: To be announced
Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced

The scientific information listed below may be dated. For the latest information, see https://www.ams.org/amsmtgs 
/sectional.html.

Special Sessions
If you are volunteering to speak in a Special Session, you should send your abstract as early as possible via the abstract submission 
form found at https://www.ams.org/cgi-bin/abstracts/abstract.pl.

Inverse Problems, Hanna Makaruk, Los Alamos National Laboratory, and Robert Owczarek, University of New Mexico.

Mobile, Alabama
University of South Alabama

November 20, 2021
Saturday
Southeastern Section
Associate secretary: Brian D. Boe
Announcement issue of Notices: To be announced
Program first available on AMS website: To be announced

Program issue of electronic Notices: To be announced
Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced

Seattle, Washington
Washington State Convention Center and the Sheraton Seattle Hotel

January 5–8, 2022
Wednesday – Saturday
Associate secretary: Georgia Benkart
Announcement issue of Notices: October 2021
Program first available on AMS website: To be announced

Program issue of electronic Notices: To be announced
Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced

Boston, Massachusetts
John B. Hynes Veterans Memorial Convention Center, Boston Marriott Hotel, and Boston Sheraton Hotel

January 4–7, 2023
Wednesday – Saturday
Associate secretary: Steven H. Weintraub
Announcement issue of Notices: October 2022
Program first available on AMS website: To be announced

Program issue of electronic Notices: To be announced
Issue of Abstracts: To be announced

Deadlines
For organizers: To be announced
For abstracts: To be announced



Applications are invited for the position of Associate Executive Director for Meetings and Professional 
Services.  Come be part of an extraordinary collection of talent who support the Society’s extensive 
activities. This is an exciting opportunity to have a direct impact on the ways we advance research and 
create connections in the mathematics community. 

The Associate Executive Director heads the Meetings and Professional Services division and is part of the 
executive leadership team. Departments in the division support a variety of AMS meetings, programs, 
and activities that engage our members and the entire mathematical community.  This robust range of 
activities includes meetings such as the Joint Mathematics Meetings, projects such as the Annual Survey 
and Mathjobs.org, membership activities such as the AMS Graduate Student Chapters, and activities such 
as our AMS Mathematics Research Communities and the AMS Fellows program, as well as a number of 
education initiatives, various travel support programs, and several outreach activities. 

Responsibilities of the Associate Executive Director include:

• Developing and implementing long-range plans for all parts of the division

• Overseeing departments in the division, including budgetary planning and control

• Leadership and vision to ensure existing AMS programs optimize their impact, as well as in creating, 
planning, and implementing new programs

• Collaborating with other mathematical organizations

• Representing the division with AMS governance and the mathematical community

• Working closely with senior executive staff, as well as department directors across the organization, 
to ensure excellence and professionalism

Candidates should have an earned doctorate in one of the mathematical sciences as well as adminis-
trative experience. A strong interest in professional programs and services is essential, as is experience 
with grant writing. This position reports to the AMS Executive Director and also interacts with the AMS 
governance on the Council and Board of Trustees.

This position is full time, located in our Providence, RI headquarters. Salary is negotiable and will be  
commensurate with experience. Inquiries about the position are encouraged. Please contact exdir@
ams.org. This position is open until filled. Please submit letter of interest, CV, and three professional 
references to be considered for the position.

The American Mathematical Society is committed to creating 
a diverse environment and is proud to be an equal opportunity 
employer. All quali� ed applicants will receive consideration for 
employment without regard to race, color, religion, gender, gender 
identity or expression, sexual orientation, national origin, genetics, 
disability, age, veteran status, or immigration status.

POSITION AVAILABLE

ASSOCIATE EXECUTIVE DIRECTOR
for Meetings and Professional Services

AMERICAN MATHEMATICAL SOCIETY



American Mathematical Society  
Distribution Center

35 Monticello Place,  
Pawtucket, RI 02861 USA

facebook.com/amermathsoc
@amermathsoc

AMS / MAA Press 
Barrycades and Septoku
Papers in Honor of Martin Gardner and Tom Rodgers
Thane Plambeck, Counterwave, Inc., Palo Alto, CA and Tomas 
Rokicki, Editors
Spectrum, Volume 100; 2020; 234 pages; Softcover; ISBN: 978-1-4704-
4870-7; List US$65; AMS members US$48.75; MAA members US$48.75; 
Order code SPEC/100

AMS / MAA Press 
The Unity of Combinatorics
Ezra Brown, Virginia Polytechnic Institute and State University, 
Blacksburg, VA, and Richard K. Guy, University of Calgary, AB, 
Canada
Carus Mathematical Monographs, Volume 36; 2020; approximately 259 
pages; Hardcover; ISBN: 978-1-4704-5279-7; List US$65; AMS members 
US$48.75; MAA members US$48.75; Order code CAR/36

Student Solution Manual for Differential 
Equations: Techniques, Theory, and 
Applications
Barbara D. MacCluer, University of Virginia, Charlottesville, VA, 
Paul S. Bourdon, University of Virginia, Charlottesville, VA, and 
Thomas L. Kriete, University of Virginia, Charlottesville, VA
2020; 294 pages; Softcover; ISBN: 978-1-4704-5350-3; List US$35; AMS 
members US$28; MAA members US$31.50; Order code MBK/129

AMS / MAA Press 
Student Solution Manual for 
Mathematical Interest Theory
Third Edition
Leslie Jane Federer Vaaler and Shinko Kojima Harper
AMS/MAA Textbooks, Volume 60; 2020; 124 pages; Softcover; ISBN: 978-
1-4704-4394-8; List US$35; AMS members US$26.25; MAA members 
US$26.25; Order code TEXT/60

NEW RELEASES 
from the AMS

Discover more titles at
bookstore.ams.org

http://facebook.com/amermathsoc
http://www.twitter.com/amermathsoc

	The Covering Method for Exponential Sums and Some Applications by Ivelisse M. Rubio
	Higgs-Bundles--Recent Applications by Laura P. Schaposnik
	Can you Pave the Plane with Identical Tiles? by Chuanming Zong
	Finding Solitons by Jorge Lauret
	AMS Membership for Early Career Mathematicians
	Math Imagery
	Memories of Goro Shimura by Don Blasius, Toni Bluher, Haruzo Hida, Kamal Khuri-Makdisi, Kenneth Ribet, Alice Silverberg, and Hiroyuki Yoshida
	The Legacy of Jozef Marcinkiewicz: Four Hallmarks of Genius--In Memoriam of an Extraordinary Analyst by Nikolay Kuznetsov
	Mathematics of Cellular Evolution and Some Biomedical Applications by Natalia L. Komarova



