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On the Kinematic Formula
in the Lives of the Saints
Danny Calegari

Saint Sebastian was an early Christian martyr. He served
as a captain in the Praetorian Guard under Diocletian un-
til his religious faith was discovered, at which point he was
taken to a field, bound to a stake, and shot by archers “till
he was as full of arrows as an urchin1 is full of pricks2.”
Rather miraculously, he made a full recovery, but was later
executed anyway for insulting the emperor. The trans-
pierced saint became a popular subject for Renaissance
painters, e.g., Figure 1.

The arrows in Mantegna’s painting have apparently ar-
rived from all directions, though they are conspicuously
grouped around the legs and groin, almost completely
missing the thorax. Intuitively, we should expect more ar-
rows in the parts of the body that present a bigger cross
section. This intuition is formalized by the claim that a
subset of the surface of Saint Sebastian has an area pro-
portional to its expected number of intersections with a
random line (i.e., arrow). Since both area and expectation
are additive, we may reduce the claim (by polygonal ap-
proximation and limit) to the case of a flat triangular Saint
Sebastian, in which case it is obvious.
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Figure 1. Andrea Mantegna’s painting of Saint Sebastian.

This is a 3-dimensional version of the classical Crofton
formula, which says that the length of a plane curve is pro-
portional to its expected number of intersections with a
random line. A famous application is known as “Buffon’s
needle”. In the Euclidean plane we consider the family of
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all horizontal lines whose 𝑦 coordinate is an integer, and
we drop a needle of length 1 so that it lands somewhere
at random. Then the probability that the needle crosses
one of the lines is 2/𝜋 (i.e., the average of | sin(𝜃)|, where
𝜃 is the angle the needle makes with the horizontal). In
fact, the only relevance of the straightness of the needle is
that a straight needle of length 1 can cross at most one of
the horizontal lines in at most one point. If you trade in
your needle for a stick of spaghetti of the same length (i.e.,
“Buffon’s noodle”) and then cook the spaghetti and drop
it at random in the plane, the expected number of cross-
ings with the horizontal lines is still 2/𝜋, no matter what
complicated physical process determines its shape.

Figure 2. A random noodle of length 1 has 2/𝜋 expected
crossings with the horizontal lines.

Crofton’s formula can be greatly generalized. For ex-
ample, Kang and Tasaki give a formula for the expected
number of intersections of a (real) surface 𝑆 in ℂℙ𝑛 with a
random hyperplane. The number of such intersections is

1
2𝜋 ∫

𝑆
1 + cos2(𝜃𝑥) 𝑑area(𝑥),

where for a point 𝑥 ∈ 𝑆 the “Kähler angle” 𝜃𝑥 measures
how far 𝑇𝑆 is from being complex: if 𝑣1, 𝑣2 is an orthonor-
mal basis for 𝑇𝑥𝑆, then cos(𝜃𝑥) is the inner product of 𝑖𝑣1
with 𝑣2. For example, if 𝑆 is a holomorphic curve, then
𝜃 = 0 and the area of 𝑆 is 𝜋 times the degree, whereas for 𝑆
equal to the “standardly embedded” ℝℙ2 one has 𝜃 = 𝜋/2
and the area is 2𝜋.

One of the most beautiful generalizations is the so-
called kinematic formula of Chern (actually, a more general
formula still, valid for manifolds with boundary among
other things, was obtained seven years earlier by Federer).
“Kinematic” here refers to the group 𝐺 of isometries of
Euclidean space. Given submanifolds 𝑀𝑝 and 𝑁𝑞 of Eu-
clidean ℝ𝑛, a modest improvement of Crofton’s formula
says

∫
𝑔∈𝐺

vol𝑝+𝑞−𝑛(𝑀 ∩ 𝑔𝑁) 𝑑𝑔 = 𝑐 vol𝑝(𝑀)vol𝑞(𝑁),

where vol𝑖 denotes 𝑖-dimensional volume, and 𝑐 is a univer-
sal constant depending only on the dimensions 𝑛, 𝑝, 𝑞, and
the normalization of the measure on 𝐺 (the actual compu-
tation of 𝑐 was first carried out by Santaló, who showed it
is a ratio of products of Euclidean unit spheres of various

dimension). Chern generalizes this as follows: for every
even number 𝑒 ≤ 𝑝 + 𝑞 − 𝑛 he proves there is a formula

∫
𝑔∈𝐺

𝜇𝑒(𝑀 ∩ 𝑔𝑁) 𝑑𝑔 = ∑
even 𝑖≤𝑒

𝑐𝑖𝜇𝑖(𝑀)𝜇𝑒−𝑖(𝑁)

where 𝑐𝑖 are universal constants depending only on
𝑛, 𝑝, 𝑞, 𝑒, and the 𝜇𝑒 are certain geometric invariants of 𝑀
and 𝑁 concentrated in “codimension 𝑒” (so to speak). Fur-
thermore, Chern’s formula is valid in the “noodly” sense
that the invariants 𝜇𝑖 depend only on the intrinsic Rie-
mannian geometry of the manifolds, and not on how they
are isometrically embedded in Euclidean space.

The geometric invariants 𝜇𝑒 appear in Weyl’s (closely re-
lated) formula for the volume of a (sufficiently narrow)
tube of radius 𝜌 about a 𝑘-dimensional submanifold 𝑋
of ℝ𝑛. Let 𝑇(𝑋, 𝜌) denote the tube around 𝑋 of radius 𝜌,
where 𝜌 is sufficiently small depending on 𝑋 . Then
vol(𝑇(𝑋, 𝜌))

= 𝑂𝑛−𝑘 ∑
even 𝑒≤𝑘

(𝑒 − 1)(𝑒 − 3)⋯1
(𝑛 − 𝑘 + 𝑒)(𝑛 − 𝑘 + 𝑒 − 2)⋯ (𝑛 − 𝑘)𝜇𝑒(𝑋)𝜌

𝑛−𝑘+𝑒,

where 𝑂𝑖 is the volume of the unit sphere in Euclidean ℝ𝑖,
and the 𝜇𝑒(𝑋) are certain integrals over 𝑋 of invariant poly-
nomials in the matrix entries of the second fundamental
form. Evidently the leading order term for small 𝜌 is just
𝑂𝑛−𝑘vol𝑘(𝑋)𝜌𝑛−𝑘; i.e., 𝜇0(𝑋) = vol𝑘(𝑋). One may think
of Weyl’s formula as a special case of (Federer’s version of)
the kinematic formula, taking𝑀 = 𝑋 and𝑁 equal to a ball
𝐵𝜌 of small radius 𝜌. Then 𝜇𝑖(𝐵𝜌) is (up to a constant) just
the appropriate power of 𝜌.

Weyl’s formula is exact, but only valid for 𝜌 small
enough so that the exponential map is an embedding on
the normal disk bundle of radius 𝜌. What the formula re-
ally computes is the integral over this normal disk bun-
dle of the pullback of the Euclidean volume form under
the exponential map. For larger 𝜌 one must compute vol-
ume with multiplicity (where different sheets of the image
of the exponential map overlap each other) and with sign
(where the Jacobian of the exponential map has negative
sign). For accuracy we should call this the algebraic volume
of 𝑇(𝑋, 𝜌), to distinguish it from the naive volume. Fig-
ure 3 shows a region where three local sheets of the expo-
nential map overlap, two with positive sign and one nega-
tive.

One can think of Weyl’s formula as a Taylor series, but
if so it has two properties that are rather startling at first
glance:

1. the nonzero terms all have the same parity (equal to
the codimension of 𝑋); and

2. there are only finitely many nonzero terms!

Actually a little reflection makes these properties appear
less preposterous. Firstly, if we express 𝑇(𝑋, 𝜌) as the inte-
gral of a density 𝑇(𝑋, 𝜌, 𝑣) over vectors 𝑣 in the unit normal
bundle 𝜈, then if we expand 𝑇(𝑋, 𝜌, 𝑣) for any fixed 𝑣 as a
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Figure 3. A ‘tube’ of sufficiently large radius has volume
which must be counted with multiplicity and with sign. In this
figure, the red region is counted with multiplicity 1, the green
region with multiplicity 1 + 1 − 1, and the blue region with
multiplicity 1 + 1.

power series in 𝜌 we will have 𝑇(𝑋, 𝜌, −𝑣) = 𝑇(𝑋,−𝜌, 𝑣).
Thus only the terms with an even exponent will survive
after integrating over 𝑣.

Secondly, if we approximate 𝑋 by a polyhedron 𝑌 , it is
obvious that each codimension 𝑒 simplex 𝜎 contributes an
expression of the form 𝑐𝑒 𝛼(𝜎)vol𝑘−𝑒(𝜎)𝜌𝑛−𝑘+𝑒, where 𝑐𝑒 is
a constant depending only on 𝑛, 𝑘, 𝑒, and where 𝛼(𝜎) (the
angle excess) is the volume of a certain (dual) immersed
spherical polyhedron whose faces are inductively associ-
ated to higher-dimensional simplices 𝜏 incident to 𝜎. Here
it is important that we are computing the algebraic volume
— the exponential map on the “normal bundle” of a poly-
hedron𝑌 is singular for any positive 𝜌 unless𝑌 is totally ge-
odesic. In any case, this argument shows that vol(𝑇(𝑌, 𝜌))
is a polynomial in 𝜌 of degree 𝑛 and so—taking limits—is
vol(𝑇(𝑋, 𝜌)).

Now, as remarked above, the 𝜇𝑒 are integrals of invari-
ant polynomials of even degree in the coefficients of the
second fundamental form. In particular, they can be ex-
pressed purely in terms of the intrinsic Riemannian metric
for 𝑀. When 𝑘 is even, the highest order term 𝜇𝑘(𝑋) is es-
pecially nice: the Chern–Gauss–Bonnet formula gives the
identity

𝜇𝑘(𝑋) =
(2𝜋)𝑘/2

(𝑘 − 1)(𝑘 − 3)⋯1𝜒(𝑋),

where 𝜒 is the Euler characteristic of 𝑋 . Actually, this can
be seen directly, at least for the case of a hypersurface
𝑋 . When 𝜌 is very large, 𝑇(𝑋, 𝜌) is approximately equal
to a ball of radius 𝜌. To compute the algebraic volume
vol(𝑇(𝑋, 𝜌)) we must figure out the multiplicity of a typi-
cal point very far from 𝑋 . Think of 𝑋 × ±1 as the unit nor-
mal bundle to 𝑋 . The copy 𝑋 × 1 is oriented like 𝑋 , and
𝑋 × −1 is oriented oppositely. Define 𝑁𝜌 ∶ 𝑋 × ±1 → ℝ𝑛

by 𝑁𝜌(𝑥, ±1) = exp(±𝜌𝑣), where 𝑣 is the positive unit nor-
mal to 𝑋 at 𝑥. For big 𝜌, it is approximately true that 𝑁𝜌
maps 𝑋 × 1 (resp., 𝑋 × −1) to the sphere of radius 𝜌 by
𝜌 ⋅ 𝐺 (resp., −𝜌 ⋅ 𝐺) where 𝐺 is the Gauss map. If 𝑘 is even
the antipodal map has degree −1. Since the components
of 𝑋 × ±1 have opposite orientations, it follows that the
oriented degree of both maps is equal to deg(𝐺) = 𝜒(𝑋)/2.
Thus the coefficient of 𝜌𝑛 in Weyl’s formula is𝑂𝑛𝜒(𝑋), and
by running this argument in reverse, we obtain a proof of
the Chern–Gauss–Bonnet formula!

Taking 𝑒 = 𝑝 + 𝑞 − 𝑛 in Chern’s formula one has the
rather extraordinary conclusion that if one drops 𝑝- and
𝑞-dimensional noodles 𝑀 and 𝑁 randomly into ℝ𝑛 the
expected Euler characteristic of their intersection depends
only on the intrinsic Riemannian geometry of 𝑀 and 𝑁.
Saints alive!

AUTHOR’SNOTE. Chern’s formula is proved in the pa-
per “On the Kinematic Formula in Integral Geometry,”
J. Math. Mech. 16 (1966), no. 1, 101–118. Federer’s pa-
per “Curvature measures,” Trans. AMS 93 (1959), 418–
491, is also recommended.
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