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1. Introduction
In this article, we survey the current status of the theory
of constant mean curvature (CMC) hypersurfaces in Eu-
clidean spaces. We give prominence to gluing construc-
tions and conservation laws, and highlight the role of con-
served quantities in gluing.

The theory of CMC and minimal surfaces has classical
roots in the calculus of variations, a branch of mathemat-
ics first investigated by Euler, Lagrange, and others in the
1700’s. Among all immersions of surfaces in a Euclidean
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space, the complete CMC or minimal immersions can be
considered the most interesting on geometric grounds be-
cause they are characterized by the constancy of the mean
curvature, which is a simple natural geometric condition.
CMC surfaces can be characterized as those surfaces for
which the area is stationary under compactly supported
volume preserving variations, and in physical contexts they
arise as interfaces between fluids in stasis in the presence
of a pressure jump and surface tension.
1.1. The mean curvature of hypersurfaces. Themean cur-
vature 𝐻 of a smooth two-sided hypersurface Σ in a mani-
fold 𝑀 at a point 𝑝 ∈ Σ is the average curvature of normal
sections through 𝑝 (once a normal direction is chosen).
Equivalently, up to a constant depending only on the di-
mension, it can be computed as the divergence of the unit
normal field 𝜈. That is,

𝐻 ∶= −1𝑛 DivΣ(𝜈).

For hypersurfaces in Euclidean spaces, it is the normal part
of the Laplacian of the position vector up to the constant
1
𝑛
:

𝐻 = 1
𝑛⟨Δ ⃗𝑥, 𝜈⟩.

𝐻 can be interpreted as the gradient of the area functional
on surfaces, which we explain below in Section 1.3. It is
invariant under isometries of ℝ𝑛+1 and is homogeneous of
degree −1, meaning that if Σ is dilated by a positive scalar,
its mean curvature scales by the reciprocal. A two-sided
smooth hypersurface is a constant mean curvature (CMC)
hypersurface if its mean curvature is a nonzero constant.
After possibly exchanging the unit normal for its negative
and scaling, we can assume that the mean curvature of a
CMC surface is 1. The basic examples of CMC surfaces in
Euclidean space are spheres and cylinders. Observe that
the constant

1
𝑛

in the definition of the mean curvature en-
sures that hyperspheres of radius 1 oriented by the inward
pointing normal have mean curvature 1.

Remark 1.1. Throughout this article, unless otherwise spec-
ified, the term surfacewill refer to a smooth, complete, con-
nected, two-sided immersed hypersurface in a Euclidean
space. Also, CMC surface will refer to a surface with mean
curvature 𝐻 ≡ 1.

1.2. Variations and surface area. Given a surface Σ𝑛 ⊂
ℝ𝑛+1, a (smooth) variation is a smooth one parameter fam-
ily Σ𝑡 of surfaces defined for small 𝑡 and such that Σ0 = Σ.
A compactly supported vector field 𝑋 on ℝ𝑛+1 gives rise to
a variation of Σ by considering time slices Σ𝑡 of Σ along
the flow of 𝑋 , and we say that this variation is induced by
the vector field 𝑋 . If we let Area(Σ) denote the surface area
(𝑛-volume) of Σ, the linear change in surface area of Σ𝑡 ⧵Σ

is given by

𝛿𝑋 Area(Σ) ∶=
𝑑
𝑑𝑡
|||𝑡=0

Area(Σ𝑡 ⧵ Σ) = ∫
Σ
DivΣ(𝑋).

1.3. The mean curvature as the gradient of area. Sepa-
rating the tangential and normal parts, 𝑋𝑇 and 𝑋⟂, of 𝑋
and writing 𝑋⟂ = 𝑢𝜈 gives

DivΣ(𝑋) = DivΣ(𝑋𝑇 + 𝑋⟂) = DivΣ(𝑋𝑇) − 𝑛𝑢𝐻.

Since 𝑋 is compactly supported, the first term integrates
away by the divergence theorem and we are left with

𝛿𝑋 Area(Σ) = −𝑛∫
Σ
𝑢𝐻. (1)

Observe that (1) allows us to interpret the mean curvature,
up to a constant 𝑛, as the negative gradient of the area
(where the positive gradient of the area gives the path of
steepest ascent): Among 𝐿2 normalized smooth functions
𝑢, the choice 𝑢 = 𝐻 minimizes 𝛿𝑋 Area(Σ).
1.4. Variational characterization of 𝐶𝑀𝐶 surfaces. A
variation of Σ induced by a compactly supported vector
field 𝑋 is volume preserving if the (oriented) volume of the
region 𝑈𝑡 bounded by Σ and Σ𝑡 is stationary at 𝑡 = 0.
Here, oriented means that the volumes of components of
𝑈𝑡 where Σ𝑡 is “above” Σ count positively and those where
Σ𝑡 is “below” count negatively. Note that for immersed Σ,
some regions of𝑈𝑡 may appear with multiplicity and must
be counted appropriately. Alternatively, by appealing to
linearity, we could restrict our attention to perturbations
supported on embedded parts of Σ.

The linear change in the volume of 𝑈𝑡 along the flow is
then given by

𝑑
𝑑𝑡
|||𝑡=0

Vol(𝑈𝑡) = ∫
𝑈
Div(𝑋) = ∫

Σ
⟨𝑋, 𝜈⟩ = ∫

Σ
𝑢.

Combining with (1) we see that Σ is stationary under vol-
ume preserving variations if and only if, for all smooth
compactly supported functions 𝑢 on Σ,

∫
Σ
𝑢 = 0 ⟹ ∫

Σ
𝐻𝑢 = 0.

A basic argument using cutoff functions implies that 𝐻 is
constant.
1.5. Physical interpretation of mean curvature. CMC
surfaces arise in physical contexts as soap films or as in-
terfaces between fluids in equilibrium. Cohesive forces
between molecules on the fluid interface result in surface
(or interfacial) tension. If the surface tension coefficient
is constant and equal to 𝛾, then the force exerted on the
center of an infinitesimal ball 𝑅 in the soap film by a point
on the boundary is approximately the product 𝛾 𝜂, where
𝜂 denotes the outward conormal along the boundary. The
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Figure 1. Generating curves for Delaunay surfaces for six
values of the parameter 𝜏. The singular model of antipodal
spheres occurs when 𝜏 = 0.

total force exerted on the center is then approximately the
integral

⃗𝐹 ≈ 𝛾∫
𝜕𝑅
𝜂 = 𝛾∫

𝑅
ΔΣ ⃗𝑥 ≈ 𝛾𝐻𝜈 𝑑𝐴,

where 𝑑𝐴 denotes the surface area of the infinitesimal ball
𝑅 and 𝜈 the unit normal. Molecules on either side exert a
pressure normal to the soap film, and the system is at equi-
librium when the jump ⃗𝑃 in pressure across the soap film
balances ⃗𝐹, so ⃗𝑃+ ⃗𝐹 = 0. Since the system is at equilibrium,
the pressure jump is constant strength, so that ⃗𝑃 = 𝑝𝜈 𝑑𝐴
for some constant 𝑝. The equilibrium condition can then
be written as (𝛾𝐻 + 𝑝) 𝜈 = 0, which is equivalent to the
condition that 𝐻 is constant.

2. History and Examples
2.1. Classical results. Although many examples of com-
plete minimal surfaces in ℝ3 were constructed early on us-
ing the relation with the theory of one complex variable
(Enneper-Riemann-Weierstrass representation), the only
early examples of complete CMC surfaces of finite topolog-
ical type were the round sphere, the cylinder and the De-
launay surfaces [Del41]. Discovered in 1841, the Delaunay
surfaces form a one-parameter continuous family of rota-
tionally invariant CMC cylinders, which are periodic with
translational period along their rotational axis.

We call the parameter 𝜏 and it is defined so that when
𝜏 > 0 the surfaces are embedded (and called unduloids) and
when 𝜏 < 0 they are not embedded (and called nodoids).
The explicit value for 𝜏 is determined in (10). The undu-
loids interpolate between a necklace of round spheres (cor-
responding to 𝜏 = 0) and a cylinder (corresponding to

Figure 2. An unduloid and a cutaway of a nodoid.

𝜏 = 1
4
). Classically a generating curve for the unduloids

can be obtained by tracing the focus of a rolling ellipse.
Figure 1 displays generating curves for various values of 𝜏.
Each fundamental domain under the translational period
is an annulus and consists of both an annulus with Gauss
curvature 𝐾 > 0 and a “neck” (an annulus with 𝐾 < 0).
See Figure 2 for three-dimensional renderings of two De-
launay surfaces.

As 𝜏 → 0, each annulus with 𝐾 > 0 tends to a
sphere in the necklace with two antipodal points removed
(where the sphere touches the adjacent spheres). Each
neck shrinks to a point (where sphere touching occurs),
but if blown up so the waist has unit size, it converges
to a catenoid. The limiting behavior prompts us to call
compact, connected regions where 𝐾 > 0 spherical regions
and compact, connected regions where 𝐾 < 0 catenoidal
regions.

The closedCMC examples are particularly important be-
cause there are no closed minimal immersions in the Eu-
clidean spaces by the maximum principle. In 1853, Jellet
proved that star-shaped CMC surfaces are round spheres.
A century later Hopf established the same for topological
CMC spheres [Hop83], and shortly afterwards Alexandrov
did the same for embedded CMC surfaces [Ale62]. These
results and their methods of proof had a profound influ-
ence in mathematics: Hopf introduced the Hopf differen-
tial which is the (2,0) part of the complexified second fun-
damental form and is a quadratic holomorphic differen-
tial by the Codazzi equation, and Alexandrov introduced
the method of reflecting through moving planes which is
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Figure 3. A cutaway of a Wente torus.

based on themaximumprinciple. They alsomotivated the
celebrated conjecture (or question according to some) by
Hopf on whether the only immersed closed CMC surfaces
in Euclidean three-space are round spheres.
2.2. The Wente tori. In 1982 Hsiang demonstrated that
Hopf’s conjecture fails, at least in higher dimensions, by
constructing new CMC hyperspheres which are rotation-
ally invariant by a product group and are controlled by
an ODE [Hsi82]. Soon afterwards, in a surprising devel-
opment, Wente carried out a construction of new closed
CMC surfaces inℝ3 [Wen86]. The Wente examples are tori
and his construction was based on the following reduction
of the CMC equation to the sinh-Gordon equation on the
complex plane ℂ, with 𝑧 the standard coordinate. ℂ con-
formally covers a CMC torus with the Hopf differential tak-
ing the form 𝑑𝑧2 over ℂ. If we write the conformal factor
as 𝑒2𝑤/4, the function 𝑤 on ℂ is doubly periodic, and by
the Gauss equation it satisfies the sinh-Gordon equation

Δ𝑤 + 1
2 sinh 2𝑤 = 0.

Conversely given such a 𝑤 one can integrate to obtain a
CMC immersion of the complex plane which is doubly
periodic by Euclidean motions. One obtains a CMC torus
when the periods close (see Figures 3, 4).

Wente constructed a two-parameter family of such so-
lutions 𝑤 which integrate to CMC immersions with one
translational period and one rotational period. The param-
eters are the lengths of the sides of a rectangle on which
𝑤 satisfies a Dirichlet problem and 𝑤 > 0 (and hence
𝐾 = 2𝑒−2𝑤 sinh 2𝑤 > 0 also) in the interior. He then
extended 𝑤 to all of ℂ by odd reflections. The transla-
tional period can be closed, reducing the family to a one-
parameter family of “Wente cylinders,” which are periodic
by a rotational period. The rotational period varies contin-
uously in terms of the parameter, and when the rotation
is by a rational multiple of 𝜋, one obtains a CMC torus.
Note that the Wente cylinders have some similarities with

Figure 4. A cutaway of a Wente torus with five spherical
regions.

the Delaunay cylinders: calling the parameter 𝜏 again (see
Remark 3.5), the fundamental domain is again an annu-
lus which is the union of one region with 𝐾 > 0 and a
region with 𝐾 < 0. (In this case both regions are topo-
logical disks.) Moreover as 𝜏 → 0, the region with 𝐾 > 0
tends to a sphere, but now with one point removed, and
the region with 𝐾 < 0 again shrinks to a point. The lat-
ter region, when blown-up to fixed size, now tends to an
Enneper minimal surface.

It is interesting that Wente constructed the solutions 𝑤
using advanced PDE methods. It was later observed that
they could also be constructed by separating variables and
solving ODEs in closed form. Further work allowed a clas-
sification of all CMC tori by integrable systems methods,
including the construction of continuous families of CMC
tori. It would be interesting to understand the geometry
of these new examples in detail. For example, compelling
questions are which minimal surfaces can be obtained as
blow-up limits and whether the continuous families of
CMC tori can be used in gluing constructions of contin-
uous families of higher-genus closed CMC surfaces.
2.3. Complete non-compact constructions and charac-
terizations. In 1988 NK in his thesis carried out a gen-
eral construction of complete CMC surfaces in ℝ3 by PDE
gluing methods, providing a great variety of examples of
any genus with any number of at least two ends, with the
only exception being a two-ended torus [Kap90]. Histor-
ically, PDE gluing methods had been applied extensively
and with great success in Gauge Theories by Donaldson,
Taubes, and others. The methods in [Kap90] are more
closely related to Schoen’s construction of constant scalar
curvature metrics in [Sch88]. The theorem is “general” in
that no symmetry is required, and it provides a plethora
of CMC surfaces. More precisely, given any graph in ℝ3

satisfying certain conditions outlined below, and for each
small enough 𝜏 ∈ ℝ⧵{0}, a CMC surface can be constructed
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as a small perturbation of an initial surface explicitly built
as described below.

The graphs considered consist of vertices which are
points in ℝ3, edges which are straight line segments with
vertices as endpoints, rays which are half-lines with a ver-
tex as an endpoint, and with each edge or ray 𝑒 assigned a
nonzero real number 𝜏𝑒. Given such a graph, we assign to
each vertex 𝑝 a “force”

⃗𝐹𝑝 ≔∑
𝑒
𝜏𝑒 ⃗𝑣𝑒 ∈ ℝ3, (2)

where the sum is taken over all the edges and rays with 𝑝
as an endpoint and ⃗𝑣𝑒 is the unit vector along 𝑒 pointing
away from 𝑝. The given graph in the theorem [Kap90] is
a central graph whose edges have even integer length and
which also has the following properties:

(i) Balancing: For each vertex 𝑝 we have ⃗𝐹𝑝 = 0.
(ii) Unbalancing: The graph can be slightly perturbed so

that each ⃗𝐹𝑝 can take any prescribed small value in ℝ3.
(iii) Flexibility: The graph can be slightly perturbed so that

each edge length can change by any prescribed small
real number.

Families of approximately CMC initial surfaces are then
constructed by attaching suitably perturbed Delaunay
pieces to unit spheres centered at the vertices (which we
will call vertex spheres). Each Delaunay piece corresponds
to an edge or ray 𝑒, has parameter 𝜏𝜏𝑒, and is attached to the
vertex sphere(s) centered at its endpoint(s). Finally using
the Schauder Fixed Point Theorem it is proved that one of
the initial surfaces can be perturbed to exactly CMC. Note
that the construction implies that the perturbed Delaunay
ends of the CMC surfaces constructed decay exponentially
fast to precise Delaunay ends.

The construction of central graphs is easy by elementary
means. Note that when 𝜏 > 0 and all 𝜏𝑒 > 0, the com-
plete CMC surfaces constructed are Alexandrov embedded;
that is there is an immersion of a three-manifold Ω into
ℝ3 such that the image of 𝜕Ω is the CMC surface. Of these
Alexandrov embedded examples only a few very symmet-
ric ones are proved in [Kap90] to be embedded because
the construction allows some perturbations which destroy
embeddedness.

Around that time, Meeks [Mee88] proved that properly
embedded, complete, non-closed CMC surfaces of finite
topology have at least two ends each of which is cylindri-
cally bounded. Motivated by this and [Kap90], Korevaar-
Kusner-Solomon proved that the Delaunay unduloids are
the only properly embedded complete CMC surfaces with
finite genus and two ends, and that all Alexandrov prop-
erly embedded, complete, non-closed CMC surfaces of fi-
nite topology with more than two ends decay exponen-
tially to precise Delaunay ends [KKS89]. Korevaar-Kusner,
in [KK93], strengthened these results and made partial

progress towards proving the conjecture that all properly
embedded finite topology CMC surfaces in ℝ3 can be as-
sociated to a graph in the spirit of the main theorem in
[Kap90] discussed above.

Complete CMC surfaces of genus 𝑔 and 𝑘 ≥ 3 ends
then attracted much attention. Kusner-Mazzeo-Pollack
[KMP96] studied the moduli space of Alexandrov embed-
ded surfaces, ℳ𝑔,𝑘, and proved that it is a real-analytic va-
riety. In particular, every nondegenerate (see Section 4.4)
Σ ∈ ℳ𝑔,𝑘 is regular in its moduli space, and any pertur-
bation through CMC surfaces near a non-compact, non-
degenerate CMC surface must change the asymptotics at
infinity. Many aspects of this work are closely tied to, and
paved the way for, gluing constructions for nondegener-
ate objects. We therefore defer a longer discussion of their
work to Section 4.4.

Große-Brauckmann [GB93] used a conjugate surface
construction to produce surfaces in ℳ0,𝑘 with
maximal (𝑘-fold dihedral) symmetry, including
those with large neck size. Große-Brauckmann-Kusner-
Sullivan and Große-Brauckmann-Korevaar-Kusner-
Ratzkin-Sullivan [GBKK+09] determined further results
for a subset of the moduli space ofℳ0,𝑘, namely the set of
coplanar 𝑘-noids. (A coplanar 𝑘-noid has a plane of symme-
try containing all of the asymptotic axes of its ends.) More-
over they show that all coplanar 𝑘-noids are nondegener-
ate. Mazzeo-Pacard, with a gluing construction, produced
maximally symmetric CMC surfaces by attaching Delau-
nay ends to the ends of a nondegenerate Alexandrov em-
bedded minimal surface with finite total curvature, genus
𝑔, and 𝑘 catenoidal ends [MP01]. Mazzeo-Pacard-Pollack
carried out a gluing connected sum construction [MPP01]
and Ratzkin, in his thesis, an end-to-end gluing construc-
tion. Jleli [Jle09] demonstrated the Ratzkin technique can
be extended to higher dimensions.
2.4. Closed examples for genus ≥ 2. Returning now to
Hopf’s question, note that Wente’s construction left it
open for genus 𝑔 ≥ 2. The general theorem in [Kap90] pro-
duced only non-compact complete examples, because al-
though it is possible to find graphs without rays satisfying
the balancing and unbalancing conditions, those do not
satisfy the flexibility condition since the lengths of some
of the edges determine the lengths of the rest. It turned
out that it was possible to remedy this difficulty, and in
[Kap91] NK constructed closed CMC surfaces of any genus
𝑔 ≥ 3. The idea was to vary 𝜏 so that the periods of the De-
launay surfaces vary and use very long Delaunay pieces to
magnify the effect. This way for some value of 𝜏 the Delau-
nay pieces corresponding to edges whose length cannot be
perturbed freely are arranged to “fit.”

Even after the construction in [Kap91] the case of genus
𝑔 = 2 remained open because no balanced graphs provid-
ing this topology exist. UsingWente tori as building blocks
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instead of Delaunay surfaces was a possible approach to
overcoming this difficulty. Recall that aWente torus 𝑇 with
small 𝜏 has regions with𝐾 > 0 each of which approximates
a unit sphere with one point removed. Let 𝑇𝑠𝑝ℎ be such a
region. The rest of the torus 𝑇𝑟𝑒𝑠𝑡 ≔ 𝑇 ⧵ 𝑇𝑠𝑝ℎ can then be
considered attached to an (approximate) punctured unit
sphere. An approximately CMC initial surface of genus 𝑔
can then be constructed by puncturing a unit sphere at 𝑔
points, and attaching a copy of 𝑇𝑟𝑒𝑠𝑡 at each point. We
emphasize that these attachments are not through small
necks, as this would contradict balancing as we will de-
scribe in Remark 3.4. Instead the attachments imitate the
way 𝑇𝑟𝑒𝑠𝑡 is attached to 𝑇𝑠𝑝ℎ in the Wente torus itself.

In [Kap95] NK proved that closed CMC surfaces of any
genus 𝑔 ≥ 2 can be constructed by correcting such initial
surfaces. This required a much deeper understanding of
the phenomena involved and a new methodology. It also
led to what was called the geometric principle, which we de-
scribe in Section 4. Together with the new methodology,
the geometric principle has now proved instrumental in
successfully carrying out many PDE gluing constructions
for various geometric objects.

We also mention that Jleli and Pacard produced closed
surfaces with high symmetry using an end to end construc-
tion and later Jleli extended these ideas to higher dimen-
sions. Jleli’s result would provide new symmetric closed
examples if a crucial intermediate step, namely the con-
struction of 𝑘-ended nondegenerate CMChypersurfaces, is
carried out.
2.5. Complete non-compact hypersurfaces. More re-
cently two of the authors [BK14] reworked the construc-
tion in [Kap90] following the new approach of [Kap95]
to obtain more precise control of the surfaces constructed,
proving this way that many more embedded examples
exist. Furthermore, overcoming new serious difficulties,
they generalized the constructions of [Kap90,BK14] to any
higher dimension [BK21]: given a graph inℝ𝑛+1 and 𝜏 ≠ 0
as in the ℝ3 case above, approximately CMC initial sur-
faces are constructed using 𝑛-spheres and pieces of the 𝑛-
dimensional Delaunay surfaces. (The 𝑛-dimensional De-
launay surfaces are 𝑂(𝑛)-invariant periodic, controlled by
an ODE similar to the classical one.) As in theℝ3 case, one
of these initial surfaces is then perturbed to exactly CMC.
We hope that this result will encourage new results in the
higher dimensional setting, clarifying this way similarities
and differences with the results in ℝ3.

3. Conservation Laws and Balancing
Every CMC surface satisfies certain conservation laws
which arise from an idea clearly articulated by Noether in
1918. While many conserved quantities in physics were
previously known, in that work, she established the deep
connection between conserved quantities and symmetries

of a system. Indeed, she expressed the general principle
that if a variational problem is invariant under the action
of a continuous group of symmetries, then the variational
solutions will satisfy a system of conservation laws. In our
current context, this implies that every CMC surface will
satisfy conservation laws induced by the isometries of the
ambient space. These laws were explicitly determined for
CMC surfaces in Euclidean space in [KKS89] and are an
important tool in gluing constructions and the classifica-
tion of CMC surfaces. For an overview of the role of con-
servation in classification results, the interested reader can
consult [BK18].

We outline here the role of conserved quantities for
CMC surfaces in manifolds, giving special attention to the
Euclidean setting. Given a surface Σ𝑛 ⊂ ℝ𝑛+1, the cur-
vature of Σ is invariant under translations and rotations.
Therefore, the CMC variational problem is invariant under
these isometries on ℝ𝑛+1 and we expect to find balancing
formulas associated with each of these isometries (see (7),
(8)).

For the general discussion, we begin with a Riemannian
manifold 𝑀𝑛+1 with metric 𝑔 and Levi-Civita connection
∇. Given a smooth vector field 𝑋 on 𝑀, we let Φ𝑋 ∶ ℝ ×
𝑀 → 𝑀 denote the flow induced by 𝑋 where

Φ𝑋(𝑡,𝑚) ≔ 𝛾𝑚(𝑡)

for the geodesic 𝛾𝑚 satisfying 𝛾𝑚(0) = 𝑚 and ̇𝛾𝑚(𝑡) =
𝑋(𝛾𝑚(𝑡)).

We let ℐ(𝑀) denote the group of isometries of 𝑀–
homeomorphisms from𝑀 to itself which preserve themet-
ric 𝑔. ℐ(𝑀) is a Lie group which acts smoothly on 𝑀. Let
𝒳(𝑀) denote the Lie algebra of smooth vector fields on
𝑀 with Lie bracket [𝑋, 𝑌] = 𝑋𝑌 − 𝑌𝑋 . Let 𝐿𝑋𝑔 denote
the Lie derivative of 𝑔 with respect to 𝑋 , defined so that for
𝑌, 𝑍 ∈ 𝒳(𝑀),

𝐿𝑋𝑔(𝑌, 𝑍) = ⟨∇𝑌𝑋, 𝑍⟩𝑔 + ⟨∇𝑍𝑋, 𝑌⟩𝑔.

Since one can also interpret the Lie derivative on the (0, 2)-
tensor 𝑔 by considering

𝐿𝑋𝑔 =
𝑑
𝑑𝑡
|||𝑡=0

((Φ𝑋
𝑡 )∗𝑔) ,

we see that Φ𝑋 flows through isometries of 𝑀 iff 𝐿𝑋𝑔 = 0.
The sub-algebra of 𝒳(𝑀) satisfying this property is called
the space of Killing fields on 𝑀.

Following the principle previously discussed, we expect
that variations of CMC surfaces induced by Killing fields
should give rise to conserved quantities. To that end, let
𝑌 ∈ 𝒳(𝑀) be a Killing vector field. Let Σ𝑛 ⊂ 𝑀 be a
smooth embedded surface and let Ω𝑛 ⊂ Σ be smooth,
bounded, open subset with 𝜕Ω = Γ a smooth (𝑛 − 1)-
dimensional submanifold. Let 𝐾𝑛 ⊂ 𝑀 be smooth and
𝑈𝑛+1 ⊂ 𝑀 be open with 𝜕𝐾 = Γ and 𝜕𝑈 = 𝐾 ∪ Ω. Since
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𝑌 is Killing, the volumes of Ω,𝑈 are preserved under the
variation induced by 𝑌 . That is,

𝑑
𝑑𝑡
|||𝑡=0

Area(Φ𝑌 (𝑡, Ω)) = 0,

𝑑
𝑑𝑡
|||𝑡=0

Vol(Φ𝑌 (𝑡, 𝑈)) = 0.

By the divergence theorem,

0 = 𝑑
𝑑𝑡
|||𝑡=0

Vol(Φ𝑌 (𝑡, 𝑈)) = ∫
𝐾
𝜈out ⋅ 𝑌 +∫

Ω
𝜈out ⋅ 𝑌 (3)

where 𝜈out is the outward unit normal to 𝜕𝑈. Using the
divergence theorem again and the definition of mean cur-
vature,

0 = 𝑑
𝑑𝑡
|||𝑡=0

Area(Φ𝑌 (𝑡, Ω)) = ∫
Γ
𝜂 ⋅ 𝑌 −∫

Ω
𝑛𝐻Σ𝜈in ⋅ 𝑌 (4)

where 𝜈in represents the inward pointing normal with re-
spect to Ω.

Note that (3), (4) together imply that

𝑛∫
Ω
(𝐻 − 1)𝜈in ⋅ 𝑌 = ∫

Γ
𝜂 ⋅ 𝑌 − 𝑛∫

𝐾
𝜈out ⋅ 𝑌 . (5)

We now consider the special case when 𝐻Σ ≡ 1.

Lemma 3.1. Let Σ𝑛 ⊂ 𝑀𝑛+1 be an embedded CMC surface
with 𝐻Σ ≡ 1, Γ ⊂ Σ a smooth, null-homologous (𝑛 − 1)-cycle
bounding a compact Ω ⊂ Σ, 𝐾 ⊂ 𝑀𝑛+1 a smooth 𝑛-cycle with
𝜕𝐾 = Γ. Let 𝜂 denote the outward conormal to Σ along Ω and
𝜈𝐾 denote the unit normal on 𝐾 such that −𝜈𝐾 agrees with the
orientation on Ω. Then for every Killing field 𝑌 ∈ 𝒳(𝑀),

∫
Γ
𝜂 ⋅ 𝑌 − 𝑛∫

𝐾
𝜈𝐾 ⋅ 𝑌 = 0. (6)

In this article we are of course particularly interested in
the consequences of Lemma 3.1 in Euclidean spaces.

Corollary 3.2. Let Σ𝑛 ⊂ ℝ𝑛+1 be an embedded CMC surface
with 𝐻Σ ≡ 1. Let Γ ⊂ Σ be a smooth (𝑛−1)-cycle and choose a
conormal direction 𝜂 to Σ along Γ. Let 𝐾 ⊂ ℝ𝑛+1 be a smooth
𝑛-cycle such that 𝜕𝐾 = Γ. Let 𝑆 ⊂ Σ be an open subset of a
small neighborhood of Γ such that Γ ⊂ 𝜕𝑆 and 𝜂 is outward
pointing with respect to 𝑆. Choose 𝜈𝐾 the unit normal on 𝐾
such that −𝜈𝐾 agrees with the orientation on 𝑆. Then

Force(Γ) ≔ ∫
Γ
𝜂 − 𝑛∫

𝐾
𝜈𝐾 (7)

is a homological invariant. Moreover, if 𝑛 = 2, then for ⃗𝑥 the
position vector in ℝ3,

Torque(Γ) ≔ ∫
Γ
𝜂 × ⃗𝑥 − 𝑛∫

𝐾
𝜈𝐾 × ⃗𝑥 (8)

is also a homological invariant.

Proof. The proofs of (7) and (8) follow easily from (6)
once we choose the appropriate vector fields and consider
carefully the orientations of 𝜂, 𝜈𝐾 .

Let Γ1, Γ2 be two (𝑛 − 1)-cycles such that Γ1 + Γ2 is null-
homologous. Then there exists Ω𝑛 ⊂ Σ such that 𝜕Ω =
Γ1 ∪ Γ2 and (6) applies for appropriately chosen 𝜂, 𝐾 and
𝜈𝐾 . Now suppose that 𝜂1, 𝜂2 are conormals with the same
orientation with respect to the homology class of Γ1, Γ2.
Choosing 𝐾1, 𝐾2 and 𝜈1, 𝜈2 as was done in Lemma 3.1, by
applying (6) we see that

∫
Γ1
𝜂1 ⋅ 𝑌 − 𝑛∫

𝐾1

𝜈𝐾1 ⋅ 𝑌 = ∫
Γ2
𝜂2 ⋅ 𝑌 − 𝑛∫

𝐾2

𝜈𝐾2 ⋅ 𝑌 . (9)

Now we choose appropriate vector fields. Set 𝑌 𝑖 = ⃗𝑒𝑖,
𝑖 = 1, . . . , 𝑛 + 1 where { ⃗𝑒1, . . . , ⃗𝑒𝑛+1} is the standard or-
thonormal basis in ℝ𝑛+1. Substituting each 𝑌 𝑖 into (9)
and summing over 𝑖 yields Force(Γ1) = Force(Γ2).

If instead we let 𝑌 𝑖 correspond to the rotation fields
(𝑥3, 0, −𝑥1), (−𝑥2, 𝑥1, 0), (0, −𝑥3, 𝑥2), (9) takes the form of
Torque(Γ1) = Torque(Γ2). □

The gluing constructions of [BK14,BK21,Kap90,Kap91]
rely on an understanding of the force through a non-trivial
cycle on a Delaunay surface so we calculate that here.

Example 3.3. LetΣ be aDelaunay surfacewith axis parallel
to the vector ⃗𝑣. There is only one non-trivial element [Γ] ∈
𝐻𝑛−1(Σ) and since the force is a homological invariant to
calculate Force(Γ)we can choose Γ to be awaist ofΣ, i.e. an
(𝑛−1)-sphere of smallest cross-sectional radius, 𝑟min. Then
𝜂 ≡ ± ⃗𝑣, where the sign is positive when Σ is embedded and
negative when Σ is not embedded.

The attentive reader will note that we have not even de-
fined the force vector for non-embedded surfaces and thus
the previous statement should give you pause. Neverthe-
less, we can make sense of both Lemma 3.1 and Corollary
3.2 on embedded components of a non-embedded Delau-
nay surface, which will be sufficient for our purposes.

Since we are free to choose any smooth 𝐾 with 𝜕𝐾 = Γ,
we let 𝐾 denote the 𝑛-disk with 𝑟 ∈ [0, 𝑟min] and 𝜈𝐾 ≡ ⃗𝑣.

With these choices of Γ and 𝐾,

Force(Γ) = ∫
Γ

⃗𝑣 − 𝑛∫
𝐾

⃗𝑣

= (±𝑟𝑛−1min − 𝑟𝑛min) 𝜔𝑛−1 ⃗𝑣
≔ 𝜏Σ𝜔𝑛−1 ⃗𝑣 (10)

where 𝜔𝑛−1 is the volume of the standard (𝑛 − 1)-
dimensional sphere and 𝜏Σ is defined via the last equality.

Remark 3.4. Note that (7) and (10) imply that one cannot
perform a connected sum construction of closed surfaces
(e.g., twoWente tori) by using a small catenoidal bridge (or
Delaunay type neck). Indeed, let Σ1, Σ2 be two closed CMC
surfaces. Connect the two surfaces by a small catenoidal
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bridge. By (10), the bridge contains a curve with nonzero
force. On the other hand, the curve is null-homologous
with respect to each closed surface and thus should have
vanishing force after the singular perturbation.

Remark 3.5. Take Γ to be a meridian in the Wente cylinder,
for example a topological boundary circle of the annular
fundamental domain described earlier which immerses in
ℝ3 as a figure eight. It is possible to calculate that the force
through Γ vanishes but the torque is nonzero and deter-
mines the parameter 𝜏. This can be compared with the
case of Γ in a Delaunay cylinder as in Example 3.3, where
the force is nonzero and determines 𝜏, while the torque
with respect to a point of the axis vanishes as can be easily
demonstrated. This reflects the rotational character of the
Wente cylinders.

4. Gluing Constructions
4.1. General framework. We begin by providing the gen-
eral framework for a CMC gluing construction. As we have
seen, in the first step of the construction, building blocks
(that is simpler surfaces which satisfy the geometric con-
dition 𝐻 ≡ 1 exactly) are combined to construct a more
complicated initial surface which satisfies the condition
approximately. The building blocks and the initial surface
depend on a parameter we call 𝜏. We assume that the error
𝐻−1 on the initial surface, measured in some appropriate
weighted 𝐶0,𝛼 norm ‖.‖0,𝛼, is arbitrarily small when |𝜏| is
small enough. Based on this we want to correct the initial
surface𝑀 to a nearby CMC surface. This CMC surface can
be described as a graph of a function 𝑓 over 𝑀 (assuming
that 𝑀 is two-sided).

More precisely, let 𝑋 ∶ 𝑀 → ℝ𝑛+1 denote the im-
mersion of the initial surface and 𝜈 a global smooth unit
normal to 𝑋 . If 𝑓 ∈ 𝐶2(𝑀) is appropriately small, then
𝑋𝑓 ≔ 𝑋 + 𝑓𝜈 ∶ 𝑀 → ℝ𝑛+1 is an immersion, and with 𝐻
and 𝐻𝑓 denoting the mean curvature of 𝑋 and 𝑋𝑓 respec-
tively, we have

𝐻𝑓 = 𝐻 + 1
𝑛ℒ𝑓 + 𝒬𝑓,

where ℒ = Δ + |𝐴|2 is the Jacobi operator, 𝐴 is the sec-
ond fundamental form, and 𝒬𝑓 is a quadratic and higher
order expression in 𝑓 and its derivatives with coefficients
involving the geometric invariants of 𝑋 .

We want to find an 𝑓 satisfying the equation 𝐻𝑓 ≡ 1. If
we ignore the quadratic and higher order terms we seek a
function 𝑢 satisfying the linearized equation

ℒ𝑢 = 𝑛(1 − 𝐻). (11)

Presuming for a moment that ℒ is invertible with inverse
ℒ−1 and setting 𝑓 = 𝑢 + 𝑣 where 𝑢 = 𝑛ℒ−1(1 − 𝐻), the
equation 𝐻𝑓 = 1 reduces to

𝑣 = −𝑛ℒ−1𝒬ᵆ+𝑣.

Finding a solution 𝑣 is then equivalent to finding a fixed
point for the map

𝑣 → −𝑛ℒ−1𝒬ᵆ+𝑣.
It would be reasonable to hope that there is a suit-

able weighted 𝐶2,𝛼 norm ‖.‖2,𝛼, similar to the ‖.‖0,𝛼 norm
above, such that for 𝐸 ∈ 𝐶0,𝛼

𝑙𝑜𝑐 (𝑀) and 𝑓 ∈ 𝐶2,𝛼
𝑙𝑜𝑐 (𝑀)we have

linear and quadratic estimates

‖ℒ−1𝐸‖2,𝛼 ≤ 𝐶‖𝐸‖0,𝛼, ‖𝒬𝑓‖0,𝛼 ≤ 𝐶‖𝑓‖22,𝛼,
where 𝐶 > 0 is a uniform constant independent of 𝜏. As-
suming this to be the case, we expect to find a fixed point
for the map above by using the smallness of ‖𝐻 − 1‖0,𝛼,
and hence of ‖𝑢‖2,𝛼, and employing some fixed point the-
orem. In themost interesting geometric cases however this
does not happen and therefore we are forced tomodify the
approach. The necessary modifications relate to deep geo-
metric and analytic insights which illuminate the nature
and difficulties of these constructions.
4.2. First general constructions [Kap90]. We concentrate
now on the construction in [Kap90]. It is worth mention-
ing two instructive examples where the construction has
to fail. First, consider a “dumbell” construction where
the initial surface consists of two unit spheres joined by
a catenoidal bridge (or Delaunay type neck). The sup-
port of 𝐻 − 1 is on two annuli on the spherical regions
(slightly perturbed). However, this initial surface cannot
be corrected to beCMCbecause this would contradict both
Alexandrov’s and Hopf’s theorems; it would also contra-
dict the “no connected sum by catenoidal bridges” argu-
ment (see Remark 3.4). This is consistent with the theo-
rem in [Kap90] since the corresponding graph consists of
a single edge and two vertices and so cannot satisfy the bal-
ancing condition ⃗𝐹𝑝 = 0.

Even more striking is the second example where we at-
tempt to construct an embedded torus by bending an un-
duloid. We introduce a slight bending on each spherical
region creating an angle 𝜃 between the axes of subsequent
necks; the surface becomes a torus with a very large num-
ber of spherical regions for suitable discrete values of 𝜃. In
this case𝐻−1 is supported on spherical regions again, but
with ‖𝐻 − 1‖0,𝛼 ∼ 𝜃 independently of the parameter 𝜏 of
the unduloid. However small 𝜃 is chosen, the construction
cannot work because it would contradict Alexandrov’s the-
orem. Note also that the bending, however small, violates
balancing.

The question therefore arises: at which step does the
general framework outlined above fail and how is this
remedied?

Note that on the initial surfaces in [Kap90] (whose con-
struction was outlined in Section 2.3), 𝐻 − 1 is supported
on annuli on the spherical regions where the attachment
of the Delaunay pieces occurs. The geometry there is close
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to that of the unit sphere and each attachment annulus is
rotationally invariant around the axis of the piece being at-
tached. It is easy to calculate that ‖𝐻 − 1‖0,𝛼 ∼ |𝜏| and so
far there are no difficulties.

The framework fails when we need the linear estimate.
This is due to the existence of small eigenvalues for ℒ. In-
deed as 𝜏 → 0 each spherical region tends to a unit sphere
where the linearized operator has a three-dimensional ker-
nel consisting of the first harmonics. One approach to re-
solving this difficulty is to understand the small eigenval-
ues on the initial surface globally and proceeding accord-
ingly.

NK introduced a simpler approach in [Kap90]: one
solves the linearized equation modulo the substitute ker-
nel, a space 𝒦 ⊂ 𝐶∞(𝑀). 𝒦 is spanned by a collection
of functions, each supported on a single spherical region
and “substituting” for one first harmonic on that spherical
region. (For completeness of the exposition we mention
that in [Kap90] “spherical regions” includes the catenoidal
bridges; for details we refer to the original paper). One can
then solve semi-locally modulo 𝒦 and combine the ensu-
ing solutions to get a global one by using the decay of the
semi-local solutions. The decay is established by compar-
ing to the limit as 𝜏 → 0; recall that in the limit, adjacent
spherical regions disconnect.

Solving the linear equation modulo 𝒦 only postpones
the difficulty since in the end we will get 𝐻𝑓 − 1 ∈ 𝒦 in-
stead of 𝐻𝑓 − 1 = 0 as desired. This is where balancing
and unbalancing are used. By (5) the 𝐿2 inner product of
𝐻𝑓−1 (or 𝐻−1) with the components of the unit normal
equals the sum of boundary terms. Each boundary term
can be calculated as in (10) (with ⃗𝑣 replaced by ⃗𝑣𝑒 and 𝜏Σ
replaced by 𝜏𝜏𝑒). Observe that on the vertex spheres, the
sumof these terms can be approximated by the ⃗𝐹𝑝’s defined
in (2) (up to a constant). The balancing condition then
implies that the 𝒦 content is small, and the unbalancing
condition implies that we can approximately prescribe it.
We can therefore make 𝐻𝑓 − 1 vanish exactly by choosing
the correct values for the unbalancing parameters via the
fixed point theorem.
4.3. Gluing Wente tori [Kap95]. We proceed now to dis-
cuss the construction in [Kap95] which contains new ideas
which have been the basis for many other gluing construc-
tions for various geometric objects. A simple attempt to
follow the same approach as in [Kap90] stumbles on two
differences between Delaunay and Wente cylinders:

(i) Each spherical region 𝑆 is attached to the rest of the
Wente cylinder at a single point and its boundary 𝜕𝑆
is connected. The force through 𝜕𝑆 in the sense of (7)
therefore has to vanish by Lemma 3.1. This is different
from the case of a Delaunay cylinder where there are
two points of attachment and 𝜕𝑆 has two connected
components, each of which has nonzero force. In the

Delaunay case by transiting on 𝑆 to a slightly different
Delaunay surface we can unbalance and create 𝐻 −
1 along the first harmonics on 𝑆. This is clearly not
possible in the Wente case.

(ii) In both cases transition regions are defined to be (con-
nected) neighborhoods of {𝐾 = 0}. The difference
is that in the Delaunay case they are annuli each of
which connects two adjacent spherical regions, while
in the Wente case there is only one transition region
connecting to each spherical region. This makes decay
issues much harder to handle.

These problems were resolved using the following ideas.

(a) The extended substitute kernel. In [Kap95] NK expanded
the idea of the substitute kernel he had introduced
in [Kap90] by enlarging the substitute kernel 𝒦 to
a larger space called the extended substitute kernel, 𝒦.
Solving the inhomeogeneous equation ℒ𝑢′ = 𝐸 mod-
ulo 𝒦 ensures not only the existence of a solution 𝑢′
as before, but also that 𝑢′ satisfies very strong decay
estimates along the transitions regions where a power
of 𝜏 is gained from one spherical region to the next.

(b) The geometric principle. As in the case of the substi-
tute kernel, solving the linear equations modulo the
extended substitute kernel 𝒦 may lead to satisfying
the CMC condition only modulo 𝒦; that is 𝐻𝑓 − 1 ∈
𝒦. To remedy this we have to introduce parameters
in the construction of the initial surfaces which pre-
scribe a component of 𝐻 − 1 as any small element
of 𝒦 with the rest of 𝐻 − 1 considered an error. It
turns out that all the elements of 𝒦 can be associ-
ated with ambient Killing fields on parts of the initial
surface. The geometric principle says that prescribing
those elements can be achieved by introducing disloca-
tions where some parts of the initial surface are reposi-
tioned relative to the rest by flowing them along those
ambient Killing fields. Note that in retrospect this is
true for example for the unbalancing parameters in
[Kap90] because the Delaunay pieces are repositioned
relative to the central spherical regions. Since then the
geometric principle has played a fundamental role in
designing the setup of many gluing constructions for
other geometric objects.

(c) The implementation of the geometric principle. The im-
plementation of the geometric principle requires un-
derstanding and estimating the Dirichlet problem for
the linear operator ℒ on the transition regions. The
Dirichlet data is given by the action of the Killing fields
corresponding to the dislocations. The approximate
rotational invariance of (parts of) the transition region
combinedwith separation of variables plays an impor-
tant role.
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(d) Ideas particular to Wente tori. In the case of [Kap95]
estimating the solutions and implementing the geo-
metric principle is particularly challenging because
of the involved geometry and topology of the transi-
tion regions. In order to monitor the creation of the
extended substitute kernel, (5) is used with Ω an an-
nulus consisting of a spherical region and its opposing
Enneper-like neck. The 𝜕Ω consists of two immersed
circles each resembling a “figure eight.” The Killing
field 𝑌 can be either translational or rotational; the
extended substitute kernel content on Ω is expressed
in terms of forces and torques through these “figure
eight” circles. The Wente cylinders are conformally
flat and these forces and torques can be calculated by
using separation of variables and the symmetries in-
volved.

Another interesting feature in the proof is how the
period closing, which is relevant as in [Kap91], is re-
lated to proving that the final surfaces satisfy𝐻 = 1. Fi-
nally note that there are a number of interesting ideas
related to estimating the creation of extended substi-
tute kernel which we do not discuss here.

4.4. More examples of finite topology. Other gluing con-
structions mentioned in Section 2 adopt a different ap-
proach than those outlined above. In particular, they
work with building blocks which are nondegenerate, which
greatly simplifies the linear problem. A surface Σ is called
nondegenerate if the only function 𝑓 ∈ 𝐿2 satisfying ℒ𝑓 = 0
is 𝑓 ≡ 0. By classical PDE results, on every compact subset
of a nondegenerate surface Σ, one can easily find a func-
tion 𝑢 satisfying (11) with good estimates.

We define the space of Jacobi functions on a surface Σ to
be the set of all functions 𝜑 satisfying ℒ𝜑 = 0 on Σ. The Ja-
cobi functions on aDelaunay unduloid can be determined
by exploiting the rotational symmetry to use a Fourier de-
composition and solve appropriate ODEs, but the lower
mode functions also have a geometric interpretation. For
any Killing vector field 𝑌 , ℒ(𝑌 ⋅ 𝜈) = 0, and thus every
Killing field determines a Jacobi function. In particular, for
a Delaunay unduloid Σ𝑛 ⊂ ℝ𝑛+1, the 𝑛 + 1-dimensional
space of translations and 𝑛(𝑛 + 1)/2-dimensional space of
rotations orthogonal to the Delaunay axis induce geomet-
ric Jacobi functions. One additional geometric function is
induced by varying the parameter 𝜏. All of the geometric
Jacobi functions have sub-exponential growth, while all of
the high mode Jacobi functions either grow or decay ex-
ponentially. Note that the geometric Jacobi functions also
naturally play a crucial role in the gluing constructions out-
lined in the other subsections.

In [KMP96], the starting point to understanding ℳ𝑔,𝑘
is the asymptotic result in [KKS89]; namely, if Σ ∈ ℳ𝑔,𝑘
then each end of Σ converges exponentially fast to a De-
launay end. Given a nondegenerate surface in ℳ𝑔,𝑘, any

perturbation through CMC surfaces necessarily changes
the asymptotics. Therefore, surfaces near a nondegener-
ate Σ cannot have the same asymptotic Delaunay ends as
Σ; thus the surfaces cannot be described as normal graphs
over Σ but instead as normal graphs over a surface with
perturbed ends. These perturbations are given by vari-
ations using the geometric Jacobi functions for each as-
ymptotic Delaunay end. Understandingℳ𝑔,𝑘 then follows
fromdetermining the linearized operator is surjective onto
a weighted Sobolev space, understanding the decomposi-
tion of solutions into the sum of a perturbation function
and an exponentially decaying function, and finding the
null space of the linear operator.

The gluing constructions of [MP01,MPP01] perform lin-
ear analysis similar to that of [KMP96], though they work
withweightedHölder rather thanweighted Sobolev spaces.
In [MP01], the authors glue Delaunay ends onto an appro-
priately truncated nondegenerate minimal 𝑘-noid (a min-
imal surface with 𝑘 catenoidal ends and possibly positive
genus). The construction relies on matching Cauchy data
across the gluing interfaces–which can be accomplished
since Delaunay necks, under rescaling, converge on com-
pact sets to a catenoid. Using similar ideas, [MPP01] de-
termine a more general setup. Given two nondegenerate
CMC surfaces with boundary, Σ1, Σ2, presume the surfaces
are oriented such that the two tangent planes agree at 0
and their normals are oppositely oriented. They construct
a family of CMC surfaces with boundary that degenerate
to Σ1 ∪ Σ2 as the parameter of the family tends to zero.
The goal here is again to match Cauchy data across gluing
interfaces, and in this case the authors use the nondegen-
eracy to modify the surfaces, at the point of tangency, by a
Green’s function for their respective linear operators which
has a pole at the tangent point. Between these perturbed
surfaces they insert a catenoidal neck and they match the
data by truncating the surfaces appropriately.

In a later work, Mazzeo-Pacard-Pollack [MPP05] extend
the ideas of [MPP01] to the non-compact setting. Start-
ing with a nondegenerate Σ ∈ ℳ𝑔,𝑘, they produce a non-
degenerate Σ′ ∈ ℳ𝑔,𝑘+1 by gluing in a Delaunay end at
any point 𝑝 ∈ Σ. (Actually for each 𝑝 they construct a
one parameter family of such surfaces.) Again they use
the nondegeneracy of Σ to modify by a Green’s function
with pole at the point 𝑝. They match Cauchy data between
the Green’s function and the Delaunay end, which can be
done since both, under dilation, converge on compact sets
to a catenoid.
4.5. A general construction in higher dimensions
[BK21]. In [BK14,BK21], the authors improve upon the re-
sults of [Kap90] to produce new embedded examples of fi-
nite topological type and infinitely many new (embedded
and immersed) higher dimensional CMC surfaces. In both
papers they apply the techniques developed in [Kap95]—
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namely the geometric principle and the extended substi-
tute kernel—to a setting without symmetries. Among
other things, these allow them to produce linear solu-
tions which decay fast enough to preserve embeddedness
in all of the expected initial configurations. The decay is
prescribed by varying the family of initial surfaces by dislo-
cations (induced by the flow of Killing fields) between the
central spherical regions and the Delaunay pieces attached
to them. Given a vertex sphere, each attached Delaunay
piece varies independent of all other pieces and an impor-
tant aspect of this construction is demonstrating that inde-
pendence.

The construction in [BK21] induced further advance-
ments and new techniques. First, the linear step of the
argument is complicated by the fact that the Laplacian
is not conformally covariant in high dimensions. In
[Kap90,BK14], the linear problem on the catenoidal necks
of theDelaunay surfaces is simplified by using a conformal
metric which compactifies the surfaces by making them
isometric to the spherical regions. In the higher dimen-
sional setting, one must redesign the linear theory. The
authors accomplish this by working directly with the in-
duced metric on the catenoidal necks and exploiting the
rotational symmetry to use Fourier decompositions on the
meridians. A similar complication arises on the transition
regions, which are conformal to flat cylinders in two di-
mensions. For the higher dimensional problem, the au-
thors demonstrate that the linearized operator on the tran-
sition regions is sufficiently close to the operator on a flat
annulus (in an appropriately weighted metric) to find so-
lutions and determine necessary estimates.

The second major advancement in [BK21] was inspired
by the necessary modifications to the linear theory. In
[Kap90, BK14], the semi-local solutions on the Delaunay
pieces satisfy a Dirichlet condition and therefore can only
be expected to solve the linear equation modulo 𝒦. In
[BK21], the authors exploit the Fourier decomposition.
They demonstrate that the linearized operator is invertible
for the high modes, while for the low modes they solve a
second order ODE with initial data that allows the solu-
tions to grow (slowly) in one direction. As a result, func-
tions of𝒦 are supported only on the vertex spheres rather
than on every standard region.

Finally, in [BK21] the authors improve the error esti-
mate for the unbalancing by using a balancing formula on
the final hypersurface rather than monitoring the error at
each step.
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