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1. Introduction
After the launch of the Hubble Space Telescope in 1990, as-
tronomers were gravely disappointed by the quality of the
images as they began to arrive. Due to miscalibrated test-
ing equipment, the telescope’s primary mirror had been
ground to a shape that differed slightly from the one
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intended, resulting in the misdirection of incoming light
as it moved through the optical system. The blurry im-
ages did little to justify the telescope’s $1.5 billion price
tag [1]. Three years later, space shuttle astronauts installed
a specially designed corrective optical system that essen-
tially fixed the problem and yielded spectacular images
(See the image on this page. Hubble’s view of the M100
galaxy soon after launch is on the left and on the right
is the view after corrective optics were installed in 1993).
In the meantime, mathematicians devised several ways to
convert the blurry images into high-quality images. The
process of mathematical deblurring is the focus of this ar-
ticle.

Blurred images can be caused by many factors such
as the movement of the imaging device or the target ob-
ject, focus errors, or the presence of atmospheric turbu-
lence [12]. Indeed, the need for image deblurring goes
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beyond Hubble’s story. For instance, the image deblur-
ring problem is encountered in many applications such as
pattern recognition, computer vision, and machine intelli-
gence. Moreover, image deblurring shares the same math-
ematical formulation as other imaging modalities. For in-
stance, in many cases we have only limited opportunities
to capture an image; this is particularly true of medical im-
ages, such as computerized tomography (CT), proton com-
puted tomography (pCT), and magnetic resonance imag-
ing (MRI), for which equipment and patient availability
are scarce resources. In cases such as these, we need a way
to extract meaningful information from noisy images that
have been collected during the data acquisition process.

In this article, we will describe amathematical model of
how digital images become blurry as well as several math-
ematical issues that arise when we try to undo the blurring.
While blurring may be effectively modeled by a linear pro-
cess, we will see that deblurring is not as simple as invert-
ing that linear process. Indeed, deblurring belongs to an
important class of problems known as discrete ill-posed prob-
lems [10], and we will introduce some techniques that have
become standard for solving them. In addition, we will de-
scribe some matrix structures in the linear operators that
will allow more efficient computations.

2. Digital Images and Blurring
We start by describing digital images and a process by
which they become blurry. As illustrated in Figure 1, the
lens of a digital camera directs photons entering the cam-
era onto a charge-coupled device (CCD), which consists
of a rectangular 𝑝 × 𝑞 array of detectors. Each detector in
the CCD converts a count of the photons into an electri-
cal signal that is digitized by an analog-to-digital converter
(ADC). The result is a digital image stored as a 𝑝×𝑞matrix
whose entries represent the intensities of light recorded by
each of the CCD’s detectors.

Figure 1. A simple model of how a digital image is created.

A grayscale image is represented by a single matrix with
integer entries describing the brightness at each location.
A color image is represented by three matrices that de-
scribe the colors in terms of their red, green, and blue
constituents. Of course, we may see these matrices by

zooming in on a digital image until we see individual pix-
els, picture elements that contain only one intensity value.

Perhaps due to imperfections in the camera’s lens or the
lens being improperly focused, it is inevitable that photons
intended for one pixel bleed over into adjacent pixels, and
this leads to blurring of the image. To illustrate, we will
consider grayscale images comprised of arrays of 64 × 64
pixels. In Figure 2, the image on the left shows a single
pixel illuminated while on the right we see how photons
intended for this single pixel have spilled over into adja-
cent pixels to create a blurred image.

Figure 2. The intensity from a single pixel, shown on the left,
is spread out across adjacent pixels according to a Gaussian
blur, as seen on the right.

There are several models used to describe blurring. A
simple one that we choose here has the light intensity con-
tained in a single pixel (𝑖, 𝑗) spilling over into an adjacent
pixel (𝑘, 𝑙) according to the Gaussian point spread function
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where 𝑠 is a parameter that controls the spread in the in-
tensity and 𝑁 is a normalization constant so that the total
intensity sums to 1. As we will see later, the fact that the
two-dimensional Gaussian can be written as a product of
one-dimensional Gaussians has important consequences
for our ability to efficiently represent the blurring process
as a linear operator.

Though we visually experience a grayscale image as a
𝑝 × 𝑞 matrix of pixels 𝐗, we will mathematically rep-
resent an image as a 𝑝𝑞-dimensional vector 𝐱 by stack-
ing the columns of 𝐗 on top of one another. That is,
𝐱 = v𝑒𝑐(𝐗) = (𝐗11, … , 𝐗𝑝1, 𝐗12, … , 𝐗𝑝2, … , 𝐗1𝑞, … , 𝐗𝑝𝑞)𝑇
with 𝐗𝑖𝑗 being the intensity value of the pixel at row 𝑖
and column 𝑗. The blurring process is linear as the num-
ber of photons that arrive at one pixel is the sum of the
number of misdirected photons intended for nearby pix-
els. Therefore, if 𝐁 is the blurred image represented by the
vector 𝐛 = v𝑒𝑐(𝐁), then there is a blurring matrix 𝐀 that
blurs the original image 𝐱 into the blurred image 𝐛 = 𝐀𝐱.
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Furthermore, we assume that both images 𝐗 and 𝐁 have
the same size, as do 𝐱 and 𝐛, which implies that the matrix
𝐀 is square. Deblurring refers to the inverse process of re-
covering the original image 𝐱 from its blurred counterpart
𝐛 and includes situations, unlike the one we describe here,
where 𝐀 is not invertible or even square.

Each column of 𝐀 is the result of blurring a single pixel,
which means that each column of 𝐀 represents the point
spread function centered at its corresponding pixel (𝑖, 𝑗).
When that center is near the edge of the image, some pho-
tons will necessarily be lost outside the image, and there
are a few options for how to incorporate this fact into our
model. In real-life settings, it is possible to have knowl-
edge only over a finite region, the so called Field of View
(FOV), that defines the range that a user can see from an
object. It is then necessary tomake an assumption onwhat
is outside the FOV by means of the boundary conditions.
For instance, one option to overcome the loss outside the
FOV is to simply accept that loss, in which case we say that
the matrix has zero boundary conditions. This has the ef-
fect of assuming that the image is black (pixel values are
zero) outside the FOV, which can lead to an artificial black
border around a deblurred image (see the image on the
left on Figure 31).

In some contexts, it can be advantageous to impose re-
flexive boundary conditions, which assume that the pho-
tons are reflected back onto the image. In other scenarios
of interest, periodic boundary conditions, which assume
the lost photons reappear on the opposite side of the im-
age as if the image repeats itself indefinitely in all direc-
tions outside the FOV, are a suitable fit. Nevertheless, in
practical settings, we periodically extend only some pixel
values close to the boundary (see the image on the right
on Figure 3).

Figure 3. Image with assumed zero boundary conditions is
shown on the left and one with assumed periodic boundary
condition is shown on the right. The red box represents the
FOV.

1We picked the letter H to celebrate Hispanic Heritage Month, which is the fo-
cus of this issue of Notices.

3. Adding Noise
Let us consider the grayscale image 𝐱true shown on the left
of Figure 4 and its blurred version 𝐛true = 𝐀𝐱true shown on
the right.

Figure 4. An image 𝐱true on the left is blurred to obtain 𝐛true on
the right.

If we had access to 𝐛true, it would be easy enough to re-
cover 𝐱true by simply solving the linear system 𝐀𝐱 = 𝐛true

since our model gives a square, invertible matrix 𝐀. How-
ever, the conversion of photon counts into an electrical
signal by the CCD and then a digital reading by the ADC
introduces electrical noise into the image that is ultimately
recorded. The recorded image 𝐛 is therefore a noisy ap-
proximation of the true blurred image 𝐛true, so we write
𝐛 = 𝐛t𝑟ᵆ𝑒 + 𝐞, where 𝐞 is a noise vector whose entries are
independent and identically distributed random variables.
There are variousmodels used to describe the kind of noise
added. For instance, we might assume that the noise is
Gaussian white noise, which means that the entries in 𝐞
are sampled from a normal distribution with mean zero.
In our example, we assume that ‖𝐞‖2 = 0.001‖𝐛true‖2, that
is, the white noise is about 0.1% of the image 𝐛true. As seen
in Figure 5, this level of noise cannot be easily detected.

Figure 5. The blurred image 𝐛true on the left with a small
amount of Gaussian white noise added to obtain 𝐛 on the
right.

Two other models of noise are illustrated in Figure 6.
The image on the left contains what is called Poisson noise.
Under low light conditions, as encountered in astronom-
ical imaging, the number of photons that arrive on the
CCD are very low and therefore the noise produced is
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better modeled by a Poisson distribution than a Gaussian
one [19]. If the digital image is transmitted over a com-
munication channel, some of the transmitted bits may be
corrupted in transmission, resulting in “salt and pepper”
noise, the effect of which is shown in the image to the
right [12]. This noise can be modeled by a uniform distri-
bution whose standard deviation is inversely proportional
to the number of bits used. In the rest of the article, we
will assume that we have Gaussian white noise. Some ref-
erences on how tomodel and solve other noise models are
included in [20].

Figure 6. Poisson noise is added to the blurred image on the
left and salt and pepper noise on the right.

Because our recorded image 𝐛 is a good approximation
of 𝐛true, we might naïvely expect to find a good approxi-
mation of 𝐱true by solving the linear system of equations
𝐀𝐱 = 𝐛. However, its solution, which we call 𝐱𝐿𝑆, turns
out to be very different from the original image 𝐱true as is
seen in Figure 7. As we will soon see, this behavior results
from the fact that deblurring is a discrete linear ill-posed
problem.

Figure 7. On the left we see the original image 𝐱true while the
right shows 𝐱𝐿𝑆, the solution to the equation 𝐀𝐱 = 𝐛, where 𝐛
is the noisy recorded image.

We are now faced with two questions: how can we re-
construct the original image 𝐱true more faithfully and how
can we do it in a computationally efficient way. For in-
stance, today’s typical phone photos have around 10 mil-
lion pixels, which means that the number of entries in the
blurring matrix 𝐀 is about 100 trillion. Working with a
matrix of that size will require some careful thought.

4. Discrete Linear Ill-Posed Problems
The singular value decomposition (SVD) of the matrix 𝐀
offers insight into why the naïvely reconstructed image 𝐱𝐿𝑆
differs so greatly from the original 𝐱true. Consider both
vectors 𝐱true and 𝐛 of dimension 𝑚 = 𝑝𝑞. Now suppose
that 𝐀 ∈ ℝ𝑚×𝑚 has full rank and its SVD is given by

𝐀 = 𝐔Σ𝐕𝑇 =
𝑚
∑
ℓ=1

𝜎ℓ𝐮ℓ𝐯𝑇ℓ ,

where 𝐔 = (𝐮1, … , 𝐮𝑚) ∈ ℝ𝑚×𝑚 and 𝐕 = (𝐯1, … , 𝐯𝑚) ∈
ℝ𝑚×𝑚 are matrices having orthonormal columns so that
𝐔𝑇𝐔 = 𝐕𝑇𝐕 = 𝐈, and Σ = d𝑖𝑎𝑔(𝜎1, … , 𝜎𝑚), with 𝜎1 ≥ 𝜎2 ≥
… ≥ 𝜎𝑚 > 0, that is to say, Σ is an 𝑚 × 𝑚 diagonal ma-
trix, whose entries are positive and appear in decreasing
order. The scalars 𝜎ℓ are the singular values of 𝐀 and the
vectors 𝐮ℓ and 𝐯ℓ are the left and right singular vectors of 𝐀,
respectively. In particular, the singular value decomposi-
tion provides orthonormal bases defined by the columns
of 𝐔 and 𝐕, for the range and domain spaces, respectively,
so that 𝐀𝐯ℓ = 𝜎ℓ𝐮ℓ. Notice that we are assuming that the
matrix 𝐀 is square and full rank, since all the singular val-
ues are positive, and therefore invertible. This is natural
in the image deblurring model described here. In other in-
verse problems, however, the matrix 𝐀 may be square but
rank-deficient or even rectangular, situations whose solu-
tions require more detailed considerations [10].

Discrete linear ill-posed problems are characterized by
three properties, which are satisfied by the deblurring prob-
lem. First, the singular values 𝜎ℓ decrease to zero without
a large gap separating a group of large singular values from
a group of smaller ones. The plot of the singular values in
Figure 8 shows that the difference between the largest and
smallest singular values is about thirteen orders of magni-
tude, which indicates that 𝐀 is highly ill-conditioned.

Figure 8. The singular values 𝜎ℓ of 𝐀.

Second, the singular vectors 𝐮ℓ and 𝐯ℓ become more
and more oscillatory as ℓ increases. Figure 9 shows im-
ages 𝐕ℓ representing eight right singular vectors 𝐯ℓ (𝐯ℓ =
v𝑒𝑐(𝐕ℓ)) of the blurring matrix constructed above and
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Figure 9. Images corresponding to eight right singular vectors
𝐯ℓ.

demonstrates how the frequency of the oscillations in-
creases as ℓ increases. Since the blurring matrix 𝐀 spreads
out any peaks in an image, it tends to dampen high-
frequency oscillations. Therefore, a right singular vector 𝐯ℓ
representing a high frequency will correspond to a small
singular value 𝜎ℓ since 𝐀𝐯ℓ = 𝜎ℓ𝐮ℓ. This oscillatory be-
havior of the singular vectors and their relation to the sin-
gular values appears more generally with other blurring
operators defined by other kernels and in other discrete
ill-posed inverse problems due to the underlying continu-
ous model [10].

The third property of discrete linear ill-posed problems
is known as the discrete Picard condition, which says that
the coefficients of 𝐛true expressed in the left singular ba-
sis, |𝐮𝑇ℓ 𝐛true|, on average, decay to zero faster than the sin-
gular values 𝜎ℓ [10]. This is illustrated on the top of Fig-
ure 10, which shows both |𝐮𝑇ℓ 𝐛true| and the singular val-
ues 𝜎ℓ. Since 𝐮𝑇ℓ 𝐛true = 𝜎ℓ𝐯𝑇ℓ 𝐱true, the discrete Picard con-
dition holds when the original image 𝐱true is not dom-
inated by high-frequency contributions 𝐯𝑇ℓ 𝐱true for large
ℓ. This is a reasonable assumption with most digital pho-
tographs [12].

By contrast, the added white noise causes the coeffi-
cients |𝐮𝑇ℓ 𝐛| = |𝐮𝑇ℓ 𝐛true+𝐮𝑇ℓ 𝐞| to remain relatively constant
for large ℓ, as can be seen on the bottomof Figure 10. How-
ever, both plots agree for small values of ℓ.

Writing both vectors 𝐱𝐿𝑆 and 𝐱true as a linear combina-
tion of the right singular vectors 𝐯ℓ, we see that

𝐱true =
𝑚
∑
ℓ=1

𝐮𝑇ℓ 𝐛true

𝜎ℓ
𝐯ℓ

and

𝐱𝐿𝑆 =
𝑚
∑
ℓ=1

𝐮𝑇ℓ 𝐛
𝜎ℓ

𝐯ℓ =
𝑚
∑
ℓ=1

𝐮𝑇ℓ (𝐛true + 𝐞)
𝜎ℓ

𝐯ℓ

=
𝑚
∑
ℓ=1

𝐮𝑇ℓ 𝐛true

𝜎ℓ
𝐯ℓ +

𝑚
∑
ℓ=1

𝐮𝑇ℓ 𝐞
𝜎ℓ

𝐯ℓ

= 𝐱true +
𝑚
∑
ℓ=1

𝐮𝑇ℓ 𝐞
𝜎ℓ

𝐯ℓ.

Because the singular values approach zero, the coeffi-
cients |𝐮𝑇ℓ 𝐞|/𝜎ℓ grow extremely large, as seen in Figure 11.

Figure 10. The coefficients |𝐮𝑇ℓ 𝐛true| are seen on the top while
the coefficients |𝐮𝑇ℓ 𝐛| are on the bottom.

Figure 11. The coefficients of 𝐱true and 𝐱𝐿𝑆.

Therefore, 𝐱𝐿𝑆 includes a huge contribution from high-
frequency right singular vectors 𝐯ℓ, which means that 𝐱𝐿𝑆
is very oscillatory and not at all related to the original im-
age 𝐱true that we seek to reconstruct.

We also note here that the size of the coefficients shown
in Figure 11 cause the norm ‖𝐱𝐿𝑆‖2 to be extremely large.
As we will see shortly, we will consider this norm as a mea-
sure of the amount of noise in the reconstructed image.
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5. Regularization
As an alternative to accepting 𝐱𝐿𝑆 as our reconstructed
image, we instead approximate 𝐱true by filtering out the
contributions from the high-frequency singular vectors,
which are magnified through division by small singular
values, while retaining as much information as possible
from the measured data 𝐛. While we know the noise vec-
tor 𝐞 in the example presented here, in practice we do not,
which means we cannot expect to get rid of the noise com-
pletely. Therefore, the goal is to design filtering methods
that dampen the effects of the noise given that very little
is known about it. This process is known as regularization,
and there are several possible approaches we can follow.

A first natural idea is to introduce a set of filtering fac-
tors 𝜙ℓ on the SVD expansion and construct a regularized
solution as

𝐱reg =
𝑚
∑
ℓ=1

𝜙ℓ
𝐮𝑇ℓ 𝐛
𝜎ℓ

𝐯ℓ,

with the filter factors being 𝜙ℓ ≈ 0 for large values of ℓ
when the noise dominates and 𝜙ℓ ≈ 1 for small values of
ℓ, which are the terms in the expansion where the compo-
nents of 𝐛 and 𝐛t𝑟ᵆ𝑒 are closest.

One option is to define 𝜙ℓ = 1 for ℓ smaller than some
cutoff 𝑘 < 𝑚 and 𝜙ℓ = 0 otherwise. That is, we can simply
truncate the expansion of 𝐱𝐿𝑆 in terms of right singular vec-
tors in an attempt to minimize the contribution from the
terms |𝐮𝑇ℓ 𝐞|/𝜎ℓ for large ℓ. Then, the obtained regularized
solution would be

𝐱T𝑆𝑉𝐷 =
𝑘
∑
ℓ=1

𝐮𝑇ℓ 𝐛
𝜎ℓ

𝐯ℓ.

This solution is known as the truncated SVD (TSVD).
Remember, however, that the singular values in discrete

ill-posed problems approach zero without having a gap
that would form a natural cutoff point. Instead, Tikhonov
regularization chooses the filtering factors

𝜙ℓ =
𝜎2ℓ

𝜎2ℓ + 𝜆2

for some parameter 𝜆 whose choice will be discussed later.
For now, notice that 𝜙ℓ ≈ 1 when 𝜎ℓ ≫ 𝜆 and 𝜙ℓ ≈ 0
when 𝜎ℓ ≪ 𝜆. This has the effect of truncating the singu-
lar vector expansion at the point where the singular values
pass through 𝜆 but doing so more smoothly. Thus, the
Tikhonov solution can be written as

𝐱T𝑖𝑘 =
𝑚
∑
ℓ=1

𝜎ℓ
𝜎2ℓ + 𝜆2

(𝐮𝑇ℓ 𝐛)𝐯ℓ,

which may also be rewritten as

𝐱T𝑖𝑘 = (𝐀𝑇𝐀 + 𝜆2𝐈)−1𝐀𝑇𝐛.

This demonstrates that 𝐱T𝑖𝑘 solves the least squares prob-
lem

𝐱T𝑖𝑘 = argmin
𝐱

{‖𝐀𝐱 − 𝐛‖22 + 𝜆2‖𝐱‖22}, (2)

where argmin𝐱{𝑓(𝐱)} returns the value of 𝐱 which mini-
mizes the function 𝑓(𝐱).

Equation (2) is a helpful reformulation of Tikhonov reg-
ularization. First, writing 𝐱T𝑖𝑘 as the solution of a least
squares problem provides us with efficient computational
alternatives to finding the SVD of 𝐀 [10]. Moreover, the
minimization problem provides insight into choosing the
optimal value of the regularization parameter 𝜆, as we will
soon see.

By the way, this formulation of Tikhonov regulariza-
tion shows its connection to ridge regression, a data sci-
ence technique for tuning a linear regression model in the
presence of multicollinearity to improve its predictive ac-
curacy.

Let us investigate the meaning of (2). Notice that

‖𝐀𝐱true − 𝐛‖22 = ‖𝐛true − 𝐛‖22 = ‖𝐞‖22, (3)

which is relatively small. We therefore consider the resid-
ual ‖𝐀𝐱 − 𝐛‖22 as a measure of how far away we are from
the original image 𝐱true. Remember that |𝐮𝑇ℓ 𝐞|/𝜎ℓ, the con-
tributions to 𝐱𝐿𝑆 from the added noise, cause ‖𝐱𝐿𝑆‖2 to be
very large. Consequently, we think of the second term in
(2) as measuring the amount of noise in 𝐱.

The regularization parameter 𝜆 allows us to balance
these two sources of error. For instance, when 𝜆 is small,
the Tikhonov solution 𝐱T𝑖𝑘, which is the minimum of (2),
will have a small residual ‖𝐀𝐱T𝑖𝑘 − 𝐛‖2 at the expense of a
large norm ‖𝐱T𝑖𝑘‖2. In other words, we tolerate a noisy reg-
ularized solution in exchange for a small residual. On the
other hand, if 𝜆 is large, the Tikhonov solution will have
a relatively large residual in exchange for filtering out a lot
of the noise.

6. Choosing the Regularizing Parameter 𝜆
When applying Tikhonov regularization for solving dis-
crete ill-posed inverse problems, a question of high inter-
est is: How can we define the best regularization parame-
ter 𝜆? A common and well known technique is to create
a log-log plot of the residual norm ‖𝐀𝐱T𝑖𝑘 − 𝐛‖2 and the
solution norm ‖𝐱T𝑖𝑘‖2 as we vary 𝜆. This plot, as shown in
Figure 12, is usually called an 𝐿-curve due to its character-
istic shape [13].

As mentioned earlier, small values of 𝜆 lead to noisy
regularized solutions while large values of 𝜆 produce large
residuals. This means that we move across the 𝐿-curve
from the upper left to the lower right as we increase 𝜆.

Since the filtering factors satisfy 𝜙ℓ ≈ 1 when 𝜎ℓ ≫ 𝜆
and 𝜙ℓ ≈ 0 when 𝜎ℓ ≪ 𝜆, we will view the point where
𝜎ℓ = 𝜆 as an indication of where we begin filtering. Let us
first consider the value 𝜆 = 𝜆𝐴, which produces the point
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Figure 12. The 𝐿-curve in our sample deblurring problem. The
three indicated points correspond to values of 𝜆 = 𝜆𝐴, 𝜆𝐵 , and
𝜆𝐶 .

Figure 13. The choice 𝜆 = 𝜆𝐴 leads to under-smoothing.

on the 𝐿-curve indicated in Figure 12. The resulting coeffi-
cients |𝐮𝑇ℓ 𝐛| and 𝜙ℓ|𝐮𝑇ℓ 𝐛| are shown in Figure 13. Filtering
begins roughly where the plot of singular values crosses
the horizontal line indicating the value of 𝜆𝐴.

While we have filtered out some of the noise, it appears
that there is still a considerable amount of noise present.
This is reflected by the position of the corresponding point
on the 𝐿-curve since the norm ‖𝐱T𝑖𝑘‖2 is relatively large.
This choice of 𝜆 is too low, and we say that the regularized
solution is under-smoothed.

Alternatively, let us consider the regularized solution
constructed with 𝜆 = 𝜆𝐶 as indicated on Figure 12. This
leads to the coefficients |𝐮𝑇ℓ 𝐛| and 𝜙ℓ|𝐮𝑇ℓ 𝐛| shown in Fig-
ure 14.

In this case, we begin filtering too soon so that, while we
have filtered the noise, we have also discarded some of the
information present in 𝐛, which is reflected in the relatively
large residual ‖𝐀𝐱T𝑖𝑘 − 𝐛‖2. This choice of 𝜆 is too large,
and we say that the Tikhonov solution is over-smoothed.

Finally, considering the case where 𝜆 = 𝜆𝐵 gives the
Tikhonov solution that appears at the sharp bend of the
𝐿-curve in Figure 12. The resulting coefficients shown in

Figure 14. The choice 𝜆 = 𝜆𝐶 leads to over-smoothing.

Figure 15. The choice 𝜆 = 𝜆𝐵 gives the optimal amount of
smoothing.

Figure 15 inspire confidence that this is a good choice for
𝜆.

In this case, decreasing 𝜆 causes us to move upward on
the 𝐿-curve; we are allowing more high-frequency compo-
nents into the solution without improving the residual.
Increasing 𝜆 causes us to move right on the 𝐿-curve; we
are losing information as the residual increases without re-
moving relevant high-frequency components. Therefore,
𝜆 = 𝜆𝐵 is our optimal value.

Figure 16 shows the image 𝐱T𝑖𝑘 obtained using this op-
timal parameter 𝜆 = 𝜆𝐵. While it is not a perfect recon-
struction of the original image 𝐱true, it is a significant im-
provement over the recorded image 𝐛. Accurately repro-
ducing the sharp boundaries that occur in 𝐱true requires
high-frequency contributions that we have necessarily fil-
tered out.

The 𝐿-curve furnishes a practical way to identify the op-
timal regularizing parameter as there are techniques that
allow us to identify the point ofmaximal curvature by com-
puting the Tikhonov solution for just a few choices of 𝜆.
However, this technique should not be applied uncritically
as there are cases in which the optimal Tikhonov solution
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Figure 16. The reconstructed image 𝐱T𝑖𝑘 using the
regularization parameter determined by the 𝐿-curve is seen
on the right, along with the original image 𝐱true on the left for
comparison.

does not converge to the true image as the added error ap-
proaches zero.

An alternative technique, known as the Discrepancy
Principle [6], relies on an estimate of the size of the er-
ror ‖𝐞‖2. Remember from (3) that we have ‖𝐀𝐱true −
𝐛‖2 = ‖𝐞‖2. Moreover, the SVD description of 𝐱T𝑖𝑘 pro-
vides a straightforward explanation for why the residual
‖𝐀𝐱T𝑖𝑘 − 𝐛‖2 is an increasing function of 𝜆. If we know
‖𝐞‖2, we simply choose the optimal 𝜆 to be the one where
‖𝐀𝐱T𝑖𝑘 − 𝐛‖2 = ‖𝐞‖2.

Other well-known methods for choosing the parame-
ter 𝜆 include the Generalized Cross Validation (GCV) [8],
that chooses 𝜆 tomaximize the accuracywithwhichwe can
predict the value of a pixel that has been omitted, the un-
biased predictive risk estimator (UPRE) [15], and more re-
cently, methods based on learning when training data are
available [4]. Most of these methods can also be used to
find the regularization parameter 𝑘 involved in the TSVD
solution.

7. Other Regularization Techniques
Looking at the variational formulation (2) of Tikhonov
regularization, it is easy to see how it can be extended to
define other regularizationmethods by, for example, using
different regularization terms.
7.1. General-form Tikhonov regularization. The Tik-
honov regularization formulation (2) can be generalized
to

min
𝐱
{‖𝐀𝐱 − 𝐛‖22 + 𝜆2‖𝐋𝐱‖22}, (4)

by incorporating a matrix 𝐋, which is called the regular-
ization matrix [10]. Its choice is problem dependent and
can significantly affect the quality of the reconstructed so-
lution. Several choices of the regularization matrix in-
volve discretization of the derivative operators or framelet
and wavelet transformations depending on the applica-
tion. The only requirement on 𝐋 is that it should satisfy

𝒩(𝐀) ∩𝒩(𝐋) = {0},

Figure 17. The reconstructed images using the optimal
regularization parameter and the discretization of the first
derivative operator with the 2-norm regularization on the left,
and TV regularization on the right.

where 𝒩(𝐌) denotes the null space of the matrix 𝐌.
The general Tikhonov minimization problem (4) has the
unique solution

𝐱G𝑇𝑖𝑘 = (𝐀𝑇𝐀 + 𝜆2𝐋𝑇𝐋)−1𝐀𝑇𝐛
for any 𝜆 > 0.

In Figure 17, we reconstruct the image by applying the
discretization of the two-dimensional first derivative op-
erator for zero boundary conditions, that is, the matrix 𝐋
takes the form of

𝐋 = ( 𝐈 ⊗ 𝐋1
𝐋1 ⊗ 𝐈 )with 𝐋1 = (

−1 1
−1 1

⋱ ⋱
−1 1

) (5)

where ⊗ is the Kronecker product [9] defined, for matrices
𝐁 and 𝐂, by

𝐁⊗ 𝐂 =
⎛
⎜
⎜
⎝

𝑏11𝐂 𝑏12𝐂 … 𝑏1𝑚𝐂
𝑏21𝐂 𝑏22𝐂 … 𝑏2𝑚𝐂
⋮ ⋮ ⋮

𝑏𝑚1𝐂 𝑏𝑚2𝐂 … 𝑏𝑚𝑚𝐂

⎞
⎟
⎟
⎠

.

7.2. Total variation regularization. In many applica-
tions, the image to be reconstructed is known to be piece-
wise constant with regular and sharp edges, like the one
we are using as an example in this article. Total variation
(TV) regularization is a popular choice that allows the so-
lution to preserve edges [17]. Such regularization can be
formulated as

min
𝐱
{‖𝐀𝐱 − 𝐛‖22 + 𝜆‖𝐋𝐱‖1},

where 𝐋 is the anisotropic TV operator, which once dis-
cretized, is the same as (5). Looking at Figure 17, we can
see that even though we are using the same operator 𝐋, the
norms used in the regularization terms are different and
that makes a huge difference. But there is a higher cost
to finding the TV solution due to the fact that the mini-
mization functional is not differentiable. Still, there are
many algorithms to find its minimum. Here, we apply the
Iteratively Reweighted Least Squares (IRLS), which solves
a sequence of general-form Tikhonov problems [16]. So,
instead of solving only one Tikhonov problem, we solve
many.
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The TV approach is also very commonly used in com-
pressed sensing where the signal to be reconstructed is
sparse in its original domain or in some transformed do-
main [2].

8. Matrix Structures
8.1. BTTB structure. Because these are usually large-scale
problems, it is useful to consider the structure of the
matrix 𝐀. For instance, when considering a spatially
invariant blur and assuming that the image has zero
boundary conditions, the matrix 𝐀 exhibits a Block-
Toeplitz-Toeplitz-Block (BTTB) structure [12] in which 𝐀
appears as a 𝑞 × 𝑞 block-Toeplitz matrix with each block
being a 𝑝 × 𝑝 Toeplitz matrix. That is,

𝐀 =
⎛
⎜
⎜
⎜
⎝

𝐀0 𝐀−1 𝐀−2 … 𝐀−(𝑞−1)
𝐀1 𝐀0 𝐀−1 … 𝐀−(𝑞−2)
𝐀2 𝐀1 𝐀0 … 𝐀−(𝑞−3)
⋮ ⋮ ⋮ ⋱ ⋮

𝐀𝑞−1 𝐀𝑞−2 𝐀𝑞−3 … 𝐀0

⎞
⎟
⎟
⎟
⎠

,

where for ℓ = −(𝑞 − 1), −(𝑞 − 2)… , 𝑞 − 1, we have

𝐀ℓ =

⎛
⎜
⎜
⎜
⎜
⎝

𝑎ℓ0 𝑎ℓ−1 𝑎ℓ−2 … 𝑎ℓ−(𝑝−1)
𝑎ℓ1 𝑎ℓ0 𝑎ℓ−1 … 𝑎ℓ−(𝑝−2)
𝑎ℓ2 𝑎ℓ1 𝑎ℓ0 … 𝑎ℓ−(𝑝−3)
⋮ ⋮ ⋮ ⋱ ⋮

𝑎ℓ𝑝−1 𝑎ℓ𝑝−2 𝑎ℓ𝑝−3 … 𝑎ℓ0

⎞
⎟
⎟
⎟
⎟
⎠

.

Notice that to generate these matrices, we only need the
first row and column of each matrix 𝐀ℓ, which form the
Toeplitz vector 𝐚ℓ = (𝑎ℓ−(𝑝−1), … , 𝑎ℓ𝑝−1).
8.2. BCCB structure. Another feasible structure arises
when still considering a spatially invariant blur but assum-
ing that the image has periodic boundary conditions. In
this case, the matrix 𝐀 has a Block-Circulant-Circulant-
Block (BCCB) structure, that is, a 𝑞 × 𝑞 block-circulant ma-
trix with each block being a 𝑝 × 𝑝 circulant matrix,

𝐀 =
⎛
⎜
⎜
⎜
⎝

𝐀1 𝐀2 𝐀3 … 𝐀𝑞
𝐀𝑞 𝐀1 𝐀2 … 𝐀𝑞−1
𝐀𝑞−1 𝐀𝑞 𝐀1 … 𝐀𝑞−2
⋮ ⋮ ⋮ ⋱ ⋮
𝐀2 𝐀3 𝐀4 … 𝐀1

⎞
⎟
⎟
⎟
⎠

,

where for ℓ = 1, … , 𝑞,

𝐀ℓ =
⎛
⎜
⎜
⎜
⎝

𝑎ℓ1 𝑎ℓ2 𝑎ℓ3 … 𝑎ℓ𝑝
𝑎ℓ𝑝 𝑎ℓ1 𝑎ℓ2 … 𝑎ℓ𝑝−1
𝑎ℓ𝑝−1 𝑎ℓ𝑝 𝑎ℓ1 … 𝑎ℓ𝑝−2
⋮ ⋮ ⋮ ⋱ ⋮
𝑎ℓ2 𝑎ℓ3 𝑎ℓ4 … 𝑎ℓ1

⎞
⎟
⎟
⎟
⎠

.

Typically, thematrix𝐀 is not formed explicitly. Notice that
to generate these matrices, we only need the first row of
eachmatrix𝐀ℓ, 𝐚ℓ = (𝑎ℓ1 , … , 𝑎ℓ𝑝), so we do not need to store
every entry of the matrix𝐀, only the vectors that define the

matrices 𝐀ℓ. Furthermore, BCCB matrices are diagonaliz-
able by the two-dimensional Discrete Fourier Transform
(DFT) with eigenvalues given by the Fourier transform of
the first column of 𝐀. Therefore, the Tikhonov solution
can be computed efficiently as

𝐗T𝑖𝑘 = IDFT (conj(𝐒) ⊙DFT(𝐁) ⊘ (|𝐒|2 + 𝜆𝐄)) ,

where 𝐗T𝑖𝑘 is the matrix representing 𝐱T𝑖𝑘 (i.e., 𝐱T𝑖𝑘 =
v𝑒𝑐(𝐗T𝑖𝑘)), the 𝑝×𝑞matrix 𝐒 contains the eigenvalues of𝐀,
conj(⋅) denotes the component-wise complex conjugate,
|𝐒|2 is the 𝑝 × 𝑞 matrix whose entries are the squared mag-
nitudes of the complex entries of 𝐒, 𝐄 is amatrix of all ones,
and ⊙ and ⊘ denote the Hadamard product (also known
as Schur product) and Hadamard division, respectively,
which are the element-to-element operations between ma-
trices. Notice that IDFT stands for Inverse Discrete Fourier
Transform. For more details, we direct the reader to [12].
8.3. Separable blur operator. Another special case is
when the blurring operator 𝐀 is separable, which means
that the blurring can be separated in the horizontal and
vertical directions as illustrated in Equation (1); that is, the
matrix 𝐀 can be written as

𝐀 = 𝐀𝑟 ⊗𝐀𝑐.
If we have the SVDs 𝐀𝑟 = 𝐔𝑟Σ𝑟𝐕𝑇

𝑟 and 𝐀𝑐 = 𝐔𝑐Σ𝑐𝐕𝑇
𝑐 ,

we basically have the SVD of 𝐀 by writing

𝐀 = 𝐀𝑟 ⊗𝐀𝑐 (6)

= (𝐔𝑟Σ𝑟𝐕𝑇
𝑟 ) ⊗ (𝐔𝑐Σ𝑐𝐕𝑇

𝑐 ) (7)

= (𝐔𝑟 ⊗𝐔𝑐)(Σ𝑟 ⊗ Σ𝑐)(𝐕𝑟 ⊗𝐕𝑐)𝑇 , (8)

except that the elements in the diagonal matrix Σ𝑟 ⊗ Σ𝑐
might not be in the decreasing order, and therefore some
reordering might be needed. So, the Tikhonov solution
can be efficiently computed as

𝐗T𝑖𝑘 = 𝐕𝑐 (𝐝𝑐𝐝𝑇𝑟 ⊙ (𝐔𝑇
𝑐 𝐁𝐔𝑟) ⊘ ((𝐝𝑐𝐝𝑇𝑟 )2 + 𝜆𝐄))𝐕𝑇

𝑟 ,
where 𝐝𝑟 and 𝐝𝑐 are column vectors containing the diag-
onal elements of Σ𝑟 and Σ𝑐, respectively, and (𝐝𝑐𝐝𝑇𝑟 )2 is a
𝑝×𝑞matrix containing the squared elements of the matrix
𝐝𝑐𝐝𝑇𝑟 .

Notice that if 𝐀𝑟 and 𝐀𝑐 are Toeplitz matrices, then
𝐀𝑟⊗𝐀𝑐 has BTTB structure, and if 𝐀𝑟 and 𝐀𝑐 are circulant
matrices, then 𝐀𝑟 ⊗𝐀𝑐 has BCCB structure.

9. Multilevel Methods
Because dealing with images of large size is difficult, re-
searchers keep working on finding ways to solve these
large-scale inverse problems efficiently. Another possible
way to solve these problems is by means of multilevel
methods. The main idea of a multilevel method is to de-
fine a sequence of systems of equations decreasing in size,

𝐀(𝑛)𝐱(𝑛) = 𝐛(𝑛), 0 ≤ 𝑛 ≤ 𝐿,
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where the superscript 𝑛 denotes the 𝑛-th level (𝑛 = 0 be-
ing the original system), and to get either an approximate
solution, a correction to a current solution, or some other
information at each level, where the computational cost
would be smaller than solving the original system. At each
level, the right-hand side is defined by

𝐛(𝑛+1) = 𝐑(𝑛)𝐛(𝑛)

and the matrix by

𝐀(𝑛+1) = 𝐑(𝑛)𝐀(𝑛)𝐏(𝑛),
where 𝐑(𝑛) is called the restriction operator, which maps
a vector into a lower dimensional space by, for example,
sampling or averaging, and 𝐏(𝑛) is the interpolation opera-
tor, which maps a vector into a higher dimensional space.

There are many ways of defining and using such a
sequence of systems of equations to solve many differ-
ent mathematical problems. Some references related to
multilevel methods for image deblurring applications in-
clude [3,5,7,14].
9.1. Wavelet-based approach. Here, we consider the use
of wavelet transforms as restriction and interpolation op-
erators. In particular, we will work with the Haar Wavelet
Transform (HWT) because, as we will see, it preserves the
structures of the matrices involved.

The one-dimensional HWT is the 𝑝 × 𝑝 orthonormal
matrix 𝐖 defined by

𝐖 = 1
√2

⎛
⎜
⎜
⎝

1 1 0 0 … … 0 0
0 0 1 1 … … 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋮ ⋮
0 0 0 0 … … 1 1
1 −1 0 0 … … 0 0
0 0 1 −1 … … 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋮ ⋮
0 0 0 0 … … 1 −1

⎞
⎟
⎟
⎠

= (𝐖1
𝐖2

) ,

where 𝐖1 and 𝐖2 have dimension 𝑝/2 × 𝑝. The two-
dimensional HWT can be defined in terms of the one-
dimensionalHWTby𝐖2𝐷 = 𝐖⊗𝐖 ∈ ℝ𝑚×𝑚 with𝑚 = 𝑝2.
So, we define the restriction operator by 𝐑 = 𝐖1 ⊗𝐖1 ∈
ℝ(𝑚/4)×𝑚 and the interpolation operator by 𝐏 = 𝐑𝑇 .

To motivate the use of HWT as a restriction operator,
on the left of Figure 18, we can see the coarser version of
𝐱t𝑟ᵆ𝑒 defined by 𝐱(1) = 𝐑𝐱t𝑟ᵆ𝑒. This is a 32 × 32 image
that still conveys most of the information in the original
64 × 64 image with the letter H, which demonstrates that
reconstructing a coarse version may be enough for some
applications. This can allow us to compress images to save
storage space or bandwidth. For instance, suppose that
before transmitting the image 𝐛, we compute its coarser
version 𝐛(1) = 𝐑𝐛 and transmit just 𝐛(1) (see right of Figure
18). The image 𝐛(1) might have enough information to
recover 𝐱(1).

What is the right blurring matrix to recover 𝐱(1) from
𝐛(1)? Using our example, we will show that using 𝐀(1) =
𝐑𝐀𝐏 does a good job. Figure 19 shows the Tikhonov and
TV solutions of the system 𝐀(1)𝐱 = 𝐛(1). Notice that we are

Figure 18. The compressed true image 𝐱(1) on the left and
blurred and noisy image 𝐛(1) on the right.

solving a system with a 1, 024×1, 024matrix instead of the
original system with a 4, 096 × 4, 096 matrix.

The following theorem shows that the HWT preserves
the structures of the matrices described before.

Theorem 1 ([7]). Let 𝐓 be a 𝑝 × 𝑝 matrix with Toeplitz
structure and with Toeplitz vector 𝐭, and 𝑝 = 2𝑠. Then, the
2𝑠−1×2𝑠−1 matrix 𝐓1 = 𝐖1𝐓𝐖𝑇

1 is also Toeplitz with Toeplitz
vector 𝐭1 = ̃𝐭(1 ∶ 2 ∶ 2𝑝 − 3), where ̃𝐭 = �̃�𝐭 with �̃� be-
ing the Toeplitz matrix with Toeplitz vector with all zeros and
𝐭0 = 𝐭−2 = 1/2 and 𝐭−1 = 1.

Figure 19. The reconstructed coarse images 𝐱reg of size 32× 32,
obtained using the optimal regularization parameter and the
discretization of the first derivative operator with the 2-norm
regularization on the left, and TV regularization on the right.

A similar result can be shown for circulant matrices.

Corollary 1. Let 𝐂 be a 𝑝 × 𝑝 circulant matrix and 𝑝 = 2𝑠.
Then, the 2𝑠−1 × 2𝑠−1 matrix 𝐂1 = 𝐖1𝐂𝐖𝑇

1 is also circulant.

Let us consider the case when 𝐀 = 𝐀𝑟 ⊗ 𝐀𝑐 ∈ ℝ𝑚×𝑚.
Then, by a property of the Kronecker product, we have that

𝐀(1) = (𝐖1 ⊗𝐖1)(𝐀𝑟 ⊗𝐀𝑐)(𝐖1 ⊗𝐖1)𝑇

= (𝐖1𝐀𝑟𝐖𝑇
1 ) ⊗ (𝐖1𝐀𝑐𝐖𝑇

1 )
= 𝐀(1)

𝑟 ⊗𝐀(1)
𝑐 .

The matrix 𝐀(1) ∈ ℝ(𝑚/4)×(𝑚/4) is separable. Further-
more, by Theorem 1, if 𝐀𝑟 and 𝐀𝑐 are Toeplitz matrices,
then 𝐀(1)

𝑟 and 𝐀(1)
𝑐 are too. Applying this same argument

repeatedly, we obtain that𝐀(𝑛) is separable by two Toeplitz
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matrices and therefore BTTB for all levels 𝑛 = 0, … , 𝐿. Simi-
larly, by Corollary 1, 𝐀(𝑛) is separable by two circulant ma-
trices and therefore BCCB for all levels 𝑛 = 0, … , 𝐿. There-
fore, the initial structure of the matrix is inherited by all
the levels.

For the case when we have BCCB structures, we can
solve the corresponding Tikhonov systems at all levels us-
ing Fourier-based methods. If we are dealing with sepa-
rable matrices with Toeplitz structure, we could go down
several levels until we can compute the SVD of 𝐀(𝑛)

𝑟 =
𝐔(𝑛)
𝑟 Σ(𝑛)𝑟 (𝐕(𝑛)

𝑟 )𝑇 and 𝐀(𝑛)
𝑐 = 𝐔(𝑛)

𝑐 Σ(𝑛)𝑐 (𝐕(𝑛)
𝑐 )𝑇 , and use that

𝐀(𝑛) = 𝐀(𝑛)
𝑟 ⊗𝐀(𝑛)

𝑐

= (𝐔(𝑛)
𝑟 Σ(𝑛)𝑟 (𝐕(𝑛)

𝑟 )𝑇) ⊗ (𝐔(𝑛)
𝑐 Σ(𝑛)𝑐 (𝐕(𝑛)

𝑐 )𝑇)
= (𝐔(𝑛)

𝑟 ⊗𝐔(𝑛)
𝑐 )(Σ(𝑛)𝑟 ⊗ Σ(𝑛)𝑐 )(𝐕(𝑛)

𝑟 ⊗𝐕(𝑛)
𝑐 )𝑇 .

This gives us basically the SVD of 𝐀(𝑛), except that the ele-
ments in the diagonal matrix Σ(𝑛)𝑟 ⊗ Σ(𝑛)𝑐 might not be in
the decreasing order, and therefore some reordering would
be needed.

10. Conclusions and Outlook
Our intention has been to introduce readers to the prob-
lem of image deblurring, the mathematical issues that
arise, and a few techniques for addressing them. As men-
tioned in the introduction, these techniques may be ap-
plied to a wide range of related problems. Indeed, we out-
lined a number of alternative strategies, for example, in
choosing appropriate boundary conditions or in selecting
the best regularization parameter, as some strategies are
better suited to a specific range of applications.

Most of the methods that we have described are pri-
marily based around direct factorizations. However, when
dealing with unstructured and very large matrices, iterative
methods may need to be used instead. There is an exten-
sive literature on iterative methods [18], but a discussion
about them is outside the scope of this introductory arti-
cle.

We believe this subject is accessible to both undergrad-
uate and graduate students and can serve as a good intro-
duction to inverse problems, working with ill-conditioned
linear operators, and large-scale computation. The visual
nature of the problem provides compelling motivation for
students and allows the efficacy of various techniques to be
easily assessed. Some introductory books on this subject
include [11,12,20].

In addition, this field is an active area of research that
is connected to recent developments in machine learning
and convolutional neural networks. For example, many
classical techniques that have traditionally been used in
image deblurring can be used to speed up the training of
machine learning models, such as neural nets designed
to classify images. Earlier we mentioned that Tikhonov

regularization is related to ridge regression, a fundamen-
tal tool in machine learning. Indeed, the connection to
machine learning goes much deeper.

The code to generate the figures appearing in this ar-
ticle is available at https://github.com/ipiasu
/AMS_Notices_AEP. This manuscript contains
only a limited number of references because jour-
nal rules restrict the maximum number of refer-
ences to 20; additional references can also be found
in the github link.
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