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Introduction
Last year I wrote a book, aimed at a general audience, that
explores how data-driven algorithms have impacted the
news industry and our ability to separate fact from fiction
[6].1 This article zeros in on, and amplifies, some of the
more mathematical aspects of that story in what I hope
will be both informative and engaging to a mathematical
audience. As you’ll soon see, there are many fun ingredi-
ents at play here, ranging from elementary notions (frac-
tions, linear functions, and weighted sums) to intermedi-
ate level concepts (eigenvalues and Shannon information)
to sophisticated uses of probability theory, network analy-
sis, and deep learning.

This topic of information and misinformation is com-
plex, multifaceted, and interdisciplinary, and in my opin-
ion more mathematicians should try to enter the public
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discussions surrounding it and undertake research related
to it. I believe we, the math community, can do for mis-
information what we have been doing for topics like ger-
rymandering, where mathematicians have assisted policy
makers and helped shape the discourse while also discov-
ering marvelous math topics to explore [9]. I hope this
article helps launch some readers down this path, and I
would be happy for interested individuals to reach out to
me on this.

Supervised Learning
Not all of the mathematical aspects of misinformation dis-
cussed here involve machine learning, but many of them
do, so let’s start with a very quick review. The basic idea
of supervised learning is to assume that a target variable 𝑦
depends on a collection of predictor variables 𝑥1, . . . , 𝑥𝑝 in
some mostly deterministic way that can be deduced from
the data. When the target variable isℝ-valued this is called
regression, whereas when it takes values in some finite set
this is called classification. When the predictor variables are
ℝ-valued, regression takes the form

𝑦 = 𝑓�⃗�(𝑥1, … , 𝑥𝑝),
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where 𝑓�⃗� ∶ ℝ𝑝 → ℝ is a function that depends on a po-
tentially large number of parameters �⃗� ∈ ℝ𝑁 . The under-
lying process may be more complex than this functional
relationship—it might even be that different values of the
target variable are observed for the same values of the pre-
dictor variables—but this simple setup is good enough to
make useful predictions in most situations.

Training data refers to a set 𝑆 of observed values of the
predictors and target,

{(𝑥1,𝛼, … , 𝑥𝑝,𝛼, 𝑦𝛼)}𝛼∈𝑆 ⊆ ℝ𝑝+1.
For regression, this is used to adjust the parameters �⃗�
to minimize the difference between the predicted value
𝑓�⃗�(𝑥1,𝛼, … , 𝑥𝑝,𝛼) and the actual value 𝑦𝛼 (or some cost func-
tion applied to this difference) when 𝛼 ranges over a set
disjoint from 𝑆 called the test data; for classification we try
to minimize the misclassification rate (fraction of predic-
tions that are incorrect) on the test data, or some other er-
ror measurement derived from the confusion matrix (the
matrix whose 𝑖𝑗 entry records the number of data points
of class 𝑖 that were predicted to have class 𝑗).

The simplest example is linear regression, in which

𝑓�⃗�(𝑥1, … , 𝑥𝑝) = 𝑤0 + 𝑤1𝑥1 +⋯+𝑤𝑝𝑥𝑝.
A neural network is an extension of this where instead of re-
quiring 𝑓 to be linear, we let 𝑓 be a composition of linear
and non-linear functions of a certain type: 𝑓 is a composi-
tion of any number of pairs consisting of a vector-valued
linear function followed by the component-wise applica-
tion of the activation function (typically the sigmoid func-
tion or the piecewise linear function that is 0 on nega-
tive numbers and the identity on non-negative numbers).
Each such pair is called a layer in the network, and when
the number of layers is ≥ 2 this form of machine learn-
ing is called deep learning. In contrast to linear regression,
the number of parameters 𝑁 in a neural network is usually
much larger than the number of predictors 𝑝, and the pa-
rameters are very difficult to interpret. Much more could
be said, but this is enough for what follows. For more on
deep learning, I recommend the book Deep Learning [8].

Text Generation
You’ve likely heard about troll farms cranking out fake
news in the lead-up to the 2016 US presidential election.
One concern surrounding the powerful advances in deep
learning in recent years is that people could use neural net-
works to instantly and inexpensively generate an unlim-
ited number of fake news articles. These fears reached a
crescendo (or at least, a local maximum) in 2020 when a
deep learning text generation system called GPT-3 was re-
leased.

Here’s the supervised learning task GPT-3 was trained
on. A data point is a passage of 𝑛 words, the predictors are
the first 𝑛 − 1 words, and the target is the 𝑛th word. For a

document with 𝑚 ≥ 𝑛 words, a window of 𝑛 consecutive
words is slid across, oneword at a time, to produce𝑚−𝑛+1
training points:

Input: “The dog likes to play fetch with me,” 𝑛 = 6
1st prediction: The dog likes to play ???

2nd prediction: dog likes to play fetch ???

3rd prediction: likes to play fetch with ???

GPT-3 “read” in this manner a massive number of web-
pages and scanned books. When the prediction was cor-
rect it moved on to the next, whereas when it was incorrect
the neural network parameters were adjusted based on the
prediction error. To give a sense of the enormous scale, all
of Wikipedia was included yet comprised only 0.5% of the
training set.

When training a neural network to, say, recognize traffic
lights in photos, humans need tomanually indicate which
training photos have traffic lights and which don’t.2 In
contrast, no manual data labeling was necessary for GPT-
3’s training task because both the predictor variable values
and the target variable values come directly from the input
text. This is called self -supervised learning, and it is cru-
cial for scaling up the training process to the magnitude
needed for convincing text generation.

The computational resources to train GPT-3 cost about
$10million. That’s a lot, but the neural network need only
be trained once—after that, it can be used to generate text
by feeding it a passage of text and having it predict words
one at a time. For example, one can feed GPT-3 the head-
line to a (possibly made-up) news story and GPT-3 will
extend it to a full article. You don’t need to know com-
puter programming or neural networks to use GPT-3—you
just type/paste your prompt into a webpage then click a
button. The price to generate 10,000 words is about one
penny. Let’s give it a try:
Headline (user prompt): Mathematician solves famed mil-
lennium problem.
Article (GPT-3 text): A mathematician has solved a famed
millennium problem that experts said had “defied all attempts”
at a solution for more than 500 years. The problem, known as
the ABC conjecture, deals with the relationship between whole
numbers and prime numbers. The conjecture was first pro-
posed by French mathematicians in the early 19th century, but
it was not until 2012 that Japanese mathematician Shinichi
Mochizuki claimed to have solved it. However, his proof was
deemed too complex to be verified by his peers, leading some to
doubt its validity. Now, after eight years of work, British math-
ematician Sir Andrew Wiles has published a paper in which
he provides a new and simpler proof of the conjecture. If the

2That’s why this is a common task for captcha systems: your answers provide the
training data for a supervised learning system, presumably one related to self-
driving cars.
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proof is verified, it could have major implications for the field of
number theory, as well as for cryptography.

This sounds plausible enough that I Googled just now
to see if this really happened and I missed the news! No,
it did not—GPT-3 succeeded in creating superficially con-
vincing mathematical misinformation. However, there are
some humorous defects here—did you catch any? The
ABC conjecture is not a millennium problem (although,
if you’re like me, you had to consult the list to double-
check this), and if it was first proposed in the 19th cen-
tury (it wasn’t, by the way—it was the late 20th century,
and only one of the two mathematicians who proposed it
is French) then how has it defied a solution for 500 years?
In general, GPT-3 output has a loose relationship with real-
ity; nowhere in its training process is truth prioritized over
falsehood. Getting GPT-3-type systems to produce more
factual output is an active area of research [1,10,13].

GPT-3 doesn’t just predict the most likely word to fol-
low a passage of text—it estimates a probability distribu-
tion on the possible words. (For instance, for the prompt
“The dog likes to play. . . ” it might estimate that the next
word is “fetch” with 50% probability, “chase” with 25%
probability, and “rough” with 25% probability.) One op-
tion is to always choose the most probable word, but then
you can only get one completion for each prompt,3 so
more common is to sample from this distribution—so that
themost likely word is selectedmost often, but rarer words
will be selected sometimes. In practice, people usually do
this and produce several GPT-3 completions for a prompt
then manually select the most convincing/useful of them.
This is what I did with the above millennium problem
prompt—some of the GPT-3 completions were not nearly
as convincing or interesting as the one I included here, and
many essentially just recycled old press releases fromwhen
Perelman solved the Poincaré conjecture.

One method proposed to detect text generated by sys-
tems like GPT-3 is to use such a system to score the prob-
ability of each word in the text and see whether low prob-
ability words appear at a disproportionately high rate (if
they do, this suggests that the text is organic) [16]. This
works reasonably well when the system used to generate
the text is very similar to the system used to score the prob-
ability of the words. But there are many variants of GPT-3
available now, with many more appearing routinely, so
this detection method is not too practical.

Thus far, GPT-3 has not led to the flood of fake news
that some people expected—perhaps because the bottle-
neck is not writing fake news, it is writing fake news that
will go viral, and at least so far that requires more of a

3Another amusing issue with always selecting the most probable word is that
this is the least informative word, in the sense of Shannon’s information the-

ory: the information of an event with probability 𝑝 is log( 1
𝑝
), so the more prob-

able a word is, the less informative it is.

human touch (additionally, most fake news is low qual-
ity and cheap to write manually anyway). But GPT-3
does raise the prospect of troll farms mass producing fake
news and running large-scale experiments to study viral-
ity empirically with unprecedented precision and scale.
Moreover, GPT-3 can be used to power more humanlike
automated bot accounts on social media—and bots rou-
tinely play a large role in disinformation campaigns since
they can create artificial engagement on social media posts
(more on this later).

Deepfakes
One month into Russia’s invasion of Ukraine, a deepfake
video of President Zelensky circulated online in which
he tells Ukrainians to lay down their arms and surren-
der. Fortunately the video was low-quality and didn’t de-
ceive many people, and Zelensky himself addressed it al-
most immediately clarifying that it was fake. To hear more
about this incident and the history and possible future of
deepfake videos in politics you can check out a recent Slate
podcast episode4 I was on; here in this article I will focus
instead on the mathematical question of how deepfakes
are made.

There are many different types of deepfake videos (face
swap, lip sync, puppeteering, speech synthesis, etc.) and
many different neural network architectures involved, but
here I’ll just give a flavor of the topic by discussing one par-
ticular form (see [11] for more) that relies on my favorite
concept in all of deep learning: the autoencoder. I’ll also
discuss a distinct use of the term “deepfake” in which a
neural network doesn’t just edit faces, it creates new ones
from scratch (though so far this latter technique applies
only to photos, not videos).
Autoencoders. Recall that in self-supervised learning the
values of the target variable are inferred directly from the
data in an automatic fashion rather than entered labori-
ously by hand. One ingenious form of self-supervised
deep learning is the autoencoder. This is a neural network
that learns to compress data by passing it through a low-
dimensional space. What’s so slick about this is that usu-
ally the goal isn’t the compression itself; compressing data
is merely a trick to encourage the network to find mean-
ingful patterns in the data.

Here’s how it works. An autoencoder learns to approxi-
mate the identity function id ∶ ℝ𝑝 → ℝ𝑝. That is, the out-
put is a 𝑝-dimensional vector ⃗𝑦 and it is trained by setting
⃗𝑦 = ⃗𝑥, meaning the target values for each training point

are by fiat equal to the predictor values. The key is that the
autoencoder consists of a sequence of progressively nar-
rowing layers followed symmetrically by a sequence of pro-
gressively widening layers—meaning it decomposes into a

4https://slate.com/podcasts/what-next-tbd/2022/03/why-the
-zelensky-deepfake-failed.
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composition

ℝ𝑝 → ℝ𝑝1 →⋯→⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟
encoder

ℝ𝑝ℓ →⋯→ ℝ𝑝1 → ℝ𝑝⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟
decoder

,

where 𝑝 > 𝑝1 > ⋯ > 𝑝ℓ. The result is that the neural
network must learn from the training data how to repre-
sent the original 𝑝-dimensional data in a much smaller
𝑝ℓ-dimensional space.

You can think of this like zipping a file—except rather
than a human programmer specifying the compression al-
gorithm, the neural network figures one out on its own. In-
deed, passing the data points from the original ℝ𝑝 down
to ℝ𝑝ℓ is like zipping, then passing them back to the fi-
nal ℝ𝑝 is unzipping (the official parlance is encoding and
decoding), and the supervised learning task means the out-
put should resemble the input as closely as possible. By
the magic of deep learning, the neural network typically
uncovers meaningful multi-scale structure in the data in
order to do this, and the structure it uncovers and exploits
is specific to the type of data it is exposed to.

If the training data set is a collection of 100×100 images
of different human faces, then typically 𝑝 = 30,000 as an
image is represented by the three RGB intensity values for
each pixel, and if, say, 𝑝ℓ = 50, then the neural network
must find a way of encoding each face using only 50 num-
bers. An overly anthropomorphic version of this would
be to describe each face with numbers representing things
like the person’s age, skin tone, hair color, hair style, the
shape of their face, etc. In reality, the features the neural
network learns are not nearly so recognizable to our hu-
man minds, but they are nonetheless a distillation of the
raw pixel values into larger-scale structures.

If the training set consists of many images of one in-
dividual’s face, rather than images of many different indi-
viduals, then the neural network doesn’t need to encode
things like hair color and skin tone and the shape of the
face, so it might instead develop features recording things
like the angle of the face and the extent towhich themouth
is open, the lips are smiling, and the eyebrows are raised
(this description is continuing our overly anthropomor-
phized version of what actually happens). That is, the neu-
ral network focuses less on distinguishing different indi-
viduals and more on distinguishing different expressions
on the particular individual. This is the key behind the
autoencoder’s use in the face swap deepfake.
Face swap. Suppose the goal is to swap person A’s face
onto a movie of person B. The problem reduces from
movies to still images by working one frame at a time, and
locating faces in an image is a standard task (usually solved
by deep learning), so we’re reduced to the following: we
want to transform an image of face B into an image of face
A—but when doing so, we need the new face A to take
on the orientation and expression exhibited in the given

Face A A swapped onto B Face B
Figure 1. Illustration of a face swap.

image of face B (see Figure 1). Here’s the autoencoder ap-
proach.

We typically think of an autoencoder as comprising an
encoder and a decoder that are trained in tandem. For the
face swap, we’ll use two autoencoders (one trained on im-
ages of face A, one on images of face B), but we’ll force
them to share the same encoder: during the training pro-
cess, whenever the parameters in the encoding portion of
autoencoder A are updated, the corresponding parameters
in autoencoder B are forcibly updated in the exact same
manner, and vice versa. This way, the low-dimensional
features that are developed for encoding both faces will
agree: if the first number measures how much face A is
smiling, then it will also measure how much face B is smil-
ing. Then all we do is encode face B (with either encoder,
since they’re the same) and then decode it with the decoder
from autoencoder A. This computes all the salient proper-
ties of face B’s expression then produces an image of face
A with the same properties. If B was looking to the left
with a big smile, then we’ll get A’s face looking to the left
with a big smile. Doing this frame-by-frame is the cleverly
elegant autoencoder approach to face swap deepfakes.
Deepfake profile photos. The term “deepfake” has two
distinct meanings: (1) any form of video editing based
on neural networks (this is what we have discussed so
far), and (2) synthesizing lifelike photos of non-existing
human faces. Unsurprisingly, the second form of deep-
fake has also been weaponized for disinformation. For
instance, in September 2020 both Facebook and Twitter
announced that they had uncovered a group of coordi-
nated inauthentic accounts spreading anti-Biden disinfor-
mation; the accounts all used deepfake profile photos and
weremasquerading as American users, when in reality they
were fake personas operated by the Russian government.
Interestingly, what tipped Facebook and Twitter off to
these accounts wasn’t their use of deepfake photos, it was
the network structure of their friends/followers/actions—a
topic we’ll return to later in this article.

The reason nefarious actors use deepfake photos to hide
their tracks instead of just grabbing random profile pics off
the internet is because the latter are easily uncovered by a
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“reverse image search.” If you drag and drop an image file
onto Google’s search bar, then Google will scour the web
for similar images. So if you use someone else’s photo for
your profile, it’s easy to find the original source, thereby
revealing the deception; if you use a deepfake photo, then
there is no original source to find.

The math behind reverse image search is quite cool. A
standard method is the following: (1) train a large autoen-
coder on a huge database of photos then encode all the im-
ages on the web as well as the input image; (2) the vectors
for the former that are closest in some metric to that of the
latter are the most similar images. Computing distances
directly on the original images, viewed as matrices, does
not work well because even minor modifications (crop-
ping, rotation, translation, adjustment of the color palette,
etc.) usually result in very distant imagematrices. The low-
dimensional representations autoencoders develop tend
to capture the spirit of the image, so those kinds of mi-
nor modifications typically have little if any impact on the
encoded version of the image. Morally speaking, encoding
with a suitable autoencoder introduces a sort of continuity
with respect to basic image manipulations that does not
exist at the raw pixel level.

Deepfake photos are all created by some refinement of
a general method called a generative adversarial network, or
GAN for short. The idea is to pit two neural networks
against each other: the generator tries to create new data
points that look similar to the ones in the training set,
while the discriminator tries to determinewhich data points
are real training data and which are fake ones created by
the generator. Both networks start out terrible at their re-
spective jobs but then throughout the training process they
push each other to steadily improve. It is a marvelous idea,
though one should be careful about leaning too heavily on
an intuitive view of this duel: the two networks improve
and “learn” throughout the training process, but what and
how they learn does not typically align with how human
minds learn.

There are some interesting math questions surrounding
GANs. For instance, this dueling neural networks setup
can be viewed in game-theoretic terms, and a recent pa-
per showed that GANs do not always have Nash equilib-
ria but they do have a different form of zero-sum game
equilibrium [3]. Since GANs can be used to generate new
data points that resemble the data points in any setting,
they have myriad applications, such as augmenting small
training sets for supervised learning tasks; deepfake profile
photo generation is when one applies GANs to a training
set consisting of photos of human faces.5

5Think you can tell deepfakes from real images? Try visiting the website
https://www.whichfaceisreal.com/.

Facebook’s News Feed
For years it has been believed that Facebook’s News Feed
algorithm is responsible for an unsettling amount of the
viral spread of misinformation online. Awareness of this
issue came to the fore andwas sharply clarified by the trove
of internal documents released by Facebook employee-
turned-whistleblower Frances Haugen in the fall of 2021.
The basic problem is that Facebook algorithmically ranks
the order of the posts seen by all of its 3 billion users,
and it does this primarily by pushing the posts that receive
the most engagement (likes, shares, comments, emoji reac-
tions, etc.) to the top—but human psychology is such that
there’s a correlation between the posts we engage with the
most and posts that are divisive, offensive, and misinfor-
mative. To better understand this problem, let’s dig into
the math behind Facebook’s News Feed algorithm.
The math behind the algorithm. The details of Face-
book’s algorithm are kept closely guarded, but the broad
strokes were outlined in a company blog post. Each user
has a set of potential posts they could be shown (the posts
by their friends, the pages they follow, the groups they’re
in, etc.). Let’s fix a user and a moment in time. Face-
book uses deep learning to predict the probability that this
user will like, share, short comment on, long comment on,
etc., each post in this set. Also predicted is the probabil-
ity of each post violating a platform policy (Facebook pro-
hibits hate speech, incitement to violence, and certain spe-
cific forms of misinformation). All these probabilities—
call them 𝑞1, . . . , 𝑞𝑟—are aggregated into a single number,
called the post’s value 𝑣 (to the given user at the given mo-
ment in time), by taking a weighted sum of the probabil-
ities: 𝑣 = ∑𝑤𝑖𝑞𝑖. The weights 𝑤𝑖 don’t just depend on
the type of engagement 𝑖, they also depend on a variety
of factors such as how close the poster is believed to be
to the user (posts by closer friends are given more value)
and the category of the post (Facebook has at times tem-
porarily lowered the weight on political posts). After a few
additional tweaks, Facebook orders your News Feed posts
by these value scores 𝑣.

Unsurprisingly, the weights on the engagement proba-
bilities are positive whereas the weight on the policy vio-
lation probability is negative. Actually, the weight of the
angry reaction was originally set to 5 times the weight of a
like, but it was eventually lowered to 0—because it turns
out angry reactions correlate with a lot of bad things, like
politically polarizing content and misinformation.

In a recent Boston Globe opinion article [7], I encour-
aged Facebook to create a control panel where users can
see and adjust all these weights. It’s unclear what impact
this would have on things like misinformation in the ag-
gregate, but at least it would allow users to customize their
individual experiences—which is important since not ev-
eryone is impacted by the different forms of dangerous
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content equally. For instance, users in marginalized pop-
ulations that are frequently subject to online harassment
may want to weight the policy violation probability much
more heavily. I also argue that congress should require
all large online platforms using data-driven algorithms for
ranking information to allow users to toggle on/off the var-
ious data sources the algorithms rely on. Lawyers may call
this data privacy and transparency; as a mathematician, I
call it letting people choose the inputs to the functions that
determine what we see online.

The internal Facebook research leaked by Haugen re-
vealed some fascinating statistics about harmful content—
and how to potentially reduce it. Civic content classified
as toxic receives twice as many haha reactions and 33%
more angry reactions than heart reactions (this discovery
factored in to Facebook’s decision to drop the angry weight
to zero). Comments with heart reactions are 15 times less
likely to be policy violations. Reshare depth refers to the
length of chains of reshares (e.g., if A posts something then
A’s friend B sees it and reshares then B’s friend C sees this re-
share and reshares it, this is depth 2 since it is 2 steps away
from the original poster)—and it was found that strongly
down-weighting posts based on reshare depth would re-
duce civic misinformation in the form of links by about
25% and in the form of photos by about 50%. Another
interesting mathematical detail revealed in the leaked doc-
uments deserves its own subsection—so let’s have at it.
Deceptive denominators. In numerous congressional
hearings and transparency reports, Mark Zuckerberg and
other Facebook officials have touted the success of their
machine learning approach to automatically detecting and
removing hate speech, repeatedly citing a success rate
around 94%. But upon closer inspection, they never as-
serted that 94% of hate speech is taken down—what they
asserted is that among the hate speech that Facebook takes
off its platform, 94% of it was detected algorithmically
(the rest was flagged manually by users). So how much
of the total hate speech on the platform does Facebook
manage to take down?

Leaked internal documents revealed that the figure is
only around 3–5%, and in some locations it is as low as
half a percent. Facebook never outright lied about this,
but it acted deceptively by routinely providing the impres-
sively high percentage while keeping the shockingly low
percentage secret—even when members of Congress di-
rectly asked how successful Facebook is at removing hate
speech. I discussed this in an article for Wired [5] that was
illustrated nicely by AMS Vice President Francis Su (see Fig-
ure 2). The punchline is that denominators really matter:
when looking only at the hate speech that Facebook takes
down, their machine learning algorithms work very well—
but when looking at all hate speech on the platform, they
are, alas, terrible.

Figure 2. Illustration by Francis Su of Facebook’s deceptive
measurement of hate speech.

That said, Facebook was quick to point out that their
content moderation is not a binary leave up/take down
decision. As you recall, each post has an estimated prob-
ability of violating a policy (such as hate speech); when
this probability is above a high threshold the post is taken
down automatically, but even when this threshold is not
reached the post is down-ranked by the News Feed al-
gorithm according to this probability. Facebook rightly
pointed out6 that in recent years they have used this ap-
proach quite effectively to reduce the prevalence of hate
speech—defined as the fraction of hate speech posts users
see on average relative to all posts they see. Down-ranking
posts reduces their prevalence without reducing the total
amount of hate speech on the platform.

It has proven much harder to measure how much mis-
information is on platforms like Facebook and how much
of it is taken down by various forms of moderation—in
large part because there is no widely accepted definition
of misinformation.

Google Rankings
Days after the 2016 US presidential election, the top link
in a Google search for “final election results” was a low-
quality WordPress blog falsely asserting that Trump had
won the popular vote. This was just one very notable in-
stance of misinformation climbing the ranks of Google
searches. Many other instances had been noted in the lead-
up to the election, and people began to wonder whether
this had played a role in Trump’s victory—a victory that
caught most experts by surprise. Shortly after the election,
Google’s CEO Sundar Pichai was asked not just whether vi-
ral misinformation (or “fake news,” as it was called then)
might have played a role in the election, but whether it
might have played a decisive role (meaning that it’s im-
pact was enough to swing the electoral college victory from
Clinton to Trump), and this was his response: “Sure. You
know, I think fake news as a whole could be an issue.”

How did a junk blog post and other trashy news sources
climb to the top of Google’s search rankings? To answer
this, we need to step back to the origins of Google—and
the linear algebra underlying it.

6https://about.fb.com/news/2021/10/hate-speech-prevalence
-dropped-facebook/.
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Let’s start with a slightly different question: How should
one measure a user’s importance in a social media net-
work? To make things concrete, let’s consider Twitter,
which forms a directed graph in which users are vertices
and an edge from 𝑈 to 𝑈′ means 𝑈 follows 𝑈′. The most
obvious measure of influence of a vertex is its in-degree,
which here is a user’s number of followers. But the ex-
pected number of users your tweets will reach doesn’t just
depend on your number of followers—it also depends on
the number of followers your followers have, and the num-
ber of followers they have, etc. So we’d like a deeper way
of measuring influence in a network.

Given a graph with vertices 𝑣𝑖, one would like to assign
non-negative numbers 𝑥𝑖 to the vertices such that the num-
ber on each vertex is proportional to the numbers on its
neighbors:

𝑥𝑖 = 𝑐∑
𝑗
𝑎𝑖𝑗𝑥𝑗 ,

where 𝑎𝑖𝑗 are the entries of the adjacency matrix 𝐴. This
is the matrix equation ⃗𝑥 = 𝑐𝐴 ⃗𝑥, so it is asking for ⃗𝑥 to
be an eigenvector (with eigenvalue

1
𝑐
). Since we are only

interested in non-negative numbers here, by the Perron-
Frobenius Theorem there is a unique (up to scaling) solu-
tion ⃗𝑥. These vertex numbers 𝑥𝑖 are called the eigenvector
centrality scores for the graph. They have a beautiful ran-
domwalk interpretation: when starting at random vertices
in the graph and taking steps to neighboring vertices with
uniform probability, the eigenvector centrality scores are
proportional to the fraction of time spent at each vertex.
Twitter publicly lists the follower counts on all accounts
(Barack Obama currently holds the #1 spot, followed by
Justin Bieber in #2 and Katy Perry in #3); I wish Twitter
also listed the the eigenvector centrality scores so users
could readily see which users are the most influential in
this deeper sense.

The world wide web can be viewed as a directed net-
work in which webpages are the vertices and links are rep-
resented by directed edges. Keeping in mind that people
sometimes navigate the web by typing in a URL instead
of clicking a link, a modified random walk process is to
fix a probability 𝑝 and then at each step with probability 𝑝
walk to one of the neighboring vertices, as before, but with
probability 1 − 𝑝 jump directly to any vertex in the graph
(chosen with uniform probability). The fraction of time
spent at each vertex in this modified random walk process
still has an eigenvector interpretation, and—more impor-
tantly for us—it was the original method Google used to
rank search results; it is called PageRank. The name is a
bit of wordplay: it refers both to its application in ranking
webpages and to Google co-cofounder Larry Page.7

7Incidentally, the other Google co-founder, Sergey Brin, is the son of Michael
Brin, a mathematics professor in dynamical systems. And speaking of math in
the family of tech giant founders: the most popular Russian social media site,

The problem with using a mathematical formula like
PageRank for ranking search results is that over time peo-
ple learn how to game the system—and even without overt
attempts to game rankings, there’s nothing preventing fake
news publishers and other forms of misinformation from
rising to the top. This is dangerous since people typically
think that if something shows up at the top of Google then
it’s true.

Coordinated disinformation campaigns, sometimes or-
ganized by foreign governments, were able to land propa-
ganda high on Google search rankings by building large
networks of sites that linked to each other and that drew
additional links from popular far-right “news” sites. And
when a popular but low-quality site like Breitbart linked to,
say, a lowly blog post about the election results, suddenly
that blog post catapulted up in the search rankings.

Over time—and especially during a concerted and
continuing push following 2016 to “elevate quality
journalism”—Google has developed additional signals
that go into search rankings. Google now uses an army
of 30,000 low-paid contract workers who manually evalu-
ate search ranking results according to a 168-page instruc-
tionmanual they are provided, and their by-hand rankings
form the training data for machine learning algorithms.
Google has been using these manually trained machine
learning signals together with the original PageRank mea-
sure together with additional factors, such as direct assess-
ments of the quality of news sources. We don’t know too
much more than that because the details are kept secret.

The punchline to this story is that Google has not solved
its misinformation problem but it has made tremendous
strides on it since 2016, largely by admitting that a purely
mathematical ranking system is insufficient and human in-
sight is needed to make sure fake news does not rise to the
top.

Network Dynamics
A landmark paper on the spread of misinformation was
published in Science in 2018 [14]. By studying the propa-
gation of over 100,000 stories across Twitter over a 10-year
span, it found that false stories traveled faster and further
than true stories:

• False stories reached 1,500 people six times faster
than true stories.

• Even when controlling for various differences be-
tween the original posters, such as their number
of followers and whether their account was veri-
fied by Twitter, false stories were 70% more likely
to get retweeted than true stories.

VK, was founded by the Durov brothers, one of whom is a 3-time gold medalist
at the IMO who wrote a remarkable dissertation [2] under Gerd Faltings that
plays an important role in the pure math research I’ve done with my brother [4];
the Durovs also founded the very popular internet messaging service Telegram.
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• The largest network of replies/retweets had
around 50,000 users when the story was false but
only around 2,000 users when it was true.

There are two very different ways that information can
spread and reach a large number of users on Twitter: a
prominent influencer could tweet a story that many fol-
lowers will directly retweet, or a less prominent user could
tweet a story that gets retweeted by a small number of fol-
lowers who then get it retweeted by some of their followers,
etc. Even if a story reaches the same number of retweets
in these two scenarios, the first is considered a shallow
spread and the second a deep spread since it penetrates
more deeply into the social network. It was found in this
study that not only did false stories ultimately reach larger
audiences, but they did so with much greater depth:

• True stories seldom chained together more than
10 layers of retweets, whereas the most viral false
stories reached 20 layers of retweets—and they did
so 10 times as quickly as the true stories reached
their 10 layers.

However, there is a crucial caveat to these results. The re-
searchers tracked all stories that had been fact-checked by
one of several reputable fact-checking organizations, so
really what they were comparing was the virality of fact-
checked articles that were deemed true versus fact-checked
articles that were deemed false. It’s not hard to convince
yourself that fact-checked articles do not form a represen-
tative sample of all news stories. Indeed, most news sto-
ries don’t receive fact-checks because they are obviously
true—so it is only the suspicious stories that end up on
fact-checking sites.

There have been various efforts to train supervised learn-
ing classifiers to detect fake news stories based on their
spread across social media. Some of these involve quite
sophisticated methods, such as a fascinating “geometric”
form of deep learning in which the non-Euclidean geom-
etry of networks is heavily leveraged [12]. But a fully
content-agnostic approach like this (meaning one that
looks only at the network propagation patterns of posts,
rather than the posts themselves) is a largely quixotic en-
deavor: high rates of false positives are unavoidable and
propagation patterns vary tremendously across time, re-
gion, platform, and topic. That said, network propagation
patterns are an important signal in themoderation process:
some platforms use early indicators of virality to promote
posts in the moderation queue. In other words, among
the questionable posts that have been flagged for human
moderators to inspect, platforms often try to assign their
moderators first to the posts that aremost likely to become
viral—and network propagation dynamics are crucial for
detecting this.

Another important application of network geome-
try/dynamics in the realm of curtailing misinformation is
the detection of bot accounts on social media. A common
strategy for fake news publishers is to use bot accounts to
seed early stage virality for stories by creating artificial en-
gagement. The engagement-based algorithms used by plat-
forms like Facebook and Twitter pick up on this early viral-
ity and, mistaking it for authentic, broadcast the stories to
a wider audience. Fake news stories are often quite contro-
versial and tend to draw a lot of comments and reactions,
so once these stories reach a wide audience, they tend to
draw even more engagement—and hence, by the nature of
the algorithms, even wider audiences. This is the algorith-
mic path to virality in which the initial bot-driven artificial
engagement soon becomes authentic human user engage-
ment.

Using bot accounts in this way is prohibited on most
platforms. For instance, Facebook requires each account
to correspond to a real user; Twitter does not tie accounts
to individuals and it even allows some harmless bot ac-
tivity, but it bans coordinated manipulation of the kind
described above. But how do the platforms detect bot ac-
counts?

In November 2020, Facebook released some details on
its latest deep learning bot detection algorithm [15]. It re-
lies on over 20,000 predictor variables that look not just at
the user in question but also at all users in that user’s net-
work of friends. Facebook didn’t disclose what these pre-
dictors are but it did say that they include demographic
information, such as the distribution of ages and gender
in the friend network, and connectivity properties of the
friend network. The algorithm is trained in a two-tier pro-
cess: first, it is trained on a large data set that has been
labeled automatically, to get a coarse understanding of
the task, then it is fine-tuned via training on a small data
set that has been labeled manually so the algorithm can
learn more nuanced distinctions. Facebook estimated in
the fourth quarter of 2020 that approximately 5% of its
active users were fake accounts. Throughout that year, it
used this new deep learning system to remove over 5 bil-
lion accounts that were believed to be fake and actively en-
gaging in abusive behavior—and that doesn’t include the
millions of blocked attempts to create fake accounts each
day.

Conclusion
The issue of widespread misinformation on the internet,
and how to rein it in, has received a lot of attention in
recent years from politicians, journalists, tech companies,
and academic researchers. Misinformation does not be-
long to a single academic discipline—it has been stud-
ied by political scientists, social scientists, computer sci-
entists, economists, psychologists, media studies scholars,
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andmany others. What I have foundmost striking is that if
you draw a Venn diagram of various approaches these dis-
ciplines have taken to study misinformation, it’s not too
much of a stretch to say that mathematics is what lies at
the middle. Most prominently, math helps us quantify
the spread of misinformation and quantify the effect of
potential interventions, and it helps us understand the al-
gorithms that create and amplify misinformation.

I encourage readers to explore the engaging math at the
center of this story of misinformation. You may find a new
research topic, you may find a new interdisciplinary col-
laboration, and you may help a congressional office better
understand the complex processes it is trying to regulate.
Coming at this from a math background, you’ll find the
barrier to entry in this field is surprisingly low yet the po-
tential for impact and intellectual stimulation is surpris-
ingly high.
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