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Susan Montgomery was
born in 1943 and grew
up in Lansing, Michigan.
She did her undergraduate
studies at the University of
Michigan where her advi-
sor was J. E. McLaughlin,
who inspired her interest in
algebra. Having obtained
her undergraduate degree
inMathematics in 1965, Su-
san received an NSF Grad-
uate Fellowship and started
her graduate studies at the
University of Chicago. In

1969, she defended her Ph.D. thesis titled “The Lie Struc-
ture of Simple Rings with Involution of Characteristic 2”
under the supervision of I. N. Herstein. She then spent
one year at DePaul University. In 1970, Susan joined the
faculty at the University of Southern California, where she
currently is a professor.

Susan receivedmultiple awards and recognition, includ-
ing a John S. Guggenheim Memorial Foundation Fellow-
ship in 1984, an Albert S. Raubenheimer Distinguished
Faculty Award from the Division of Natural Sciences and
Mathematics at USC in 1985, and a Gabilan Distinguished
Professorship in Science and Engineering at USC in 2017–
2020. In 2012, Susan was selected as an Inaugural Fellow
of the AMS and elected as a Fellow of the American Asso-
ciation for the Advancement of Science.

Susan served on many professional society committees,
including the AMS Board of Trustees in 1986–1996, the
Board on Mathematical Sciences of the National Research
Council in 1995–1998 and its Executive Committee in
1997–1998, and the AWM Scientific Advisory Commit-
tee in 2015–2017. Furthermore, she was elected as vice
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president of the AMS for the 2014–2017 term. Moreover,
she served as the chair of the Mathematics Department at
USC in 1996–1999.

While in her early work Susan studied rings with invo-
lutions and group actions on rings, her current research is
focused on Hopf algebras and their representations. She
has published two books and more than 100 research pa-
pers; in addition, she was a coeditor for seven collections
of papers on various topics in algebra. Her monograph
Hopf algebras and their actions on rings became the most
cited book on Hopf algebras and quantum groups. Below
we discuss Susan’s research accomplishments, focusing on
several important topics.

1. Group Algebras and Rings with Involution
The first thesis problem on which Susan worked as a grad-
uate student was to determine whether, in characteristic 𝑝,
left invertible elements of a group algebra are also right in-
vertible. This property was observed by Kaplansky in char-
acteristic 0; his proof followed from results concerning von
Neumann algebras. Montgomery was able to give a shorter
proof of the characteristic 0 case, based on the properties of
𝐶∗-algebras instead (see [Mon69]), but the characteristic 𝑝
proof eluded her for almost two years. This question still
remains open, even though many mathematicians have
tried to solve it in the last fifty years.

Susan’s second thesis problem was on Lie simplicity of
simple rings with involution of characteristic 2. Given an
associative ring 𝑅, one can introduce a Lie structure on 𝑅
by defining the Lie product via [𝑥, 𝑦] = 𝑥𝑦 − 𝑦𝑥 for all
𝑥, 𝑦 in 𝑅. This definition immediately raises the question
how the ideal structures of 𝑅 as an associative ring and 𝑅
as a Lie ring are connected. In particular, if 𝑅 is simple
as an associative ring, what can we say about its Lie sim-
plicity? One of the motivations for such a study, given
by Herstein, was to investigate whether the simplicity of
four infinite families of simple, finite-dimensional Lie al-
gebras defined as matrices is in fact a consequence of the
simplicity of the associative matrix algebra over a field. In
the 1950s, there was a series of papers where these ques-
tions were considered; in particular, Herstein and Baxter
proved several results about the Lie structure of the skew-
symmetric elements of a simple ring with involution of
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characteristic not equal to 2. The case of characteristic 2
was still unknown at the time; it then became the main
topic of Susan’s thesis. We will now describe her results on
Lie simplicity of simple rings with involution of character-
istic 2, which were later published in [Mon70]. Note that,
for many of the results discussed below, the rings were not
required to have identity; however, for simplicity, we will
always assume that 𝑅 is a ring with identity.

Recall that, if 𝐴 ⊆ 𝐵 are additive subgroups of 𝑅, we say
that 𝐴 is a Lie ideal of 𝐵 provided that [𝐴, 𝐵] ⊆ 𝐴, where
[𝐴, 𝐵] is an additive subgroup of 𝑅 generated by the com-
mutators [𝑎, 𝑏] for all 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. Let 𝑅 be a simple
ring, that is, 𝑅 has no proper nontrivial two-sided ideals;
then its center 𝑍 is a field. Assume, in addition, that 𝑅 has
an involution ∗, which is, by definition, a self-inverse anti-
automorphism of 𝑅, and that ∗ fixes every element of 𝑍.
Let 𝑆 and 𝐾 be respectively the sets of symmetric and skew-
symmetric elements of 𝑅 and let 𝑉 = {𝑥 + 𝑥∗ | 𝑥 ∈ 𝑅} be
the set of trace elements. It is easy to see that 𝑉 ⊆ 𝑆 are ad-
ditive subgroups of 𝑅 and 𝐾 is a Lie subring of 𝑅. Herstein
and Baxter obtained the following results on characteriza-
tion of Lie ideals of𝐾 and [𝐾, 𝐾] in the case of characteristic
different from 2:
Theorem 1. Let 𝑅 be a simple ring with involution of charac-
teristic not 2 and assume that dim𝑍 𝑅 > 16. Then

1. (Herstein) Every Lie ideal of 𝐾 either is contained in 𝑍
or contains [𝐾, 𝐾].

2. (Baxter) Every proper Lie ideal of [𝐾, 𝐾] is contained
in 𝑍.

Note that, since 𝑍 is fixed by the involution, the inter-
section of 𝐾 and 𝑍 is trivial. Thus every proper Lie ideal
of [𝐾, 𝐾] is trivial and therefore the latter part of the the-
orem implies that [𝐾, 𝐾] is a simple Lie ring. Moreover,
since the 4 × 4matrices over a field, with the transposition
used for the involution, do not behave well, the condition
dim𝑍 𝑅 > 16 is necessary.

In her thesis, Montgomery investigated the case of char-
acteristic 2. It turned out that, in contrast to the case of
characteristic not 2, the Lie ideals were now characterized
in terms of [𝑉, 𝑉], and not [𝐾, 𝐾]. Moreover, Montgomery
showed that in this situation [𝑉, 𝑉] = [[𝑆, 𝑆], 𝑆] and there-
fore the principal difference is that previously themain ob-
ject of study was the Lie square of 𝐾, whereas in character-
istic 2 the main object becomes the Lie cube of 𝑆. Mont-
gomery’s results can be summarized in the following the-
orem:

Theorem 2. Assume that 𝑅 is a simple ring with involution of
characteristic 2 and that dim𝑍 𝑅 > 144. Then

1. Every Lie ideal of 𝑉 either is contained in 𝑍 or contains
[𝑉, 𝑉].

2. Every Lie ideal of 𝑆 either is contained in 𝑍 or contains
[𝑉, 𝑉].

3. Every proper Lie ideal of [𝑉, 𝑉] is contained in 𝑍.

In light of the Lie square of𝑉 being equal to the Lie cube
of 𝑆, the latter part of the theorem implies the following
Lie simplicity result:

[[𝑆, 𝑆], 𝑆]
[[𝑆, 𝑆], 𝑆] ∩ 𝑍 is a simple Lie ring.

The methods used to prove the theorem involved applica-
tions of several results on polynomial identities; the degree
of one of these identities was 144 which caused the condi-
tion on the dimension of 𝑅 over 𝑍. Then, in joint work
with Lanski, Montgomery used similar methods to extend
her results to prime rings of characteristic 2.

Montgomery spent most of the next few years studying
rings with involution, in particular when properties of the
ring were inherited by the symmetric elements. Note that
one can introduce a Jordan structure on 𝑅 by defining a
new product via 𝑥 ∘ 𝑦 = 𝑥𝑦 + 𝑦𝑥 for all 𝑥, 𝑦 in 𝑅; then
the set 𝑆 of symmetric elements becomes its Jordan sub-
ring. Using this observation, Montgomery obtained many
important results describing the connection between the
ideal structure of 𝑅 as an associative ring and 𝑅 as a Jordan
ring, as well as the ideal structure of the Jordan ring 𝑆.

2. Fixed Rings of Automorphism Groups
of a Ring

Figure 1. Susan Montgomery
at USC in 1971.

Since the techniques used
by Montgomery in her stud-
ies of rings with involution
relied on polynomial iden-
tities, she was led to inves-
tigate the question of when
having a subring satisfying
a polynomial identity im-
plies that the entire ring sat-
isfies a polynomial identity.
Recall that a ring satisfies a
polynomial identity and is
called a PI-ring if there is a

polynomial with integral coefficients in noncommuting
variables which vanishes under the substitutions from the
ring; PI-rings generalize the class of rings which are finitely
generated as modules over their center. In [Mon74], Mont-
gomery proved several results for the subrings being cen-
tralizers and, as an application, gave an affirmative answer
to a question raised by Bjork; namely, she showed that un-
der certain conditions the ring itself satisfies a polynomial
identity if the fixed subring of an automorphism group
satisfies a polynomial identity. A natural direction from
this work was studying fixed rings 𝑅𝐺 of automorphism
groups 𝐺 of a ring, in particular, the connection between
the structure of the ring and its fixed subring. Another im-
portant problem is to investigate the relationship between
the fixed ring 𝑅𝐺 and the skew group ring 𝑅 ∗ 𝐺.

Here, we say that a group 𝐺 acts via automorphisms on
a ring 𝑅 if there exists a homomorphism from 𝐺 to Aut(𝑅),
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the group of automorphisms of 𝑅. Often this homomor-
phism is going to be injective, so that 𝐺 could be consid-
ered as a subgroup of Aut(𝑅). For any 𝑔 ∈ 𝐺, the action
of 𝑔 on 𝑅 will be denoted by 𝑟 ↦ 𝑔⋅𝑟. An automorphism 𝑔
of 𝑅 is called inner if there exists a unit in 𝑅 such that 𝑔 acts
on 𝑅 via conjugation with this unit; otherwise 𝑔 is called
outer. A subgroup 𝐺 of Aut(𝑅) is called inner if every el-
ement of 𝐺 is inner and it is called outer if its only inner
element is 1. If 𝐺 is finite, we say that 𝑅 has no |𝐺|-torsion
provided that |𝐺|𝑟 = 0 implies 𝑟 = 0.

Recall that the fixed subring 𝑅𝐺 under the action of 𝐺 is

𝑅𝐺 = {𝑟 ∈ 𝑅 | 𝑔 ⋅ 𝑟 = 𝑟, for all 𝑔 ∈ 𝐺} .

The fixed ring 𝑅𝐺 is guaranteed to be nontrivial under the
following sufficient conditions: Either𝑅 has no |𝐺|-torsion
and 𝑅 is not nilpotent, as proved by Bergman and Isaacs
in 1973, or 𝑅 has no nilpotent elements, as shown by
Kharchenko in 1975. For this reason, most of the follow-
ing results will, implicitly or explicitly, rely on one of these
hypotheses.

Another important ring to study in the situation of
a group acting on a ring is the skew group ring 𝑅 ∗ 𝐺,
which extends the semidirect product for groups: a free
𝑅-module with basis {𝑔 ∈ 𝐺} with multiplication defined
via (𝑟𝑔)(𝑠ℎ) = 𝑟(𝑔 ⋅ 𝑠)𝑔ℎ for 𝑟, 𝑠 in 𝑅 and 𝑔, ℎ in 𝐺. Look-
ing closely at this product formula, we can notice that the
action of 𝐺 is responsible for interchanging 𝑔 and 𝑠 via
𝑔𝑠 = (𝑔 ⋅ 𝑠)𝑔. This construction can be extended to a more
general notion of the crossed product 𝑅∗𝜍𝐺 with elements
of the form 𝑟 ̄𝑔, where elements from 𝐺 and 𝑅 commute by
the same rule as before, but ̄𝑔 ̄ℎ = 𝜎(𝑔, ℎ)𝑔ℎ for a 2-cocycle
𝜎 ∶ 𝐺 × 𝐺 → 𝑈, where 𝑈 is a group of units of 𝑅. If the
2-cocycle 𝜎 is trivial then 𝑅 ∗𝜍 𝐺 = 𝑅 ∗ 𝐺, a skew group
ring, and if the group action is trivial then 𝑅 ∗𝜍 𝐺 = 𝑅𝑡[𝐺],
a twisted group ring. Furthermore, if 𝑅 = 𝑘 is a field and 𝐺
acts trivially on 𝑘, then 𝑘∗𝐺 = 𝑘𝐺 is called a group algebra.

Note that in the original definitions one has a right
group action, denoted by 𝑟 ↦ 𝑟𝑔, and the skew group mul-
tiplication defined via (𝑟𝑔)(𝑠ℎ) = 𝑟𝑠𝑔−1𝑔ℎ. We chose the
current notation so that it matches the (left) Hopf algebra
action and smash product defined in Section 3.

This raises an important question: Considering the
three rings, 𝑅, 𝑅𝐺, and 𝑅 ∗ 𝐺, if one of them is prime,
semiprime, semisimple Artinian, primitive, semiprimitive,
or satisfies polynomial identities, can we say the same
about the other two and under what conditions? And
what is the relationship between Jacobson radicals of these
rings? Montgomery provided answers to many of these
questions and her results and techniques motivated the
work of other researchers.

All of the notions mentioned above are basic properties
of noncommutative rings that one wants to understand to
get an initial picture of the ring’s structure. Some of them

reduce to well-known properties when the ring is commu-
tative, for example, a commutative ring is primitive if and
only if it is a field. Or, when a ring is Artinian (that is,
satisfies the descending chain condition on ideals, which
generalizes the notion of finite-dimensional algebras), the
conditions of being simple, prime, and primitive are equiv-
alent. A ring is called semiprimitive (or Jacobson semisim-
ple) if its Jacobson radical is zero. A ring is semiprimitive
if it is semisimple, that is, semisimple as a module over it-
self; when a ring is Artinian these two notions coincide. A
ring is called prime provided that the zero ideal is a prime
ideal (that is, if a product of two ideals is zero then one of
them is zero) and is called semiprime provided that it has
no nontrivial nilpotent ideals (in other words, if a square
of an ideal is zero then the ideal itself is zero).

In 1980, Montgomery published a Springer Lecture
Notes volume titled Fixed Rings of Finite Automorphism
Groups of Associative Rings [Mon80], in which she summa-
rized the progress made in the field in the 1970s. We will
now discuss some of her most important results in this
area.

In 1973, Susan visited Israel, where she started a life-
long collaboration with Miriam Cohen. In their first pa-
per, they proved that, assuming that a ring 𝑅 has no nilpo-
tent ideals and no |𝐺|-torsion, 𝑅 is semisimple Artinian
if 𝑅𝐺 is semisimple Artinian. The converse of this result
was shown by Levitzki in 1935, under the assumption of
|𝐺|−1 being an element of 𝑅 (see [Mon80, Theorem 1.15]).
In 1976, Montgomery proved a more general result, com-
pletely describing the relation between Jacobson radicals
of the ring and its fixed subring: Assuming that |𝐺| is a
bijection on 𝑅 (that is, if |𝐺|𝑅 = 𝑅 and there is no |𝐺|-
torsion), 𝐽(𝑅𝐺) = 𝐽(𝑅)𝐺, that is, the Jacobson radical of 𝑅𝐺
is the intersection of 𝑅𝐺 with the Jacobson radical of 𝑅.
Note that the assumption of |𝐺| being a bijection can be
replaced by the hypothesis of |𝐺|−1 being an element of 𝑅,
as explained in [Mon80, Theorem 1.14].

As mentioned before, the above results relied on 𝑅 hav-
ing no |𝐺|-torsion. Montgomery’s next goal was to estab-
lish a connection between the ring structures of 𝑅, 𝑅𝐺,
and 𝑅 ∗ 𝐺 with no assumptions about |𝐺| acting on 𝑅.
It turns out that if 𝑅 is simple with 1 or a direct sum of
simple rings and if 𝐺 is outer, the assumption of no |𝐺|-
torsion can often be dropped. But if 𝑅 is semiprime, 𝐺
being outer is not enough, so further restrictions are nec-
essary. In 1975, Kharchenko used the Martindale ring of
quotients𝑄0(𝑅) to generalize the definition of an inner au-
tomorphism of a ring, in a way restricting the definition of
an outer automorphism (see [Mon80, page 42]):

Definition 3. 1. An automorphism 𝑔 is 𝑋-inner if there
exists a nonzero 𝑥 in 𝑄0(𝑅) such that 𝑥(𝑔⋅𝑟)=𝑟𝑥 for all 𝑟
in 𝑅.
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2. A subgroup 𝐺 of Aut(𝑅) is called 𝑋-inner, if every el-
ement of 𝐺 is 𝑋-inner, and it is called 𝑋-outer if its only
𝑋-inner element is 1.

Note that if 𝐺 is 𝑋-outer then it is always outer, but the
converse is not always true.

Kharchenko used this definition to prove that 𝑅𝐺 is
prime if 𝑅 is prime and 𝐺 is 𝑋-outer. Montgomery then
further developed the method of 𝑋-inner automorphisms
and investigated the connection between 𝑅, 𝑅𝐺, and 𝑅 ∗𝐺
(see [Mon80, Theorems 3.17, 5.3, 6.9, Corollary 6.10]):

Theorem 4. Let 𝑅 be a ring with a finite group 𝐺 of automor-
phisms.

1. Assuming 𝑅 ∗ 𝐺 is semiprime, 𝑅𝐺 is also semiprime.
Moreover, 𝑅 is Goldie if and only if 𝑅𝐺 is Goldie.

2. Assuming 𝑅 is semiprime and 𝐺 is 𝑋-outer, both 𝑅 ∗𝐺
and 𝑅𝐺 and are semiprime. If, in addition, 𝑅𝐺 is Goldie,
then 𝑅 and 𝑅𝐺 have the same PI degree.

3. Assuming 𝑅 is prime and 𝐺 is 𝑋-outer, 𝑅 ∗ 𝐺 is also
prime and 𝑅 and 𝑅𝐺 have the same PI degree.

The above results were then extended by Montgomery
in her joint work with Fisher (see [Mon80, Corollary
3.18]):

Theorem 5. Let 𝑅 be a semiprime ring and let 𝐺 be 𝑋-outer.
1. If 𝑅 is simple then 𝑅 ∗ 𝐺 is simple.
2. If 𝑅 is primitive and 𝐺 is finite then 𝑅 ∗ 𝐺 is primitive.
3. If 𝑅 is semiprimitive then 𝑅 ∗ 𝐺 is semiprimitive.

Furthermore, Fisher and Montgomery used the method
of 𝑋-inner automorphisms to prove a “Maschke-type” the-
orem, effectively answering the question of when the skew
group ring is semiprime. Recall that, a classical theorem
due to Maschke states that, for a field 𝐺, the group alge-
bra 𝑘𝐺 is semisimple if and only if the characteristic of 𝑘
does not divide |𝐺|. Generalizations of this fundamen-
tal result, often referred to as “Maschke-type” theorems,
are extremely important; the Fisher–Montgomery theorem
provides such generalization from group algebras to skew
group rings (see [Mon80, Theorem 7.4]):

Theorem 6 (Fisher–Montgomery). If 𝐺 is finite and 𝑅 is
semiprime with no |𝐺|-torsion then 𝑅 ∗ 𝐺 is semiprime.

The question about the semiprimeness of a skew group
ring naturally led to the one about the semiprimeness
of a crossed product. In [MP78], Montgomery and Pass-
man obtained necessary and sufficient conditions for the
crossed product to be prime or semiprime, assuming that
the ring itself is prime. As a consequence, they proved that
in characteristic 0, if 𝑅 is prime, then 𝑅∗𝜍𝐺 is semiprime.
Because 𝑋-inner automorphisms played a very important
role in describing the above-mentioned conditions, Mont-
gomery and Passman followed this paper with a series of
joint works in which they studied 𝑋-inner automorphisms

of various rings including group rings and crossed prod-
ucts.

In related work [Mon81], Montgomery studied the con-
nection between the prime ideals of 𝑅 and 𝑅𝐺, by passing
through the skew group ring 𝑅 ∗ 𝐺. In order to formalize
this correspondence, she introduced certain equivalence
relations on 𝑆𝑝𝑒𝑐(𝑅) and 𝑆𝑝𝑒𝑐(𝑅𝐺), the sets of prime ideals
of𝑅 and𝑅𝐺, and proved that the sets of equivalence classes
are homeomorphic with respect to the quotient Zariski
topology.

In a different direction, joint with Small, Montgomery
extended Noether’s classical theorem on affine rings of in-
variants from the commutative to non-commutative case:

Theorem 7. [MS81, Theorems 1 and 2] Let 𝑅 be a Noe-
therian ring which is affine (that is, finitely generated) over a
commutative Noetherian ring 𝐶 and let 𝐺 be a finite group of
𝐶-automorphisms of 𝑅. Then 𝑅𝐺 is affine over 𝐶 provided that
one of the following conditions holds:

1. |𝐺|−1 ∈ 𝑅.
2. 𝑅 is a domain satisfying a polynomial identity and 𝑅𝐺
is Noetherian.

The authors also provided examples when these results
fail if either 𝑅 is not a domain and |𝐺|𝑅 = 0 or 𝑅 is not
Noetherian.

3. Hopf Algebras
3.1. Group actions, group gradings, and module alge-
bras. Since group algebras provide the first example of
Hopf algebras, in the beginning of the 1980s, Susan Mont-
gomery got interested in these kinds of algebras and started
to work on the topic with Miriam Cohen. As for an ac-
tion of a group on a ring, one can define an action of a
group𝐺 on an algebra𝐴 over a field 𝑘 as a homomorphism
from 𝐺 to Aut𝑘(𝐴), the group of 𝑘-linear automorphisms
of 𝐴. Having such an action of 𝐺 on 𝐴 is equivalent to 𝐴
being amodule algebra over the group algebra 𝑘𝐺, and this
notion can be generalized to the notion of an 𝐻-module
algebra over any Hopf algebra 𝐻. In their first paper on
the subject [CM84], Cohen and Montgomery pointed out
that, for a finite group 𝐺, a grading of 𝐴 by 𝐺 is equiva-
lent to 𝐴 being a (𝑘𝐺)∗-module algebra, where (𝑘𝐺)∗ is the
Hopf algebra dual to 𝑘𝐺; in this case it is possible to de-
fine a smash product 𝐴#(𝑘𝐺)∗, which we will discuss later.
Similar to how the connection between the structures
of 𝑅, 𝑅𝐺, and 𝑅 ∗ 𝐺 were studied in the previous section,
Cohen and Montgomery investigated the relationship be-
tween 𝐴, 𝐴1 (the identity component of the graded alge-
bra 𝐴), and 𝐴#(𝑘𝐺)∗, in particular, they obtained results
about the Jacobson radical, prime ideals, and semiprime-
ness. Furthermore, the authors proved a Maschke-type the-
orem, analogous to the original Fisher–Montgomery theo-
rem, but for group gradings instead of group actions (see
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[CM84, Theorem 2.9]). The most important results of the
paper are the following duality theorems relating group ac-
tions and group gradings:

Theorem8. [CM84, Theorems 3.2 and 3.5] Let𝐺 be a group
of order 𝑛 and 𝐴 be an algebra.

1. If 𝐺 acts on 𝐴, then 𝐴 ∗ 𝐺 is naturally 𝐺-graded and
(𝐴 ∗ 𝐺)#(𝑘𝐺)∗ ≅ 𝑀𝑛(𝐴).

2. If 𝐴 is 𝐺-graded, then 𝐴#(𝑘𝐺)∗ has a natural 𝐺-action
and (𝐴#(𝑘𝐺)∗) ∗ 𝐺 ≅ 𝑀𝑛(𝐴).

The ideas of duality were inspired partly by results in
von Neumann algebras and 𝐶∗-algebras. As an applica-
tion, the authors showed that the graded Jacobson radi-
cal 𝐽𝐺(𝐴) is always contained in the usual Jacobson radi-
cal 𝐽(𝐴), proving a conjecture of Bergman on radicals of
graded rings.

Having proved the duality theorems, Cohen and Mont-
gomery asked the natural question whether the analogs of
the duality theorems hold not only for group algebras and
their duals, but also for other finite-dimensional Hopf al-
gebras. In a series of papers, joint with Blattner and Co-
hen, Montgomery extended these ideas in several direc-
tions. Since then, Susan has worked almost exclusively
on topics related to Hopf algebras. In 1992, Susan Mont-
gomery was the Principle Lecturer at the Conference Board
of the Mathematical Sciences conference on Hopf Alge-
bras and, in 1993, she published the CBMS monograph
[Mon93] Hopf algebras and their actions on rings.

Before describing Montgomery’s results further, we will
discuss the motivation behind these generalizations. A
group algebra 𝑘𝐺, in addition to being an algebra, has a
coalgebra structure; in particular, there is a 𝑘-linear map
Δ ∶ 𝑘𝐺 → 𝑘𝐺 ⊗ 𝑘𝐺 called comultiplication and defined
via Δ (𝑔) = 𝑔 ⊗ 𝑔 for 𝑔 ∈ 𝐺 and extended linearly. This
additional structure, used implicitly, allows us to define a
𝑘𝐺-action on a tensor product of two 𝑘𝐺-modules via

𝑔 ⋅ (𝑣 ⊗ 𝑤) = (𝑔 ⋅ 𝑣) ⊗ (𝑔 ⋅ 𝑤) = Δ (𝑔) ⋅ (𝑣 ⊗ 𝑤),
that is, we see that a tensor product of two representations
is again a representation. This property is not true any-
more if the group algebra is replaced by an arbitrary alge-
bra, but it can be extended from group algebras to Hopf al-
gebras𝐻, using the comultiplication map Δ ∶ 𝐻 → 𝐻⊗𝐻.
In this case the𝐻-module structure is defined on the tensor
product of two 𝐻-modules via

ℎ ⋅ (𝑣 ⊗ 𝑤) = Δ (ℎ) ⋅ (𝑣 ⊗ 𝑤) = ∑(ℎ(1) ⋅ 𝑣) ⊗ (ℎ(2) ⋅ 𝑤)
using the so-called Sweedler notation for the coproduct to
write Δ(ℎ) = ∑ℎ(1) ⊗ ℎ(2) ∈ 𝐻 ⊗𝐻 for ℎ ∈ 𝐻.

For an algebra 𝐴 over a field 𝑘, we can treat its mul-
tiplication and unit as 𝑘-linear maps 𝑚 ∶ 𝐴 ⊗ 𝐴 → 𝐴
and 𝑢 ∶ 𝑘 → 𝐴. When 𝐴 is finite-dimensional, the no-
tion of an algebra can be dualized in the following way:
Consider the dual vector space 𝐶 = 𝐴∗ of 𝑘-linear maps

from 𝐴 to 𝑘. This dual vector space has two 𝑘-linear maps
Δ = 𝑚∗ ∶ 𝐶 → 𝐶 ⊗ 𝐶 and 𝜀 = 𝑢∗ ∶ 𝐶 → 𝑘; these maps,
called comultiplication and counit give 𝐶 the structure of
a coalgebra. We call 𝐻 a bialgebra if it is both an algebra
and a coalgebra and these two structures satisfy a compati-
bility condition, namely that comultiplication and counit
are algebra maps. A bialgebra 𝐻 becomes a Hopf algebra
if in addition it has a map 𝑆 ∶ 𝐻 → 𝐻, which is called
an antipode and satisfies requirements that generalize the
ones for the inverse map in groups.

Historically, the first Hopf algebras studied were co-
commutative, that is, the ones where for every element ℎ,
the coproduct Δ(ℎ) = ∑ℎ(2) ⊗ ℎ(1). Over an alge-
braically closed base field of characteristic 0, the only finite-
dimensional cocommutative Hopf algebras are group al-
gebras. Other examples of cocommutative Hopf algebras
include universal enveloping algebras of Lie algebras and
restricted Lie algebras. For any Hopf algebra 𝐻 one can
consider all elements 𝑔 such that Δ(𝑔) = 𝑔⊗𝑔 and 𝜀(𝑔) = 1,
called group-like elements of 𝐻. They are linearly inde-
pendent, form a group, denoted by 𝐺(𝐻), and generate a
cocommutative Hopf subalgebra 𝑘𝐺(𝐻) of 𝐻.

When 𝐴 is both an algebra and an 𝐻-module over a
Hopf algebra 𝐻, we say that 𝐴 is an 𝐻-module algebra, or,
equivalently, that 𝐴 is an algebra in the category of left 𝐻-
modules 𝐻ℳ, if its multiplication and unit are 𝐻-module
maps, that is, ℎ⋅(𝑎𝑏)=∑(ℎ(1) ⋅𝑎)(ℎ(2) ⋅𝑏) and ℎ⋅1𝐴=𝜀(ℎ)1𝐴.
Similarly to skew group rings arising when groups act on
rings as automorphisms, for an 𝐻-module algebra 𝐴 the
smash product algebra 𝐴#𝐻 is defined to be 𝐴⊗𝐻 as a
vector space, but with multiplication

(𝑎#ℎ)(𝑎′#ℎ′) = ∑𝑎(ℎ(1) ⋅ 𝑎′)#ℎ(2)ℎ′

where the elements of 𝐴#𝐻 are denoted by 𝑎#ℎ.
For example, for an algebra 𝐴 = 𝐴1 ⊕ 𝐴𝑔, graded by

the group 𝐺 = ⟨𝑔⟩ ≅ ℤ2, the (𝑘𝐺)∗-action on 𝐴 is de-
fined via 𝑝1 ⋅ 𝑎 = 𝑎1 and 𝑝𝑔 ⋅ 𝑎 = 𝑎𝑔, where {𝑝1, 𝑝𝑔} is
the dual basis of (𝑘𝐺)∗ and 𝑎 = 𝑎1 + 𝑎𝑔 for 𝑎1 ∈ 𝐴1 and
𝑎2 ∈ 𝐴2. Since Δ(𝑝𝑥) = ∑

𝑦𝑧=𝑥
𝑝𝑦⊗𝑝𝑧, the multiplication in

𝐴#(𝑘𝐺)∗ is determined by (1#𝑝1)(𝑎#1) = 𝑎1#𝑝1 + 𝑎𝑔#𝑝𝑔
and (1#𝑝𝑔)(𝑎#1) = 𝑎1#𝑝𝑔 + 𝑎𝑔#𝑝1.

If 𝐻 is a finite-dimensional Hopf algebra, then the dual
vector space 𝐻∗ is also a Hopf algebra. In particular, the
multiplication in 𝐻∗ is the map dual to the comultiplica-
tion in 𝐻, and vice versa, as mentioned before. When 𝐻 is
not finite-dimensional, 𝐻∗ is not a Hopf algebra anymore,
but one can use the so-called finite dual 𝐻0 instead. In
1985, Susan Montgomery, in collaboration with her hus-
band Bob Blattner, extended the results of [CM84] from
group algebras to infinite-dimensional Hopf algebras 𝐻
with bijective antipode, where 𝐻∗ is replaced by a Hopf
subalgebra 𝑈 of the Hopf algebra 𝐻0, and proved that,
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Figure 2. Susan Montgomery and Bob Blattner visiting
Munich in 1994.

under certain conditions,

(𝐴#𝐻)#𝑈 ≅ 𝐴⊗ (𝐻#𝑈)
(see [BM85, Theorem 2.1]). In order to obtain these re-
sults, Bob and Susan combined their perspectives from
functional analysis and noncommutative algebra. The au-
thors then discussed several applications of this theorem,
in particular, in the case when 𝐻 is a universal envelop-
ing algebra of a finite-dimensional Lie algebra or a group
algebra of a residually 𝑘-linear FC-group. Furthermore,
when 𝐻 is a finite-dimensional Hopf algebra of dimen-
sion 𝑛, this result yields the generalization of the duality
results in Theorem 8 (see [BM85, Corollary 2.7]):

(𝐴#𝐻)#𝐻∗ ≅ 𝐴⊗ (𝐻#𝐻∗) ≅ 𝐴 ⊗𝑀𝑛(𝑘) ≅ 𝑀𝑛(𝐴).
3.2. Crossed products. In the same way as smash prod-
ucts generalize skew group rings, the notion of a crossed
product can be extended to the case when groups are re-
placed by Hopf algebras; such a crossed product of an
algebra 𝐴 with a Hopf algebra 𝐻 is denoted by 𝐴#𝜍𝐻,
where 𝜎 ∶ 𝐻 ⊗ 𝐻 → 𝐴 is an invertible cocycle. These
general crossed products were introduced independently
in 1986 by Blattner, Cohen, and Montgomery, and by
Doi and Takeuchi (see [Mon93, Chapter 7]). Next, in a
1989 joint paper with Blattner, Montgomery continued
her studies of crossed products and further extended the
results of the previous papers. In particular, they general-
ized the duality theorems from smash to crossed products
(see [Mon93, Theorem 9.4.17]):

Theorem 9. Let 𝐻 be a Hopf algebra of dimension 𝑛 and
𝐴#𝜍𝐻 be a crossed product. Then

(𝐴#𝜍𝐻)#𝐻∗ ≅ 𝑀𝑛(𝐴).
Another direction was to extend the Maschke-type re-

sults to crossed products 𝐴#𝜍𝐻 for semisimple Hopf al-
gebras 𝐻. All previous results were obtained either under

the assumption that 𝐻 is a group algebra or its dual or by
imposing additional conditions on 𝐻. Blattner and Mont-
gomery proved a Maschke-type theorem by restricting the
action instead (see [Mon93, Theorem 7.4.7]):

Theorem 10. Let 𝐻 be a semisimple Hopf algebra, 𝐴 be a
semiprime algebra, and 𝐴#𝜍𝐻 be a crossed product. Then
𝐴#𝜍𝐻 is semiprime if the action of 𝐻 is inner.

Many ideas and results discussed in this section, as well
as in Section 2, motivated Montgomery, together with
Linchenko and Small, to investigate two related questions
about 𝐻-module algebras and smash products. In the first
question they asked whether, for a semisimple Hopf alge-
bra 𝐻 and an 𝐻-module algebra 𝑅, the Jacobson radical is
stable under the action of 𝐻. As it was mentioned in the
beginning of Subsection 3.1, for 𝐻 = (𝑘𝐺)∗, it is equiva-
lent to the question of Bergman about the graded Jacob-
son radical and it was answered positively in [CM84]. In
2001, Linchenko showed that it is true when 𝑅 is finite-
dimensional and the base field has either characteristic 0
or characteristic 𝑝 > dim𝑅 with additional condition
of 𝐻 being cosemisimple (that is, 𝐻∗ being semisimple).
In [LMS05, Theorem 3.8], Linchenko, Montgomery, and
Small proved that the answer is positive for any infinite-
dimensional PI-algebra𝑅which is either affine or algebraic
over the base field of characteristic 0. In the case of posi-
tive characteristic they showed that the Jacobson radical
is 𝐻-stable under the additional assumptions of 𝐻 being
cosemisimiple and the characteristic being large enough
compared to the dimension of 𝐻 and the degree of the
polynomial identity satisfied by 𝑅. Note that, by the
Larson-Radford theorem, in characteristic 0 semisimplicity
and cosemisimplicity are equivalent.

The second question addressed in [LMS05] was whether
𝐴=𝑅#𝐻 is semiprime provided that 𝐻 is semisimple and
𝑅 is𝐻-semiprime. This open questionwas asked by Cohen
and Fischman in 1984, under the stronger hypothesis of 𝑅
being semiprime, and the positive answer would general-
ize the results of Fisher and Montgomery for 𝐻 = 𝑘𝐺 and
Cohen and Montgomery for 𝐻 = (𝑘𝐺)∗. In [LMS05, The-
orems 2.8 and 2.11], Linchenko, Montgomery, and Small
proved that these two questions are connected: First, given
a finite-dimensional Hopf algebra 𝐻, they established two
conditions equivalent to the one that the Jacobson radi-
cal of every 𝐻-module algebra is 𝐻-stable. Then the au-
thors proved that if the first question is answered positively
for all 𝐻-module algebras 𝑅, then the prime radical of ev-
ery𝐻-module algebra is𝐻-stable and 𝑅′#𝐻∗ is semiprime
for all 𝐻∗-semiprime 𝐻∗-module algebras 𝑅′. In conclu-
sion, they showed that 𝐴=𝑅#𝐻 is semiprimitive provided
that 𝐻 is semisimple, 𝑅 is an 𝐻-semiprime 𝐻-module al-
gebra satisfying a polynomial identity, and the base field
has characteristic 0 (in the case of positive characteristic
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Figure 3. Susan Montgomery with her mathematical siblings
Gail Letzter, Daniel Farkas, Lance Small, and Lynne Small in
Torrey Pines in 2014.

some extra hypotheses on 𝑘 and 𝐻 were needed); in par-
ticular, under the above assumption, the second question
was answered positively, since semiprimitiveness implies
semiprimeness.
3.3. Coalgebras and comodules. In the same fashion
how dualizing the multiplication and unit of an algebra 𝐴,
as 𝑘-linearmaps led to the concept of a coalgebra𝐶, the no-
tion of a 𝐶-comodule is dual to the one of an 𝐴-module.
That is, treating the 𝐴-action on a left 𝐴-module 𝑀 as a
𝑘-linear map ⋅ ∶ 𝐴 ⊗ 𝑀 → 𝑀, one can define a left
𝐶-comodule 𝑀 via the coaction 𝜌 ∶ 𝑀 → 𝐶 ⊗ 𝑀. The
category of left 𝐶-comodules is denoted by 𝐶ℳ, while the
category of right 𝐶-comodules is denoted by ℳ𝐶 . If 𝐶 is
finite-dimensional, then left 𝐶-comodules are exactly right
𝐶∗-modules; furthermore, for a group 𝐺, a vector space is
a 𝑘𝐺-comodule if and only if it is 𝐺-graded. Additional
background on coalgebras and comodules can be found
in [Mon93, Chapter 5].

Note that, in the infinite-dimensional case, the dual vec-
tor space𝐴∗ of an algebra𝐴 is not always a coalgebra, since
(𝐴 ⊗ 𝐴)∗ is larger than 𝐴∗ ⊗ 𝐴∗, and therefore there is no
one-to-one correspondence between the theories of alge-
bras and coalgebras. Nevertheless, by the fundamental the-
orem of coalgebras, any finite subset of elements of a coal-
gebra is contained in a finite-dimensional subcoalgebra,
and, thus, every simple coalgebra is finite-dimensional.
This fact led Montgomery, as well as the other researchers
in the area, to working on the extension of the results from
the theory of finite-dimensional algebras to general coalge-
bras.

In [Mon95] Montgomery used the classical Brauer the-
orem about the indecomposable finite-dimensional alge-
bras to prove the decomposition theorem for coalgebras.
She considered the quiver Γ𝐶 whose vertices are simple

subcoalgebras of coalgebra 𝐶, showed that it is isomor-
phic to the so-called Ext quiver whose vertices are the
isomorphism classes of simple (right) 𝐶-comodules, and
proved that any coalgebra can be decomposed as a direct
sum of indecomposable components, each of which cor-
responds to a connected component of Γ𝐶 . Montgomery
then applied these results about coalgebras to prove that
every pointed Hopf algebra, that is, the one for which ev-
ery simple subcoalgebra is one-dimensional, can be de-
composed as a crossed product. It was shown indepen-
dently by Cartier and Gabriel and by Kostant in the early
1960’s that a pointed cocommutative Hopf algebra is a
skew group ring of its group of group-like elements over
the irreducible component of the identity element. For
an arbitrary pointedHopf algebra𝐻, Montgomery showed
that𝐻(1), the indecomposable component containing 1, is
a Hopf subalgebra of 𝐻, the group of group-like elements
𝐺 = 𝐺(𝐻) acts on 𝐻(1) via conjugation, and the group of
group-like elements of 𝐻(1), 𝑁 = 𝐺(𝐻(1)), is normal in 𝐺.
She then proved that 𝐻 is isomorphic to the Hopf algebra
𝐻(1)#𝜍𝑘(𝐺/𝑁), which has a structure of a crossed product
with a certain cocycle 𝜎 as an algebra and a structure of a
tensor product as a coalgebra.

Then, in [CM97], Chin and Montgomery constructed,
for a given coalgebra 𝐶, an associated basic coalgebra 𝐵 for
which every simple subcoalgebra is the dual of some finite-
dimensional division algebra and proved that categories
of 𝐶-comodules and 𝐵-comodules are equivalent, that is,
that𝐶 and 𝐵 areMorita–Takeuchi equivalent. In particular,
when the base field 𝑘 is algebraically closed, every finite-
dimensional division algebra and, therefore, every simple
subcoalgebra of 𝐵 is one-dimensional, implying that 𝐵 is
pointed. The authors then applied their results to path
coalgebras, and showed that, over an algebraically closed
base field, any coalgebra is equivalent to a large subcoalge-
bra of a path algebra of the Ext quiver.
3.4. Extensions. As crossed products, considered in Sub-
section 3.2, play a fundamental role in the theory of ex-
tensions, the next direction of Montgomery’s research was
to study certain types of these extensions. In the joint pa-
per with Blattner from 1989, she started working on Hopf
Galois extensions, which were first introduced in 1969 by
Chase and Sweedler for commutative algebras; the general
definition was given by Kreimer and Takeuchi in 1980 (see
[Mon93, Chapter 8]).

Recall that for an 𝐻-module algebra 𝐴, the algebra of
𝐻-invariant elements 𝐴𝐻 is defined via

𝐴𝐻 = {𝑎 ∈ 𝐵 ∣ ℎ ⋅ 𝑎 = 𝜀(ℎ)𝑎 for all ℎ ∈ 𝐻} ,

extending the notion of a fixed subring 𝑅𝐺 from Sec-
tion 2. Dualizing, if 𝐴 is a (right) 𝐻-comodule algebra
with coaction 𝜌 ∶ 𝐴 → 𝐴 ⊗ 𝐻 (that is, an algebra in the
category ℳ 𝐻), then one can define 𝐴𝑐𝑜𝐻 , its algebra of
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𝐻-coinvariant elements, via

𝐴𝑐𝑜𝐻 = {𝑎 ∈ 𝐴 ∣ 𝜌(𝑎) = 𝑎 ⊗ 1} .

Using this terminology, 𝑅 ⊂ 𝐴 is called a (right) 𝐻-
extension if𝐴 is a right𝐻-comodule algebra with𝑅 = 𝐴𝑐𝑜𝐻
and the 𝐻-extension 𝑅 ⊂ 𝐴 is called (right) 𝐻-Galois pro-
vided that the canonical map 𝛽 ∶ 𝐴 ⊗𝑅 𝐴 → 𝐴 ⊗ 𝐻 de-
fined by 𝛽(𝑎 ⊗ 𝑏) = (𝑎 ⊗ 1)𝜌(𝑏) is bijective. This defini-
tion extends the notion of the classical Galois extensions
as follows: Let 𝑘 ⊂ 𝐸 be fields, 𝐺 be a finite group acting
as automorphisms of 𝐸 fixing 𝑘, and 𝐹 = 𝐸𝐺 be the set
of elements fixed by 𝐺. Since 𝐸 is a 𝑘𝐺-module algebra,
it becomes a (𝑘𝐺)∗-comodule algebra with 𝐸𝑐𝑜(𝑘𝐺)∗ = 𝐹.
Then 𝐸/𝐹 is a classical Galois field extension with Galois
group 𝐺 if and only if 𝐹 ⊂ 𝐸 is (𝑘𝐺)∗-Galois.

Important examples of 𝐻-Galois extensions include
𝑅 ⊆ 𝑅#𝜍𝐻, where 𝑅#𝜍𝐻 is a right 𝐻-comodule via coac-
tion 𝜌 = id⊗Δ, but not every 𝐻-Galois extension can be
written as a crossed product. In fact, combining the results
of Doi and Takeuchi and of Blattner andMontgomery, one
can show that for an 𝐻-extension 𝑅 ⊂ 𝐴, the algebra 𝐴 is
isomorphic to 𝑅#𝜍𝐻 if and only if 𝑅 ⊂ 𝐴 is 𝐻-Galois with
the so-called normal basis property (see [Mon93, Corol-
lary 8.2.5]).

While group crossed products are transitive in the sense
that if 𝑅 ∗𝜍 𝐺 is a crossed product, 𝑁 is a normal sub-
group of 𝐺, and 𝐿 = 𝐺/𝑁, then there exists a cocycle
𝜏 ∶ 𝐿 × 𝐿 → 𝑅 ∗𝜍 𝑁 such that 𝑅 ∗𝜍 𝐺 ≅ (𝑅 ∗𝜍 𝑁) ∗𝜏 𝐿,
Hopf crossed products are not transitive in general. In or-
der to state the transitivity problem, we first consider an
exact sequence of Hopf algebras 𝐾 ↪ 𝐻 ↠ 𝐻, where 𝐾 is
a normal Hopf subalgebra of 𝐻 and 𝐻 = 𝐻/𝐼 is the quo-
tient Hopf algebra for the Hopf ideal 𝐼 = 𝐻𝐾+ = 𝐾+𝐻
of 𝐻, with 𝐾+ = Ker(𝜀) ∩ 𝐾. This sequence is called an
extension of 𝐻 by 𝐾; note, however, that not every quo-
tient Hopf algebra arises from a normal Hopf subalgebra.
Then, by an example of Schneider, it is not true in general
that a crossed product 𝑅#𝜍𝐻, with 𝐻 being an extension
of 𝐻 by 𝐾, can always be written as (𝑅#𝜍𝐾)#𝜏𝐻 for some
cocycle 𝜏.

One of the advantages of studying Hopf Galois exten-
sions rather than crossed products is that, unlike Hopf
crossed products, faithfully flat Hopf Galois extensions are
transitive, which enables the use of inductive arguments.
This was proved by Montgomery and Schneider in their
joint paper [MS99]:

Theorem 11 (Transitivity). Let 𝑅 ⊂ 𝐴 be a faithfully flat
𝐻-Galois extension, 𝐻 be an extension of 𝐻 by 𝐾, and define
𝐵 = 𝜌−1 (𝐴 ⊗ 𝐾). Then

1. 𝑅 ⊂ 𝐵 is faithfully flat 𝐾-Galois.
2. 𝐵 ⊂ 𝐴 is faithfully flat 𝐻-Galois.

The main focus of [MS99] was, however, to study prime
ideal structure in faithfully flat 𝐻-Galois extensions 𝑅 ⊂ 𝐴
for a finite-dimensional Hopf algebra 𝐻. First, since there
is no 𝐻-action on 𝑅 in this situation, the authors intro-
duced the notion of an 𝐻-stable ideal 𝐼 of 𝑅 as the one
satisfying 𝐴𝐼 = 𝐼𝐴; when 𝐴 = 𝑅#𝐻, it coincides with
the usual notion of 𝐻-stable ideals. Since 𝐻 is finite-
dimensional, 𝐴 becomes an 𝐻∗-module algebra, and the
authors applied the Morita equivalence to obtain a bi-
jective correspondence first between the set of 𝐻-prime
ideals of 𝑅, 𝐻-Spec(𝑅), and the set of𝐻∗-prime ideals of 𝐴,
𝐻∗-Spec(𝐴), and then between the sets of 𝐻-equivalence
classes of Spec(𝑅) and of𝐻∗-equivalence classes of Spec(𝐴).
In addition, they proved that 𝐻-Spec(𝑅) can be identified
with 𝐻0-Spec(𝑅), where 𝐻0 is the coradical of 𝐻, that is,
the sum of its simple subcoalgebras.

Next they defined the version of the Krull relations, ex-
tending the basic relations that hold between the prime
ideals of a ring 𝑅 and the group crossed product 𝑅 ∗𝜍 𝐺,
such as lying over, incomparability, and going up. A Hopf
algebra 𝐻 satisfies one of these six Krull relations (three
basic and three dual) if for all faithfully flat 𝐻-Galois ex-
tensions 𝑅 ⊂ 𝐴 a certain relation between the prime ideals
of 𝑅 and 𝐴 holds. For example, 𝐻 has incomparability if
for all faithfully flat 𝐻-Galois extensions 𝑅 ⊂ 𝐴 and any
𝑃2 ⊂ 𝑃1 in Spec(𝐴) the condition 𝑃2 ≠ 𝑃1 implies 𝑃2 ∩ 𝑅 ≠
𝑃1 ∩𝑅. Furthermore, Montgomery and Schneider analyzed
the conditions under which a Hopf algebra satisfies each
of these Krull relations; they proved that in order to see
whether 𝐻 has the given Krull relation, it suffices to check
the special case of smash product extensions 𝑅 ⊂ 𝑅#𝐻 for
all 𝐻-prime 𝐻-module algebras 𝑅. The strongest results,
when 𝐻 satisfies all six Krull relations, were obtained with
the help of the transitivity theorem either when 𝐻 is solv-
able and cosolvable (where 𝐻 being (co)solvable means
that it has a normal series in which all of the quotients are
(co)commutative) or when 𝐻 is semisolvable (that is, 𝐻
has a normal series in which the quotients are either com-
mutative or cocommutative) and (co)semisimple.

In addition, the authors extended the notion of equiv-
alent prime ideals in 𝑅𝐺 from [Mon81] to the case of an
𝐻-module algebra 𝐴 with 𝑅 = 𝐴𝐻 , satisfying certain con-
ditions, and showed that the sets of equivalence classes of
Spec(𝐴) and Spec(𝑅) are in one-to-one correspondence.

Another type of extensions studied by Montgomery,
jointly with Fischman and Schneider, were 𝛽-Frobenius
extensions of subalgebras of a Hopf algebra. One of the
equivalent definitions for a finite-dimensional algebra 𝐴
to be a Frobenius algebra is that 𝐴 should be isomor-
phic to 𝐴∗ as right 𝐴-modules. In the beginning of 1960s,
this concept was generalized twice: First Kasch introduced
the notion of Frobenius extensions of rings, and then
Nakayama and Tsuzuku defined 𝛽-Frobenius extensions,
also called Frobenius extensions of the second type.

MARCH 2023 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 375



One of the main theorems proved by Fischman, Mont-
gomery, and Schneider in [FMS97], states that, under suit-
able conditions, the property of being a 𝛽-Frobenius exten-
sion is inherited by the subalgebras of coinvariants. One of
these conditions was that a certain Hopf algebra extension
was of the so-called (right) integral type; such extensions
include Hopf algebra extensions 𝑈 ⊂ 𝑊 when either 𝑈
is a normal Hopf subalgebra of finite index or 𝑊 is finite-
dimensional. The authors also showed that, if 𝑈 and 𝑊
are pointed and 𝑈 is of finite index, then such an exten-
sion is always of integral type.

The general theory, developed in this paper, was then
applied to the situation when 𝐵 ⊂ 𝐴 and 𝐻 are Hopf alge-
bras with bijective antipodes and there exists a Hopf sur-
jection 𝜋 ∶ 𝐴 → 𝐻 which is still surjective when restricted
to 𝐵. Then 𝐴 and 𝐵 become right 𝐻-comodules with 𝐻-
coaction (id⊗𝜋) ∘Δ and one can consider the subalgebras
of coinvariants, 𝑅 = 𝐴𝑐𝑜𝐻 and 𝑆 = 𝐵𝑐𝑜𝐻 . Then the gen-
eral results of the paper imply, under the assumptions that
𝐵 ⊂ 𝐴 is a faithfully flat extension of right integral type and
𝑅 ⊂ 𝐴 and 𝑆 ⊂ 𝐵 are faithfully flat 𝐻-Galois extensions,
that 𝑆 ⊂ 𝑅 is 𝛽-Frobenius. In particular, these results are
applicable in the following two important special cases:

1. When 𝐴 = 𝑅#𝜍𝐻 and 𝐵 = 𝑆#𝜍𝐻 are crossed products
for an invertible cocyle 𝜎 ∶ 𝐻 ⊗𝐻 → 𝑆.

2. When 𝑆 ⊂ 𝑅 are Yetter–Drinfeld Hopf algebras, that
is, Hopf algebras in the category 𝐻

𝐻𝑌𝐷 of all Yetter–
Drinfeld modules over 𝐻, and 𝐵 = 𝑆 ⋆ 𝐻 and
𝐴 = 𝑅 ⋆ 𝐻 are their Radford biproducts, as described
in [Mon93, Section 10.6].

As a corollary, the authors showed that the finite-
dimensional Yetter–Drinfeld Hopf algebras themselves are
Frobenius algebras and proved a Maschke-type result in
this case.
3.5. Representations and Kaplansky’s Conjectures. As
it was mentioned before, for a Hopf algebra 𝐻, the ten-
sor product of two left 𝐻-modules is again an 𝐻-module.
Moreover, for any left𝐻-module 𝑉 , its dual 𝑉∗ is also a left
𝐻-module via (ℎ ⋅ 𝑓)(𝑣) = 𝑓(𝑆ℎ ⋅ 𝑣), where ℎ ∈ 𝐻, 𝑓 ∈ 𝑉∗,
and 𝑣 ∈ 𝑉 . Therefore the category of finite-dimensional
𝐻-modules is a rigid monoidal category, and this fact es-
tablishes a strong connection between Hopf algebra the-
ory and category theory. Many of the results about Hopf
algebras and their representations were later extended to
tensor categories, which makes the study of the represen-
tation theory of Hopf algebras very important.

In 1975, Kaplansky stated ten conjectures about Hopf
algebras, most of which were motivated by corresponding
properties of groups and played a fundamental role in the
development of Hopf algebra theory. One of them, the
sixth conjecture, which will be referred to as simply the Ka-
plansky Conjecture, appears to be particularly important

and is still open. This conjecture suggests that the classi-
cal Frobenius theorem for groups extends to semisimple
Hopf algebras: Roughly, it states that, for a semisimple
Hopf algebra 𝐻 over an algebraically closed field, the di-
mension of any irreducible representation of 𝐻 (that is,
a simple 𝐻-module) divides the dimension of 𝐻. It is
true for all known examples of such algebras, including
group algebras and their duals, and often the results about
semisimple Hopf algebras are proved under the assump-
tion that the Kaplansky Conjecture holds for them. In re-
cent years this conjecture was shown to be true in many
special situations, and one of the first results obtained
in this direction was by Montgomery and Witherspoon
in [MW98]. The authors first established a one-to-one
correspondence between irreducible representations of a
crossed product 𝐴#𝜍𝑘𝐺 and irreducible representations of
certain twisted group algebras of subgroups of 𝐺. This
so-called Clifford correspondence allowed them to show
that for a finite-dimensional algebra 𝐴 over a field 𝑘 and
a group 𝐺, with characteristic of 𝑘 not dividing the order
of𝐺, if the dimension of any irreducible𝐴-module divides
the dimension of 𝐴 then the same is true for 𝐵=𝐴#𝜍𝑘𝐺 or
𝐴#𝜍(𝑘𝐺)∗. The proof of the latter result involves the ap-
plication of the duality results in Theorem 9. Then the au-
thors showed that, over an algebraically closed field, the
above divisibility property still holds if the group algebra
or its dual is replaced by a lower or upper semisolvable
semisimple Hopf algebra; in particular, every lower or up-
per semisolvable semisimple Hopf algebra, over an alge-
braically closed field of characteristic not dividing its di-
mension, satisfies the Kaplansky Conjecture. Here, the no-
tion of lower semisolvablity coincides with the notion of
semisolvablity from [MS99] (see Subsection 3.4), and up-
per semisolvable Hopf algebras are defined similarly, us-
ing the series of quotients instead of normal Hopf subal-
gebras.

Finally, Montgomery and Witherspoon proved that ev-
ery semisimple Hopf algebra of prime power dimension
over an algebraically closed field of characteristic 0 is both
lower and upper solvable and cosolvable and, therefore,
satisfies the Kaplansky Conjecture.

4. Frobenius–Schur Indicators
In 2000, Susan Montgomery and her student Vitaly
Linchenko showed that the standard trichotomy for group
representations given by Frobenius–Schur indicators (real,
non real but real valued characters, and totally non real)
can be extended to Hopf algebras. This seminal paper
played a role of fundamental importance as it laid the
groundwork for the theory of Frobenius–Schur indica-
tors and made a huge impact on the field, laying out
the directions for further development: First, Kashina,
Sommerhäuser, and Zhu developed the theory of higher
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Frobenius–Schur indicators, which was then extended to
the case of semisimple quasi-Hopf algebras by Mason and
Ng and to the case of spherical fusion categories by Ng
and Schauenburg (see, for example, [KSZ06] and [NS07]).
Frobenius–Schur indicators became a very important cat-
egorical invariant and had a lot of different applications
ranging from the proof of the analogue of Cauchy’s theo-
rem for Hopf algebras to finding the dimensions of sim-
ple modules to classification results for Hopf algebras and
fusion categories. Montgomery continued studying these
indicators in a series of papers with Guralnick, Iovanov,
Jedwab, Kashina, Mason, Ng, Vega, and Witherspoon (see
[KMM02], [GM09], [JM09], and [IMM14]).

Recall that in group theory the 𝑛-th Frobenius–Schur in-
dicator of the character 𝜒 of a finite group 𝐺 is defined as

𝜈𝑛(𝜒) =
1
|𝐺| ∑𝑔∈𝐺

𝜒(𝑔𝑛).

When 𝑛 = 2, this definition yields the classical Frobenius–
Schur indicator, which was used by Frobenius and Schur
in the beginning of the 20th century to determine whether
an irreducible complex representation of a finite group can
be realized by matrices with real entries. Note that, when
the characteristic of the base field 𝑘 does not divide |𝐺|,
the element Λ = 1

|𝐺|
∑𝑔∈𝐺 𝑔 becomes the so-called nor-

malized integral for the Hopf algebra 𝐻 = 𝑘𝐺. Linchenko
and Mongomery realized that, when the group algebra
is replaced by an arbitrary semisimple Hopf algebra, the
𝑛-th Frobenius–Schur indicator of the character 𝜒 can be
defined as 𝜈𝑛(𝜒) = 𝜒(Λ[𝑛]) for the 𝑛-th Hopf power of
the normalized integral Λ; when 𝑛 = 2 these indicators
are just referred to as Frobenius–Schur indicators, while
higher Frobenius–Schur indicators stand for the case of
𝑛 > 2. The authors proved the following generalization
of the classical Frobenius–Schur theorem:

Theorem 12. [LM00, Theorem 3.1] Let 𝐻 be a semisimple
Hopf algebra over an algebraically closed field of characteristic
not 2 and let 𝜒 be the character of an irreducible representation
of 𝐻 corresponding to the simple 𝐻-module 𝑉 ; in the case of
positive characteristic assume that 𝐻 is also cosemisimple.

1. The Frobenius–Schur indicator 𝜈2(𝜒) takes on only the
values 0, 1, or −1.

2. 𝜈2(𝜒) ≠ 0 if and only if 𝑉 is selfdual. Moreover,
𝜈2(𝜒) = 1 (respectively, −1) if and only if 𝑉 admits a sym-
metric (respectively, skew-symmetric) nondegenerate bilin-
ear 𝐻-invariant form.

3. The trace of the antipode is Tr 𝑆 = ∑𝜈2(𝜒)𝜒(1), where
the summation is taken over all irreducible representations
of 𝐻.

Since Frobenius–Schur indicators proved to be a very
useful invariant of Hopf algebras, Montgomery, together
with Kashina andMason in [KMM02], obtained an explicit

formula for the indicator of an important class of semisim-
ple Hopf algebras, which are called cocentral abelian ex-
tensions and include Drinfeld doubles of group algebras.
The authors used this formula to compute the Frobenius–
Schur indicators for various examples; in particular they
established conditions under which all irreducible repre-
sentations of the smash product (𝑘𝐺)∗#𝑘𝐿, where 𝐺 and 𝐿
are groups, have positive Frobenius–Schur indicators. As a
consequence, they showed that the indicator is always pos-
itive for Drinfeld doubles of symmetric groups as well as of
generalized dihedral groups and their direct products. In
group theory, the groups which admit only irreducible rep-
resentations with positive indicators are of particular inter-
est and are called totally orthogonal. In a joint paper with
Guralnick [GM09], Montgomery introduced the same ter-
minology for Hopf algebras and proved that the Drinfeld
double of any finite real reflection group is totally orthog-
onal. In addition, the authors showed that Frobenius–
Schur indicators of irreducible representations, taking on
only the values 0, 1, or −1, can be defined even in posi-
tive characteristic for involutory non-semismpleHopf alge-
bras. Then, together with Jedwab in [JM09], Montgomery
studied Frobenius–Schur indicators for bismash products
(𝑘𝐶𝑛)∗#𝑘𝑆𝑛−1 and (𝑘𝑆𝑛−1)∗#𝑘𝐶𝑛, for the cyclic group 𝐶𝑛
and the symmetric group 𝑆𝑛−1, where 𝑘 is an algebraically
closed field of characteristic 0. The authors showed that
(𝑘𝐶𝑛)∗#𝑘𝑆𝑛−1 is totally orthogonal, while (𝑘𝑆𝑛−1)∗#𝑘𝐶𝑛
admits irreducible representations with indicator 0 as well
as 1. In the next paper with Jedwab, Montgomery studied
the representations of general bismash products (𝑘𝐺)∗#𝑘𝐿
over algebraically closed fields of positive characteristic not
equal to 2 and defined Brauer characters for such bismash
products. They proved the bismash product analog of the
theorem of Thompson on lifting Frobenius–Schur indica-
tors of group representations from characteristic 𝑝 to char-
acteristic 0 and deduced that (𝑘𝐺)∗#𝑘𝐿 is totally orthogo-
nal if (ℂ𝐺)∗#ℂ𝐿 is totally orthogonal.

While higher Frobenius–Schur indicators of group rep-
resentations are always integers, this does not hold for
Hopf algebras. Since there is a relation between group
representations and representations of Drinfeld doubles
of groups, an open question was whether this integrality
property still holds for these Drinfeld doubles. This turned
out to be an interesting group-theoretic question, which
was studied by Montgomery together with Iovanov and
Mason in [IMM14]. They showed that, while the 𝑛-th indi-
cators are integers for 𝑛 = 2, 3, 4, 6 as well as for many im-
portant families of groups, such as symmetric groups, alter-
nating groups, the projective special liner groups 𝑃𝑆𝐿2(𝑞),
and the sporadic simple groups 𝑀11 and 𝑀12, it is false in
general.

We will now discuss some significant applications of
Frobenius–Schur indicators in Hopf algebra theory and

MARCH 2023 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 377



beyond, for which Montgomery’s results played an instru-
mental role.

In [KMM02, Section 7], Montgomery with her coathors
used the Frobenius–Schur indicators for classification pur-
poses as an invariant that helps distinguishing between
nonisomorphic semisimple Hopf algebras, for example,
by showing that one Hopf algebra has a two-dimensional
irreducible representationwith indicator−1, and the other
one does not. Moreover, since (higher) Frobenius–Schur
indicators are categorical invariants, they can be used to
show that Hopf algebras are not twist-equivalent to each
other, that is, the corresponding representation categories
are not equivalent. For example, this line of argument
was later used by Kashina to show that all nonisomorphic
Hopf algebras from a certain family of dimension 32 are
also not twist-equivalent.

In [KSZ06, Section 3.4], Kashina, Sommerhäuser, and
Zhuused the (higher) Frobenius–Schur indicators to prove
the Hopf algebra analogue of Cauchy’s theorem. The orig-
inal theorem for finite groups states that for every prime
divisor 𝑝 of the order of the group there exists an element
of order 𝑝 and can be reformulated by saying that every
prime divisor of the order of the group also divides its ex-
ponent. The authors showed that if a prime 𝑝 does not
divide the exponent of a semisimple Hopf algebra𝐻, then
the 𝑝-th Hopf power of the normalized integral Λ equals
Λ itself. Then for the regular representation 𝜒𝑅, in which
𝐻 acts on itself via left multiplication, the 𝑝-th Frobenius–
Schur indicator equals

𝜈𝑝(𝜒𝑅) = 𝜒𝑅(Λ[𝑝]) = 𝜒𝑅(Λ) = 1.

On the other hand, by another formula for indicators, es-
tablished by the authors, if 𝑝 divides dim𝐻 then

𝜈𝑝(𝜒𝑅) = (dim𝐻)𝑝−1 ≡ 0 (mod 𝑝).

This establishes theHopf algebra analogue of Cauchy’s the-
orem: Every prime divisor of the dimension of 𝐻 divides
its exponent.

As it was mentioned in the beginning of this section,
Ng and Schauenburg extended the notion of (higher)
Frobenius–Schur indicators to category theory. These gen-
eralizations were essential to the proofs of several impor-
tant results, such as the categorical version of Cauchy’s the-
orem for integral fusion categories byNg and Schauenburg
in [NS07] and for spherical fusion categories by Bruillard,
Ng, Rowell, and Wang in [BNRW16]. The latter group
of authors applied Cauchy’s theorem to prove the rank-
finiteness theorem, which was a longstanding conjecture
of the fourth author. This theorem states that, up to equiv-
alence, there are finitely many modular categories of given
finite rank. As modular categories contribute to the mathe-
matical foundation of topological quantum computation
and are closely related to conformal field theories and

topological quantum field theories, Frobenius–Schur in-
dicators played an important role for the further develop-
ment of these areas.

5. Concluding Remarks
Susan’s research on Hopf algebras and their representa-
tions, as well as her work on group and Hopf algebra ac-
tions on rings, established the framework and motivated
further studies in these areas. She gave numerous invited
talks at conferences, seminars, and colloquia around the
world, including the AMS invited addresses at the Joint
Mathematics Meetings in 1984, the Joint meeting of the
AMS and the Israel Mathematical Union in 1995, and the
Spring Southeastern sectional meeting in 2005, as well as
the plenary lecture at the Canadian Mathematical Society
summer meeting in 2009. In 2011, Susan was selected to
deliver the Emmy Noether Lecture at the Joint Mathemat-
ics Meetings.

Susan Montgomery was a co-organizer of more than 35
conferences, workshops, and special sessions on ring the-
ory, Lie algebras, Hopf algebras, tensor categories and re-
lated topics, as well as the noncommutative algebra year at
MSRI in 1999–2000. Two Hopf algebra conferences were
held in Susan’s honor: one at the University of Southern
California in 2009 and another one as a special session at
the Joint Mathematics Meetings in San Diego in 2018.

Susan served as an editor for numerous mathematical
journals, including the Proceedings of the AMS, Advances in
Mathematics, and Journal of Algebra.

Susan’s impact on noncommutative algebra is not lim-
ited to her own research accomplishments and editorial
work. She had, and continues to have, a broad influ-
ence on the field through mentorship and collaboration
with young mathematicians. Thirteen graduate students
received their Ph.D. degree under Susan’s supervision, and
she currently has one Ph.D. student. Many experts in the
areas of Hopf algebras, quantum groups, and category the-
ory spent their postdoctoral years at USC working with her.
Susan is a wonderful mentor and advisor; she cares deeply
about her graduate students and provides a lot of guidance
and encouragement throughout their academic careers. I
was very fortunate to have Susan as my graduate advisor
and to be able to collaborate with her. More than twenty
years after graduation, I still feel her strong support.
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