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1. Introduction
Today’s digital infrastructure relies on cryptography in or-
der to ensure the confidentiality and integrity of digital
transactions. At the heart of these techniques is public
key cryptography, which provides a method for two par-
ties to communicate privately, despite the lack of any pre-
arranged security keys.

These protocols mainly rely on the fact that deciphering
encoded communications is tantamount to solving math-
ematical problems which are widely thought to be infea-
sible (two such examples are the factoring problem and
the discrete logarithm problem). Yet we know that with
the advent of large-scale quantum computers (devices that
compute according to the laws of quantum mechanics),
both the factoring and discrete logarithm problems are
completely broken, meaning that our existing public-key
cryptography infrastructure has become insecure.

We are thus at a crossroads in terms of security: Is the
security of our digital infrastructure ready for the advent of
quantum computers? While security is the common goal,
the mathematical theory of group theory is the common
methodology. Group theory is a broad and rich theory that
models the technical tools used for the design and analysis
in this research.

Some of the candidates for post-quantum cryptography
(PQC) have been known for years, while others are still
emerging.
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Group theory, and in particular non-abelian groups,
offers a rich supply of complex and varied problems for
cryptography; reciprocally, the study of cryptographic algo-
rithms built from these problems has contributed results
to computational group theory.

In 2015, NSA and NIST made an announcement for
post-quantum cryptosystems. In July 5, 2022, the round
four finalists were announced [NIS22]. Among them,
the following were short-listed: lattice-based, code-based,
isogeny-based, and hash-based primitives.

In 2016 Anshel, Atkins, Goldfeld, and Gunnells, sub-
mitted a proposal to the NIST competition which faced
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several attacks by Petit et al (PKC 2017), Blackburn et
al (ASIACRYPT 2018), Ushakov et al (DCC 2019). Re-
cently in [AAGG21], the same authors have proposed a
group-based digital signature WalnutDSATM which the au-
thors claim is safe against all those attacks and quantum-
resistant.

In 1999, Anshel, Anshel, and Goldfeld [AAG99] pro-
posed the commutator key-exchange protocol based on
braid groups. Ko, Lee et al. proposed a non-commutative
version of Diffie–Hellman using braid groups in 2000
[KLC+00].

Though braid groups were the suggested platform for
both protocols, researchers have been motivated to find
other suitable classes of groups for non-commutative
group-based cryptography. On the other hand, in the last
couple of decades, the complexity of some group-theoretic
problems have been studied.

We nowpresent a brief history of the proposed platform
groups and algorithmic group theoretic problems for cryp-
tography.

In 2004, Eick and Kahrobaei proposed polycyclic
groups as a new platform for cryptography. These groups
are natural generalizations of cyclic groups withmore com-
plex algorithmic theory (see Section 3.1 for more details).
Grigoriev and Ponomarenko in 2004 suggested groups of
matrices for a homomorphic encryption scheme. In 2008,
Ostrovsky and Skeith determined sufficient and necessary
conditions for the existence of a fully homomorphic en-
cryption scheme (FHE) over a nonzero ring if and only if
there exists an FHE over a finite non-abelian simple group.
Simple groups have also been proposed for hash functions
by Petit and Quisquater in 2016.

In 2017, Chatterji, Kahrobaei et al studied the subgroup
distortion problem in hyperbolic groups. Kahrobaei and
Mallahi-Karai proposed arithmetic groups as a new plat-
form for the same protocol in 2019. Since 2016 graph
groups have been proposed for various cryptographic
protocols by Flores, Kahrobaei, and Koberda, since sev-
eral of the algorithmic problems in these groups are
NP-complete which provides quantum-resistant cryptosys-
tems (see [FKK19, Section 7]). We extensively address
this in section 2.2. In 2019, Kahrobaei, Tortora, and Tota
proposed nilpotent groups for making multi-linear maps.
We conclude by mentioning that several other classes of
groups were proposed in the last couple of decades for plat-
forms for group-based cryptography. This list includes au-
tomata groups (1991 by Garzon and Zalcstein, in 2019 by
Grigorchuk and Grigoriev), Thompson group (Shpilrain
and Ushakov, 2006), free metabelian groups (Shpilrain
and Zapata in 2006, and Kahrobaei and Habeeb in 2012),
small cancellation groups (Habeeb, Kahrobaei, Shpilrain
2012), free nilpotent 𝑝-groups (Kahrobaei and Shpilrain,

2016), Engel groups (Kahrobaei and Noce, 2020), and in-
finite pro-𝑝 groups (Kahrobaei and Stanojkovski, 2021).

Next we discuss aspects that should be considered for
post-quantum group-based primitive.

The security of classical cryptographic schemes such as
RSA, and Diffie–Hellman are based on the difficulty of fac-
toring large integers and of finding discrete logarithms in
finite cyclic groups, respectively. A quantum computer is
able to solve the aforementioned problems attacking the
security of these cryptographic algorithms. More precisely,
Shor’s algorithm factors discrete logarithm problems and
Grover’s algorithm can improve brute force attacks by sig-
nificantly reducing search spaces for private keys. As a re-
sult, researchers are now interested in cryptography that is
secure in a post-quantum world.

We recall that a subgroup 𝐻 of a group 𝐺 is hidden by a
function 𝑓 from 𝐺 to a set 𝑆 if it is constant over all cosets
of 𝐻, and takes distinct values on distinct cosets.

H ≤ G S

f constant on gH
for any g ∈ G

Figure 1. The hidden subgroup problem.

In other words, for any 𝑔1, 𝑔2 ∈ 𝐺, 𝑓(𝑔1) = 𝑓(𝑔2) if and
only if 𝑔1𝐻 = 𝑔2𝐻. This problem asks then whether, given
a finitely generated group 𝐺 and an efficiently computable
function 𝑓 from 𝐺 to some finite set 𝑆 such that 𝑓 is con-
stant and distinct on left-cosets of a subgroup 𝐻 of finite
index, we can find a finite generating set for𝐻. Given a hid-
den subgroup𝐻, the hidden subgroup problem (HSP) asks to
find a generating set for 𝐻 using information from evalua-
tions of 𝑓 via an oracle.

In summary, to analyze whether group-based cryptosys-
tems are post-quantum one studies the relationship be-
tween the proposed algorithmic problems and the HSP,
and Grover’s search algorithm for the proper parameters
in the proposed platform groups. Note that cryptosystems
based on NP-complete problems are not vulnerable at this
time to quantum cryptanalysis.

In this paper, we present the current status and the ap-
proach of post-quantum group-based cryptography. In
particular, we focus our attention on two classes of groups
as platform groups for possible cryptographic protocols:
polycyclic and graph groups. About the former, the com-
plexity of algorithmic problems made polycyclic groups
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suitable platforms for cryptography. Likewise, graph
groups are good post-quantum systems since many of the
algorithmic problems presented are NP-complete.

We remark that our treatment of the algorithmic prob-
lem in graph groups in Section 2.2 is more detailed, be-
cause these groups are defined more concretely and pos-
sess a very useful normal form, so their behavior with re-
spect to these problems is better understood than that of
polycyclic groups.

We address this paper to survey several classical and
novel algorithmic problems for both polycyclic and graph
groups with a view toward applications to cryptography.
Finally, we present a real-life implementation of a combi-
natorial algebraic fully homomorphic encryption scheme
which has been used for data analysis of encrypted medi-
cal data. We also include a list of open problems, which
we hope will guide researchers who wish to work in this
field.

2. Platform Groups
The study of groups mostly as combinatorial objects (us-
ing group presentation with generators and relators) is the
area of group theory known as combinatorial group theory,
which has been developed in order to find solutions to
the so-called decision problems (i.e., problems with “yes” or
“no” answers).

More precisely, let 𝑋 = {𝑥1, … , 𝑥𝑛} and 𝑋−1 =
{𝑥−11 , … , 𝑥−1𝑛 }, where the latter is called the set of formal in-
verses. The elements of 𝑋 and its formal inverses are called
letters, and a word in 𝑋 ∪𝑋−1 is a finite (possibly empty) se-
quence of letters of 𝑋 ∪𝑋−1. A word 𝑤 in the set 𝑋 ∪𝑋−1 is
freely reduced over𝑋 if it contains no adjacent symbols 𝑥𝑥−1
or 𝑥−1𝑥. The group𝐺 is a free groupwith basis 𝑋 if 𝑋 is a set
of generators for 𝐺 and no nonempty freely reduced word
over 𝑋 ∪𝑋−1 represents, as a product, the identity element
of 𝐺 (note that the empty string represents the identity el-
ement). As an example, one can consider the group of the
integers, which is the free group with a single generator.

The following three decision problems were introduced
by Dehn in 1911, and are usually called the “Dehn prob-
lems.” They are defined as follows:
Word Problem: For any 𝑔 ∈ 𝐺, determine if 𝑔 is the iden-
tity element of 𝐺.
Conjugacy Problem: For any 𝑥, 𝑦 ∈ 𝐺, determine if 𝑥 and
𝑦 are conjugate, that is, if there exists an element 𝑐 ∈ 𝐺 (a
conjugator) such that 𝑐−1𝑥𝑐 = 𝑦.
Isomorphism Problem: Let 𝐺 and 𝐺′ be groups given by
finite presentations, determine if 𝐺 is isomorphic to 𝐺′.

In general, decision problems are problems of the fol-
lowing nature: given a property 𝒫 and an object 𝒪, find
out whether or not the object𝒪 has the property𝒫. Search
problems are of the following nature: given a property
𝒫 and an object 𝒪 with the property 𝒫, find something

“material” establishing the property 𝒫; for example, given
two conjugate elements of a group, find a conjugator. In
other words, given a group 𝐺 and 𝑎, 𝑏 ∈ 𝐺 where 𝑎 is a
conjugate of 𝑏, the conjugacy search problem is the problem
to find an element 𝑐 ∈ 𝐺 such that 𝑐−1𝑎𝑐 = 𝑏. The conju-
gation 𝑐−1𝑎𝑐 is usually denoted by 𝑎𝑐.

There are many other algorithmic problems which have
been used in group-based cryptography; see Section 2.2 for
more examples in graph groups.
2.1. Polycyclic groups. We start this section by stating the
main definitions we need. A series of a group G is a chain
of subgroups {1} = 𝐺0 ≤ 𝐺1 ≤ ⋯ ≤ 𝐺𝑛−1 ≤ 𝐺𝑛 = 𝐺 such
that each 𝐺𝑖 is normal in 𝐺𝑖+1. A group 𝐺 is said to be
polycyclic if it has a subnormal series {1} = 𝐺0 ≤ 𝐺1 ≤ ⋯ ≤
𝐺𝑛−1 ≤ 𝐺𝑛 = 𝐺 such that the quotient groups 𝐺𝑖+1/𝐺𝑖
are cyclic. This series is called a polycyclic series. The Hirsch
length of a polycyclic group 𝐺 is the number of infinite fac-
tors in its polycyclic series. Though a polycyclic group can
have more than one polycyclic series, it is a consequence
of the Schreier Refinement Theorem that its Hirsch length
is independent of the choice of series.

Every polycyclic group can be described by a polycyclic
presentation of the following form:

⟨𝑔1, … , 𝑔𝑛 ∣ 𝑔−1𝑖 𝑔𝑗𝑔𝑖 = 𝑢𝑖𝑗 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛,
𝑔𝑖𝑔𝑗𝑔−1𝑖 = 𝑣𝑖𝑗 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛,

𝑔𝑟𝑖𝑖 = 𝑤𝑖𝑖 for 𝑖 ∈ 𝐼⟩,

where 𝑢𝑖𝑗 , 𝑣𝑖𝑗 , 𝑤𝑖𝑖 are words in the generators 𝑔𝑖+1, … , 𝑔𝑛
and 𝐼 is the set of indices 𝑖 ∈ {1, … , 𝑛} such that [𝐺𝑖+1 ∶ 𝐺𝑖]
is finite.

A group 𝐺 is said to be nilpotent if and only if 𝐺 possess
a central series, that is, if there exists a chain of subgroups
𝐻0, … , 𝐻𝑛 of 𝐺: {1} = 𝐻0 ≤ 𝐻1 ≤ ⋯ ≤ 𝐻𝑛 = 𝐺 such
that for any 𝑖 ∈ {0, … , 𝑛}, 𝐻𝑖 normal in 𝐺 and 𝐻𝑖+1/𝐻𝑖 ≤
𝑍(𝐺/𝐻𝑖), where 𝑍(𝐺/𝐻𝑖) is the center of 𝐺/𝐻𝑖.

If a group𝐺 is nilpotent, theminimal length of a central
series is said to be the nilpotency class of 𝐺 and it is denoted
by cl(𝐺).

Finally, given a prime number 𝑝, a group 𝐺 is a 𝑝-group
if the order of every element is a power of 𝑝. Nilpotent
groups of class 1 are abelian groups, and finite 𝑝-groups of
order 𝑝𝑎 are nilpotent of class at most (𝑎 − 1).

Polycyclic groups have been always of interest in classi-
cal cryptography. Cyclic groups are obviously polycyclic
and they have been used in the classical cryptosystems
such as RSA and Diffie–Hellman.

Polycyclic groups are natural generalizations of cyclic
groups with more complex algorithmic problems which
provide suitable platforms for cryptography. Finitely gen-
erated nilpotent groups are polycyclic and 𝑝-groups are
nilpotent. We discuss both applications of finite and in-
finite polycyclic groups here.
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Regarding the Dehn problems in polycyclic groups, the
word problem can be solved efficiently, while the solution
of the conjugacy problem is conjectured to be exponential
time, and in particular seems not efficient. Many exper-
iments have been run by Eick and Kahrobaei in 2004, as
well as by Garber, Kahrobaei, and Lam in 2013, which back
up this conjecture for some classes of polycyclic groups.

There are polycyclic groups that are metabelian, as for
example the group Σ3 of permutations of three elements.
Recall that a group is metabelian if it is an extension of
abelian groups. In [GKMP19] Gryak, Kahrobaei, and
Martı́nez-Pérez analyzed the computational complexity of
an algorithm to solve the conjugacy search problem in a
certain family of metabelian groups. They proved that in
general the time complexity of the conjugacy search prob-
lem for these groups is at most exponential. They also
showed that for a different subfamily, namely the gener-
alized metabelian Baumslag–Solitar groups the conjugacy
search problem reduces to the discrete logarithm problem.

In [GHK20] Gryak, Kahrobaei, and Haralick solved the
conjugacy problem in certain groups via machine learn-
ing methods. These methods, improving the pre-existent
machine learning and pattern recognition techniques for
algorithmic problems in free groups, allow to find heuris-
tically the conjugate of a pair of random elements of
some groups. The groups considered are Baumslag–Solitar
group ℬ(1, 2) = ⟨𝑎, 𝑏 ∣ 𝑏𝑎𝑏−1 = 𝑎2⟩ and some non-
metabelian generalisation of it, and non-virtually nilpo-
tent polycyclic groups.
2.1.1. Cryptographic applications. Polycyclic groups have
many applications in group-based cryptography, see
[GK16] for a complete survey. Such applications in-
clude the commutators key-exchange protocol based on
the simultaneous conjugacy search problem and the sub-
groupmembership search problem; the non-commutative
Diffie–Hellman key exchange protocol based on the conju-
gacy search problem; the non-commutative ElGamal key-
exchange based on the power conjugacy search problem
proposed by Kahrobaei and Khan; a key-exchange using
the subgroup membership search problem; an authentica-
tion scheme based on the twisted conjugacy problem; au-
thentication schemes based on semigroup actions (such as
the endomorphism and the isomorphism problem) and a
secret sharing scheme using the fact that there is an effi-
cient solution for the word problem.

Below we describe a non-commutative digital signature
which was proposed in 2012 by Kahrobaei and Koupparis
[KK12] based on polycylcic groups.

Non-commutative digital signature. Let 𝐺 be an infi-
nite polycyclic group, and consider two functions 𝑓 and 𝐻
as follows 𝑓∶ 𝐺 → {0, 1}∗, which encodes elements of the
group as binary strings, and 𝐻∶ {0, 1}∗ → 𝐺, known as the
collision-resistant hash function.

The functions 𝑓 and 𝐻, and the group 𝐺 are public and
the message is signed and verified as follows:
Key Generation: The signer first chooses an element 𝑔 ∈
𝐺, whose centralizer (the set of elements that commute
with 𝑔) contains only the identity of 𝐺 and powers of 𝑔.
The private key is an element 𝑠 ∈ 𝐺 and 𝑛 ∈ ℕ, where 𝑛 is
chosen to be highly composite. The public key is 𝑥 = 𝑔𝑛𝑠.
Signing Algorithm: To sign a message 𝑚, the signer
chooses a random element 𝑡 ∈ 𝐺 and a random factor-
ization 𝑛𝑖𝑛𝑗 of 𝑛, and computes the following, where || de-
notes concatenation:

𝑦 = 𝑔𝑛𝑖𝑡 ℎ = 𝐻(𝑚||𝑓(𝑦)) 𝛼 = 𝑡−1𝑠ℎ𝑦.

The signature 𝜎 = ⟨𝑦, 𝛼, 𝑛𝑗⟩ and the message 𝑚 are then
sent to the message recipient.
Verification: To verify, the recipient computes ℎ′ =
𝐻(𝑚||𝑓(𝑦)), and accepts the message as authentic if and
only if the following equality holds: 𝑦𝑛𝑗𝛼 = 𝑥ℎ′𝑦.

The security of the signature scheme is based on the col-
lision resistance of the hash function and the hardness of
the conjugacy search problem in 𝐺 in the platform group.

Multilinear maps. In the last decades, multilinear
maps have attracted attention in cryptography. In 2003,
Boneh and Silverberg proposed multilinear maps in cryp-
tography, exploring in particular how to build these maps.
In 2017 Mahalanobis and Shinde presented a novel bilin-
ear cryptosystem in groups of nilpotency class 2. In or-
der to exploremore deeply thesemaps, Kahrobaei, Tortora,
and Tota proposed multilinear cryptosystem using identi-
ties in nilpotent groups in 2019. Recently, Kahrobaei and
Stanojkovski proposed pro-𝑝 groups in general form for
such maps and analyzed the security [KS21].

In order to explain the aforementioned results, we give
a couple of useful definitions. We first recall that given
a group 𝐺 and 𝑥1, … , 𝑥𝑛 ∈ 𝐺 a simple commutator of
weight 𝑛 > 1 is defined recursively by the rules [𝑥1, 𝑥2] =
𝑥−11 𝑥−12 𝑥1𝑥2, and

[𝑥1, 𝑥2, … , 𝑥𝑛] = [[𝑥1, … , 𝑥𝑛−1], 𝑥𝑛]

if 𝑛 > 2. Sometimes we will use the following shorthand
notation

[𝑥,𝑛 𝑦] = [𝑥, 𝑦, 𝑛…, 𝑦].
Let now 𝑛 be a positive integer and 𝐺 an arbitrary group.
A map 𝑒 ∶ 𝐺𝑛 → 𝐺 is said to be a multilinear map if for any
𝑔1, … , 𝑔𝑛, ∈ 𝐺 and any 𝑎1, … , 𝑎𝑛 ∈ ℤ we have

𝑒(𝑔𝑎11 , … , 𝑔
𝑎𝑛𝑛 ) = 𝑒(𝑔1, … , 𝑔𝑛)𝑎1⋯𝑎𝑛 .

Moreover, we say that the map 𝑒 is non-degenerate if there
exists 𝑔 ∈ 𝐺 such that 𝑒(𝑔, … , 𝑔) ≠ 1.

If furthermore 𝐺 is a nilpotent group, there are ad-
ditional properties for multilinear maps. So let 𝐺 be a
nilpotent group of class 𝑛 > 1 and 𝑔1, … , 𝑔𝑛 elements of
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𝐺. One can easily prove by induction on 𝑛 that for any
𝑎1, … , 𝑎𝑛 ∈ ℤ the following identity holds:

[𝑔𝑎11 , … , 𝑔
𝑎𝑛𝑛 ] = [𝑔1, … , 𝑔𝑛]∏

𝑛
𝑖=1 𝑎𝑖 . (1)

Hence if 𝐺 is nilpotent, the map 𝑒
𝑒 ∶ 𝐺𝑛 → 𝐺

(𝑔1, … , 𝑔𝑛) ↦ [𝑔1, … , 𝑔𝑛]

is a multilinear map. In addition, if we fix 𝑥 ∈ 𝐺, we can
construct another multilinear map 𝑓 given by

𝑓 ∶ 𝐺(𝑛−1) → 𝐺
(𝑔1, … , 𝑔𝑛−1) ↦ [𝑥, 𝑔1, … , 𝑔𝑛−1].

If themultilinearmap is non-degenerate, then one can pro-
pose multilinear cryptosystems using identities in nilpo-
tent groups in multiparty key-exchange protocols, in
which the security is based on the discrete logarithm prob-
lem. The protocol presented by Kahrobaei, Tortora, and
Tota reads as follows.

Let 𝑛 be a positive integer, and suppose that the public
group 𝐺 is nilpotent of class 𝑛 + 1, but not 𝑛-Engel. We
recall that a group 𝐺 is an 𝑛-Engel group if there exists 𝑛 ≥
1 such that [𝑥, 𝑛𝑦] = 1, for all 𝑥, 𝑦 ∈ 𝐺. Consider then
𝑛+1 users 𝐴1, …𝐴𝑛+1 that wish to agree on a shared secret
key. Each user 𝐴𝑗 selects a private integer 𝑎𝑗 ≠ 0, computes
𝑔𝑎𝑗 , and sends it to the other users. Then we are in the
following situation:

• The user 𝐴1 computes [𝑥𝑎1 , 𝑔𝑎2 , … 𝑔𝑎𝑛+1].
• For 𝑗 = 2, … , 𝑛, the user 𝐴𝑗 computes
[𝑥𝑎𝑗 , 𝑔𝑎1 , … , 𝑔𝑎𝑗−1 , 𝑔𝑎𝑗+1 , … , 𝑔𝑎𝑛+1].

• The user 𝐴𝑛+1 computes [𝑥𝑎𝑛+1 , 𝑔𝑎1 , … 𝑔𝑎𝑛].
Since the identity (1) holds in all nilpotent groups, all

elements computed by the users are equal to

𝑘 = [𝑥,𝑛 𝑔]∏
𝑛+1
𝑗=1 𝑎𝑗 ,

where 𝑘 is the shared key.
In [KS21], Kahrobaei and Stanojkovski propose a new

protocol employing multilinear maps for an arbitrary
number of users. This protocol is a non-interactive key-
exchange in which the users agree on a symmetric shared
key without any interaction, and for this reason is said to
be non-interactive. Note that one of the most known non-
interactive key exchange schemes (NIKE) is the Diffie and
Hellman key-exchange protocol over cyclic groups.

Let 𝑛 be an integer greater than 2, and let 𝐺 be a nilpo-
tent group of nilpotency class 𝑛. We set:

• Public: 𝑔1, … , 𝑔𝑛 ∈ 𝐺.
• Users: 𝐴1, …𝐴𝑛+1, who choose an integer 𝑎𝑖 ∈ ℤ.
• Private keys: 𝑎1, … 𝑎𝑛+1.
• Public shared data: 𝑔𝑎𝑗𝑖 with 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤
𝑛 + 1.

• Shared secret key: [𝑔𝑎𝑛+11 , 𝑔𝑎22 , … , 𝑔
𝑎𝑛𝑛 ]𝑎1 =

[𝑔1, … , 𝑔𝑛]∏
𝑛+1
𝑖=1 𝑎𝑖 , which can be computed from the

shared data since the commutator is a multilinear
map.

The security of the above protocol is based on the dif-
ficulty to recover the shared key. For a finite 𝑝-group this
can be reduced to solve the discrete logarithm problem in
a cyclic group of order 𝑝𝑎, which is known to be classically
hard. We observe that the case 𝑛 = 2 already was analyzed
by Mahalanobis and Schinde in 2017.

Motivated by the use of the protocol above in a more
general context and for an arbitrary number of users,
Kahrobaei and Stanojkovski in 2021 employed infinite pro-
𝑝 groups. More precisely, consider a non-nilpotent profi-
nite 𝑝-group 𝐺 with 𝑛 ≥ 2 an integer. It is known that
then 𝐺 has a finite quotient of nilpotency class 𝑛 and so,
over𝐺, one can construct a key-exchange protocol between
𝑛 + 1 users. Kahrobaei and Stanojkovski proved that such
a group 𝐺 exists and it can be used as a platform for an
arbitrary number of users.

It is worth mentioning here the definition of the gener-
alised discrete logarithm problem, as it is connected to
the security of the aforementioned multilinear maps. Let
𝐺 be a finite group. Given 𝑥, 𝑦 ∈ 𝐺, the discrete logarithm
problem (DLP) is the problem to find whether there exists
a positive integer 𝑎 such that 𝑥𝑎 = 𝑦. Notice that this is
usually defined in the setting of cyclic groups because the
Discrete Logarithm exists for all elements and all nontriv-
ial bases. The DLP can be generalized to several compo-
nents as follows. Let 𝐱 = (𝑥1, … , 𝑥𝑛) be a tuple of elements
such that 𝐺 = ⟨𝑥1, … , 𝑥𝑛⟩. Given 𝑦 ∈ 𝐺, the generalised dis-
crete logarithm problem of 𝑦 with respect to 𝐱 is to find 𝑎𝑖
such that 𝑦 can be written uniquely as

𝐱𝐚 = 𝑥𝑎11 …𝑥𝑎𝑛𝑛 = 𝑦,

where 0 < 𝑎𝑖 < |𝑥𝑖| for any 𝑖.
In 2011 Sutherland presented a generic algorithm to

compute Generalised Discrete Logarithms in every finite
abelian 𝑝-group 𝐺 by using some direct methods to com-
pute a basis for 𝐺 [Sut11]. It is an interesting problem to
find the complexity of this problem for any finite 𝑝-group.

Semidirect product key-exchange protocol. Habeeb,
Kahrobaei, Koupparis, Shpilrain in 2013 proposed a key-
exchange protocol using semidirect product [HKKS13]. A
few platforms have been proposed, for example, in [KS16],
free nilpotent 𝑝-groups were proposed. Recently, Battar-
bee, Kahrobaei, Perret, and Shahandashti gave the first ded-
icated security analysis of the semidirect discrete logarithm
problem. In particular, they provide a connection between
the semidirect discrete logarithm problem and group ac-
tions, a context in which quantum subexponential algo-
rithms are known to apply [BKPS22].
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Here we give general ideas of this protocol. Let 𝐺 be a
(semi)group. An element 𝑔 ∈ 𝐺 is chosen and made pub-
lic as well as an arbitrary automorphism 𝜙 ∈ 𝐴𝑢𝑡(𝐺) (or
an arbitrary endomorphism 𝜙 ∈ 𝐸𝑛𝑑(𝐺)). Bob chooses
a private 𝑛 ∈ ℕ, while Alice chooses a private 𝑚 ∈ ℕ.
Both Alice and Bob are going to work with elements of the
form (𝑔, 𝜙𝑟), where 𝑔 ∈ 𝐺, 𝑟 ∈ ℕ. Note that two elements
of this form are multiplied as follows: (𝑔, 𝜙𝑟) ⋅ (ℎ, 𝜙𝑠) =
(𝜙𝑠(𝑔) ⋅ ℎ, 𝜙𝑟+𝑠).

• Alice computes (𝑔, 𝜙)𝑚 = (𝜙𝑚−1(𝑔)⋯𝜙2(𝑔) ⋅ 𝜙(𝑔) ⋅
𝑔, 𝜙𝑚) and sends only the first component of this
pair to Bob. Thus, she sends to Bob only the element
𝑎 = 𝜙𝑚−1(𝑔)⋯𝜙2(𝑔) ⋅ 𝜙(𝑔) ⋅ 𝑔 of the (semi)group 𝐺.

• Bob computes (𝑔, 𝜙)𝑛 = (𝜙𝑛−1(𝑔)⋯𝜙2(𝑔) ⋅ 𝜙(𝑔) ⋅ 𝑔, 𝜙𝑛)
and sends only the first component of this pair to
Alice. Thus, he sends to Alice only the element 𝑏 =
𝜙𝑛−1(𝑔)⋯𝜙2(𝑔) ⋅ 𝜙(𝑔) ⋅ 𝑔 of the (semi)group 𝐺.

• Alice computes (𝑏, 𝑥) ⋅ (𝑎, 𝜙𝑚) = (𝜙𝑚(𝑏) ⋅ 𝑎, 𝑥 ⋅ 𝜙𝑚).
Her key is now 𝐾𝐴 = 𝜙𝑚(𝑏) ⋅ 𝑎. Note that she does
not actually “compute” 𝑥 ⋅ 𝜙𝑚 because she does not
know the automorphism 𝑥 = 𝜙𝑛, and also recall that
it was not transmitted to her, but she does not need it
to compute 𝐾𝐴.

• Bob computes (𝑎, 𝑦) ⋅ (𝑏, 𝜙𝑛) = (𝜙𝑛(𝑎) ⋅ 𝑏, 𝑦 ⋅ 𝜙𝑛). His
key is now 𝐾𝐵 = 𝜙𝑛(𝑎) ⋅ 𝑏. Again, Bob does not actu-
ally “compute” 𝑦 ⋅ 𝜙𝑛 because he does not know the
automorphism 𝑦 = 𝜙𝑚.

• Since (𝑏, 𝑥) ⋅ (𝑎, 𝜙𝑚) = (𝑎, 𝑦) ⋅ (𝑏, 𝜙𝑛) = (𝑔, 𝜙)𝑚+𝑛, we
should have 𝐾𝐴 = 𝐾𝐵 = 𝐾, the shared secret key.

The proposed algorithmic problem on which the secu-
rity of this scheme is based is a cousin of the computa-
tional Diffie–Hellman problem. There is no known reduc-
tion from this problem to the DLP.
2.2. Graph groups. Graph groups (also called partially
commutative groups, semifree groups, right-angled Artin
groups, or simply RAAGs in the literature), were defined
by Baudisch (1977), as a kind of interpolation between
free groups and and free abelian groups. They admit a
presentation where the only relations are commutativity
relations which are codified in a finite simplicial graph,
see the definition below. The fact that these groups are
defined by means of a graph implies that there is a tight
connection between algorithmic graph theoretic problems
and group theoretic problems for graph groups. Since the
graph theoretic problems have been of central importance
in complexity theory, it is natural to consider some of these
graph theoretic problems via their equivalent formulation
as group theoretic problems about graph groups.

In general, given a property of a graph, it is easy to fig-
ure out the corresponding group-theoretic property of the
associated graph group, via the graph that defines it. How-
ever, given an intrinsic property of the graph group (i.e.,

not depending on any particular set of generators), it is
usually hard to characterize the corresponding graph prop-
erty, and not always possible. For example, if a graph is not
connected it is nearly immediate that the associated graph
group decomposes as a free product, but the reciprocal re-
sult is a highly nontrivial theorem. Since the eighties, an
important line of research has been developed in order to
model group-theoretic properties of graph groups in terms
of properties of the graph.

The previous approach permits in particular to convert
graph theoretic problems for finite graphs into group the-
oretic ones for graph groups. Motivated by the fact that
some of these group theoretic problems can be used for
cryptographic purposes, such as authentication schemes,
secret sharing schemes, zero-knowledge proofs, hash func-
tions and key-exchange protocols, Flores, Kahrobaei, and
Koberda have considered these groups as a promising
platform for several cryptographic schemes (see [FKK19],
[FKK21a], [FKK21b], [FKK22]). It is important, in this
sense, that good knowledge of the group-theoretic struc-
ture of these groups (normal forms, centralizers, automor-
phisms, subgroups, etc.) makes their algorithmic proper-
ties very tractable.

Next we will define rigorously graph groups and de-
scribe some of their main features from the cryptographic
point of view.
2.2.1. Main definitions. Here we define graph groups: Let
Γ be a finite simplicial graph. We write 𝑉 = 𝑉(Γ) for the
finite set of vertices and 𝐸(Γ) ⊂ 𝑉 × 𝑉 for the set of edges,
viewed as unordered pairs of vertices. The graph group on
Γ is the group

𝐴(Γ) = ⟨𝑉|[𝑣𝑖, 𝑣𝑗] = 1 whenever (𝑣𝑖, 𝑣𝑗) ∈ 𝐸⟩.

In other words, 𝐴(Γ) is generated by the vertices of Γ, and
the only relations are given by commutation of adjacent
vertices. For example, if Γ is just an edge, then 𝐴(Γ) is ℤ×ℤ,
the free abelian group in two generators.

The previous presentation is frequently called a standard
presentation of the graph group, and the generators the stan-
dard generators or Artin generators. The number of vertices
of the graph is the rank of the group. It is clear by the def-
inition that the graph determines the group, and by the
work of Droms (1987), the converse is also true. In the
following, given a graph Γ, we will denote by𝐴(Γ) is the as-
sociated graph group, and conversely, given a graph group
𝐴, we will denote by Γ(𝐴) its associated graph. We will al-
ways assume that the graphs that appear in this section are
finite.
2.2.2. Algorithmic problems. Next we will comment on the
main algorithmic problems in the context of graph groups,
and the different solutions that have been given to them
throughout the years.
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Word problem. Servatius, using normal forms, gave in
1987 a first solution of the word problem for graph groups,
although he paid no attention to the complexity of the con-
struction of the normal forms. A bit later, Wrathall (1988)
used good properties of a presentation of the monoid of
positive words to prove that the word problem is solvable
for graph groups in linear time. Expanding these meth-
ods, Liu–Wrathall–Zeger (1990) established that the gen-
eralised word problem (i.e., given twowords 𝑥 and 𝑦 in the
group, check if some power of 𝑥 is equal to some power of
𝑦) is also solvable in linear time, where the argument of
linearity is the length of the product.

Conjugacy problem. The approaches just described by
Servatius and Liu, Wrathall, and Zeger were also useful to
prove respectively that the conjugacy problem for graph
groups is solvable in linear time. More recently (2009),
Crisp, Godelle, and Wiest use a version of the Viennot and
pyramidal pilings for graph groups to construct a new nor-
mal form. In this way, they are able to prove that in fact
the complexity of the conjugacy problem in this context is
linear in terms of the sum of the lengths of the elements
involved. The technique consists of constructing the nor-
mal forms out of the corresponding pilings, and compar-
ing them. In this way these authors also prove the linear-
ity of the conjugacy problem for an important family of
subgroups of graph groups, namely fundamental groups
of Haglund–Wise special (or virtually special) cube com-
plexes. It is worth mentioning here that the richness of the
subgroup structure of graph groups gives rise to finitely pre-
sented examples. In general, the corresponding problem
is not solvable for subgroups of graph groups, not even
if they are finitely generated. Bridson (2013) found a fi-
nite index subgroup 𝑃 of a graph group 𝐴 and a finitely
generated free group 𝐹 such that the isomorphism prob-
lem is not solvable for the finitely presented subgroups of
𝑃 × 𝑃 × 𝐹, and then for subgroups of 𝐴×𝐴× 𝐹, which is a
graph group.

Subgroup isomorphism problem. Recall that the Sub-
group isomorphism problem asks if given two groups 𝐺
and𝐻 by presentations, can𝐺 be embedded as a subgroup
of𝐻 or not. If 𝐺 and𝐻 are graph groups given by standard
presentations, a sufficient condition for𝐺 to be a subgroup
of 𝐻 is that the graph associated to 𝐺 is an induced sub-
graph of the graph associated to 𝐻 (i.e., a subgraph such
that if 𝑣 and 𝑤 are vertices of 𝐺 and the edge 𝑣𝑤 belongs
to𝐻, then it also belongs to 𝐺). It is known that this prob-
lem is NP-complete in general. However, in principle it
would be possible to always find an embedding 𝐺 < 𝐻
that does not involve the graph, as for example any em-
bedding 𝐹3 < 𝐹2 of free groups. But this is not possible:
using the techniques of the previous paragraph, Bridson
also proved that there is no general solution for the Sub-
group isomorphism problem in graph groups.

Group homomorphism problem. The general version
of the group homomorphism problem asks if given two
groups 𝐺 and 𝐻, is there a nontrivial homomorphism
𝐺 → 𝐻. For example, if 𝐺 is simple and 𝐻 does not con-
tain a copy of 𝐺, the answer is clearly negative. In turn,
recall that given two graphs Γ1 and Γ2, a homomorphism
𝑓 ∶ Γ1 → Γ2 is an assignation that takes vertices to ver-
tices and edges to edges. It is easy to see that not every
homomorphism between graph groups can be realized as
a homomorphism between the associated graphs, even if
it takes standard generators to standard generators. For ex-
ample, the first projection ℤ2 → ℤ should be given by a
homomorphism 𝐾2 → 𝐾1, which does not exist. Here
𝐾𝑛 denotes the complete graph in 𝑛 vertices, also called
𝑛-clique.

Hence, from the point of view of cryptography, it is very
useful to consider only the homomorphisms between two
graph groups 𝐺1 and 𝐺2 with standard presentations that
take standard generators of the first to standard genera-
tors of the second, and such that two commuting standard
generators are taken to two different standard generators
that commute. Now if we are restricted to this case, the
problem of finding such a homomorphism between 𝐺1
and 𝐺2 is equivalent to the graph homomorphism prob-
lem for the associated graph, which is known to be an 𝑁𝑃-
complete coloring problem (Johnson, 1979).

The membership problem. Given a group𝐻 and a sub-
group 𝐾 < 𝐻 and presentations of 𝐻 and 𝐾, the mem-
bership problem consists in deciding if an element of 𝐻
belongs to 𝐾. Recall that given a presentation of a group
𝐺, the norm |𝑔| of an element of 𝐺 is defined as the min-
imal length of a word (in the given generators and their
inverses) that represents 𝑔. Then, given two elements 𝑔
and ℎ in the group, the distance between 𝑔 and ℎ is de-
fined as the norm of 𝑔−1ℎ. In this way a metric on 𝐺 is
defined, called the word metric. For example, in the free
group 𝐹2 = ⟨𝑎, 𝑏⟩, the distance between 𝑎𝑏 and 𝑎𝑏−1𝑎2 is
|𝑏−1𝑎−1𝑎𝑏−1𝑎2| = |𝑏−2𝑎2| = 4. Now consider presenta-
tions of groups 𝐾 and 𝐻, the associated word metrics 𝑑𝐾
and 𝑑𝐻 associated to the presentations and a monomor-
phism 𝑖 ∶ 𝐾 ↪ 𝐻. Then 𝐾 is undistorted in 𝐻 if the embed-
ding is a quasi-isometry, i.e. there exist constants 𝐴 ≥ 1,
𝐵 ≥ 0 such that for every 𝑥, 𝑦 ∈ 𝐾 we have

1
𝐴𝑑𝐾(𝑥, 𝑦) − 𝐵 ≤ 𝑑𝐻(𝑖(𝑥), 𝑖(𝑦)) ≤ 𝐴𝑑𝐾(𝑥, 𝑦) + 𝐵.

Otherwise 𝐾 is said to be distorted in 𝐻. For every ℎ ∈ 𝐾,
we can define the distortion function 𝐷 ∶ ℕ → ℕ as 𝐷(𝑛) =
max{|ℎ| such that|𝑖(ℎ)| ≤ 𝑛}.

It was proved by Flores, Kahrobaei, and Koberda
[FKK19] that if 𝐺 is a group where the word problem
is solvable in at most exponential time, the membership
problem is so for every finitely generated undistorted sub-
group. In particular, we have seen above that the word
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problem is in fact linear for graph groups, so they fit in this
framework. Moreover, in that paper it is shown that there
exists a graph group 𝐺 and a subgroup 𝐻 < 𝐺 isomorphic
to the fundamental group of a compact surface such that a)
its distortion function has exponential growth, and b) its
membership problem is also solvable in at most exponen-
tial time (it could be even polynomial). On the contrary,
Bridson has described examples of distorted subgroups of
graph groups for which the membership problem remains
unsolvable.

The geodesic problem. For a given presentation of a
group 𝐺, a word in the generators is said to be geodesic if
its number of letters coincides with the length of the ele-
ment of the group that it represents; in other words, it is a
shortest word in these generators representing the element.
There are several classical algorithmic problems involving
geodesics and length. The geodesic problem is, given an
element 𝑔 in a group 𝐺, to find a geodesic word that repre-
sents the elements. The geodesic length problem consists
in computing the length of an element in the group. There
is a bounded version of the latter, where it is intended to
determine for a natural 𝑘 if the length of an element is
smaller or equal to 𝑘. It is known that these three problems
have the same complexity (as each of them is reducible to
each other), and in the case of graph groups this complex-
ity is polynomial by a result of Holt and Rees (2013).

The decomposition problem. Recall that given two
graphs Γ1 = (𝑉1, 𝐸1) and Γ2 = (𝑉2, 𝐸2), their join is the
graph whose vertex set is 𝑉1 ∪ 𝑉2 and whose edges set is
given by 𝐸1 ∪ 𝐸2 and all the possible edges that start in 𝑉1
and end at 𝑉2. Then it is known (Servatius, 1989) that a
graph Γ can be decomposed as a nontrivial join if and only
if the graph group 𝐴(Γ) decomposes as a nontrivial direct
product. In [FKK19] is described an algorithm (probably
known previously) which decomposes any graph as a join
of graphs which in turn cannot be further decomposed.
This algorithm stops in polynomial time, and this proves
that decomposing a group as a direct product of indecom-
posable subgroups can be also solved in polynomial time,
provided we have an standard presentation of the group.

Hamiltonicity. Flores, Kahrobaei, and Koberda de-
fined in [FKK21b] the concept of Hamiltonian vector space.
Consider a triple (𝑉,𝑊, 𝑞)where𝑉 and𝑊 are vector spaces
over a field 𝐹, 𝑞 ∶ 𝑉 × 𝑉 → 𝑊 an (anti-)symmetric bilin-
ear pairing on 𝑉 . It is said that (𝑉,𝑊, 𝑞) is a Hamiltonian
vector space if whenever (𝑤1, … , 𝑤𝑛) is a basis for 𝑉 then
there is a permutation 𝜎 of 𝑛 elements such that for all
1 ≤ 𝑖 < 𝑛, we have 𝑞(𝑤𝜍(𝑖), 𝑤𝜍(𝑖+1)) ≠ 0, 𝑞(𝑤𝜍(𝑛), 𝑤𝜍(1)) ≠ 0.
Given a graph group 𝐴, the Hamiltonicity of the triple
(𝐻1(𝐴, 𝐹), 𝐻2(𝐴, 𝐹), ∪), where 𝐻𝑛(𝐴, 𝐹) denotes the 𝑛-th
homology group of 𝐴 with coefficents in 𝐹 and ∪ denotes
the cup product, is an invariant of the isomorphism type
of the group. Then it is proved in the aforementioned

paper that the fact that this vector space is Hamiltonian
is equivalent to the Hamiltonicity (in the classical sense)
of Γ(𝐴). Then, given a graph group 𝐴, the problem of de-
termining if (𝐻1(𝐴, 𝐹), 𝐻2(𝐴, 𝐹), ∪) is Hamiltonian is NP-
complete. Observe that the definition of Hamiltonian vec-
tor space models algebraically the property of possessing
a Hamiltonian cycle; an analogous result is valid, mutatis
mutandis, when considering Hamiltonian paths instead of
cycles.
2.2.3. Cryptographic applications. In this section we review
several cryptographic applications of graph groups and
protocols that have been developed out of them.

Secret sharing schemes. Based on previous work by
Habeeb, Kahrobaei and Shpilrain and Shamir, Flores and
Kahrobaei proposed in 2016 secret sharing schemes using
graph groups, which rely on the fact that the word prob-
lem in these groups is solvable in linear time. To illus-
trate the ideas that are used, we describe one scheme of
each type. We start with a sharing scheme, which uses
decisively that the word problem can be solved in linear
time in graph groups. The idea of the scheme is that the
dealer distributes a 𝑘-vector 𝐶 = (𝑐1, 𝑐2, … , 𝑐𝑘) of 0’s and
1’s among 𝑛 participants, making sure that the vector can
only be totally reconstructed if all participants share their
information.

So let us describe the scheme. First, a set {𝑥1, … , 𝑥𝑚} of
public generators is selected.

• Each participant receives secretly from the dealer a set
of commutators 𝑅𝑗 of the generators in𝑋 (and their in-
verses), so the participant 𝑃𝑗 possesses the graph group
𝐺𝑗 = ⟨𝑋|𝑅𝑗⟩

• The vector 𝐶 is written by the dealer as a 𝑚𝑜𝑑 2 sum
𝐶 = ∑𝑛

𝑖=1 𝐶𝑖 of 𝑛 𝑘-vectors. We denote by 𝑐𝑖𝑗 the 𝑖-
th entry of 𝐶𝑗. The vector 𝐶𝑗 will be the secret of the
participant 𝑃𝑗.

• In turn, the participant 𝑃𝑗 also receives publicly a set
of words {𝑤1𝑗 , … , 𝑤𝑘𝑗}, selected in such a way that the
element represented by 𝑤𝑖𝑗 = 1 in 𝐺𝑗 if 𝑐𝑖𝑗 = 1 and
𝑤𝑖𝑗 ≠ 1 otherwise.

• Using that the word problem in graph groups can be
solved efficiently, each participant 𝑃𝑗 checks the trivi-
ality or not of the words {𝑤1𝑗 , … , 𝑤𝑘𝑗}, and in this way
he gets the vector 𝐶𝑗.

• Finally, the sum of the vectors 𝐶𝑗 reconstructs the orig-
inal message.

Another protocol developed in [FKK19] uses the decom-
position problem. For each of 𝑛 participants {𝑃1, … , 𝑃𝑛},
the dealer distributes through a secure channel a right-
angled Artin group 𝐴(Γ𝑖). As the decomposition problem
is efficiently solvable, the participant 𝑃𝑖 can compute a
bit 𝑏𝑖 such that 𝑏𝑖 = 0 decomposes as a nontrivial join,
and 𝑏𝑖 = 1 otherwise. Let now 𝑓(𝑥) be the only monic
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polynomial of degree 𝑛 such that 𝑓(𝑖) = 𝑚𝑖. Then the poly-
nomial can be reconstructed out of these values, and the
secret key is 𝑓(0).

Authentication schemes. Flores and Kahrobaei in 2016
proposed authentication schemes using graph groups as
platforms. The authentication protocols depend on the
complexity of the group homomorphism problem (which
is NP-complete) and the subgroup isomorphism problem
(which is NP-complete for certain classes of graph groups).

Let us now describe the authentication protocol.

• Alice’s public key is given by two graph groups 𝐺1 =
⟨𝑆1|𝑅1⟩ and 𝐺2 = ⟨𝑆2|𝑅2⟩, where the given presenta-
tions are standard. The private key is a homomor-
phism 𝛼 of groups that sends generators in 𝑆1 to gen-
erators in 𝑆2, and (commutativity) relations from 𝑅1
to relations in 𝑅2.

• Alice selects another graph group 𝐺 with standard pre-
sentation 𝐺 = ⟨𝑆|𝑅⟩ and a homomorphism 𝛽 ∶ 𝐺 →
𝐺1 sending 𝑆 to 𝑆1 and 𝑅 to 𝑅1. The group 𝐺 is sent to
Bob, and 𝛽 is kept secret by Alice.

• Now Bob picks a random bit 𝑐 and sends it to Alice.
If 𝑐 = 0, Alice sends 𝛽 to Bob, who checks if it takes
𝑆 to 𝑆1 and 𝑅 to 𝑅1. In turn, if 𝑐 = 1, Alice sends the
composite 𝛼 ∘ 𝛽 ∶ 𝐺 → 𝐺2 to Bob, who performs the
analogous verification.

Observe that, as explained above, the security of this
scheme relies in the fact that the graph homomorphism
problem is NP-complete if the graph in the right has more
than two vertices. It is enough to select the graph groups
in the scheme with a sufficient number of generators.

Zero-knowledge proofs. Motivated by the paper by
Goldreich, Micali, and Wigderson in 1991, proofs that
yield nothing but their validity, or all languages in NP have
zero-knowledge proof systems, we present a ZKP scheme
based on NP-completeness of graph group Hamiltonicity
in the sense of [FKK21b].

As commented above in the Hamiltonicity section,
in Flores, Kahrobaei, and Koberda [FKK21b] prove that
Hamiltonicity in graphs is equivalent to Hamiltonicity in
the cohomology algebra over the associated right-angled
group. Using this result, the authors formulate a zero-
knowledge proof protocol based on linear algebra, which
we define now in a sketchy way. More details can be found
in that paper.

The protocol starts with a finite graph Γ that has exactly
one Hamiltonian cycle which is supposed to be very dif-
ficult to compute, for example when the graph is large
and then a greedy algorithm can be very inefficient. The
public data is the triple given by 𝑉 = 𝐻1(𝐴(Γ), 𝔽2), 𝑊 =
𝐻2(𝐴(Γ), 𝔽2) and the cup product 𝑞 = ∪, which is a Hamil-
tonian vector space. Note that the coefficients are taken
in the field of two elements, in order to make the com-
putations easier. We assume that the generators of the

cohomology are given in terms of duals of standard gen-
erators of the group (for 𝐻1) and their cup products (for
𝐻2).

Alice is supposed to have a list {𝑣∗1, … , 𝑣∗𝑛} of standard
basis vectors for 𝑉 such that 𝑞(𝑣∗𝑖 , 𝑣∗𝑖+1) ≠ 0 for all 𝑖 and
𝑞(𝑣∗𝑛, 𝑣∗1) ≠ 0, and a subset 𝑌 ⊂ GL𝑛(𝔽2) of reasonable
size (say polynomial in 𝑛). Moreover, for each 𝐴 ∈ 𝑌 , she
knows a Hamiltonian cycle in the complement of the 2-
row graph 𝒢𝑐(𝐴) (see definition in [FKK21b]). The set 𝑌
may be public. In turn, Bob may generate unbiased ran-
dom bits. Now we can define the protocol.

• Alice chooses in a random way an element 𝐴 ∈ 𝑌 ,
obtaining a new basis {𝑥1, … , 𝑥𝑛} from {𝑣∗1, … , 𝑣∗𝑛} using
𝐴. Now the knowledge of Hamiltonian cycles in Γ and
in 𝒢𝑐(𝐴) makes her able to find in an efficient way a
permutation 𝜎 ∈ 𝑆𝑛 such that 𝑞(𝑥𝜍(𝑖), 𝑥𝜍(𝑖+1)) ≠ 0 for
1 ≤ 𝑖 ≤ 𝑛, where the indices are considered cyclically.
Alice then creates locked boxes {𝐵𝑖}1≤𝑖≤𝑛 for the basis
vectors. For each pair {𝑖, 𝑗} with 𝑖 < 𝑗, she creates two
boxes 𝑁 𝑖,𝑗 and 𝑆 𝑖,𝑗, where she respectively records the
pairing 𝑞(𝑥𝑖, 𝑥𝑗) ∈ 𝑊 , and 1 if the entry in 𝑁 𝑖,𝑗 is non-
zero and and 0 otherwise. In another box 𝑇, she hides
the linear map 𝐴.

• Now Bob takes a random bit and shares it with Alice.
If it is 1, then Alice unlocks the boxes {𝐵𝑖}1≤𝑖≤𝑛 and
the boxes {𝑆𝜍(𝑖),𝜍(𝑖+1)}1≤𝑖≤𝑛, where again the indices
are considered cyclically. Now Bob checks that Alice
has produced a cycle in this way. On the other hand,
if the bit is 0 then Alice opens

{𝐵𝑖}1≤𝑖≤𝑛, {𝑁 𝑖,𝑗}1≤𝑖<𝑗≤𝑛, 𝑇,
and Bob recovers the triple (𝑉,𝑊, 𝑞).

Observe that this protocol may be repeated multiple
times, and that it succeeds if Alice correctly complies with
all of Bob’s requests, and does not succeed if she fails to
comply at least once. It can be seen in turn that the proto-
col is zero-knowledge, and a simulator can be constructed
in the same way as Blum in 1987 does.

Prospective work. As said above, the definition of a
graph group out of a graph provides an interesting corre-
spondence between algorithmic problems for graphs and
groups. In particular, different well-known problems in
graph theory admit natural counterparts in groups that
have not been investigated so far. They may provide in
the future new crypto applications, else by using the graph
group and a standard presentation as data, and/or defining
the group property that models the corresponding math
property. Due to limitations of space we only offer here
a small list that such problems, more information can be
found in [FKK19]. These problems include the vertex cover
problem, the clique problem, the independent set prob-
lem, the snake-in-the-box problem, the arboricity prob-
lem, and the subdivision problem.
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From a different point of view, it is worth mentioning
work of Chatterji, Kahrobaei et al in 2017, who define
different versions of two cryptographic protocols out of
the existence of a distorted subgroup 𝐻 < 𝐺 inside of a
finitely generated group. In the construction of the first of
these protocols it is required that the geodesic length prob-
lem is solvable for 𝐻 and 𝐺 in polynomial time, and the
membership problem is also solvable for 𝐻. In that pa-
per hyperbolic and free-by-cyclic groups are proposed as
platforms for the protocol, while in subsequent work of
Kahrobaei and Mallahi–Karai in 2019 arithmetic groups
are proposed. Following work of Flores, Kahrobaei, and
Koberda [FKK19], it is possible to construct distorted sub-
groups inside graph groups such that the geodesic length
problem is solvable for them in polynomial time. More-
over, as said above, these authors prove that the mem-
bership problem is solvable for this group in exponential
time, and they conjecture that it is likely that the complex-
ity is in fact polynomial. If this happened, then graph
groups would become a good platform for this protocol.

3. Combinatorial Algebra
There are other combinatorial algebraic problems used
for cryptography. Among them, we focus particularly, on
one fully homomorphic encryption (FHE) scheme pro-
posal which has been patented [KLS19] and is currently be-
ing used for real life applications, including data analysis
over encrypted medical and bioinformatics data [WNK20].
Broadly, homomorphic encryption enables computation
over encrypted data. A scheme is called additively (or mul-
tiplicatively) homomorphic if an encryption scheme is ad-
ditively homomorphic, then encryption followed by ho-
momorphic addition is equal to addition followed by en-
cryption.
3.1. Homomorphic machine learning. Machine learn-
ing and statistical techniques are powerful tools for ana-
lyzing large amounts of medical and genomic data. On
the other hand, ethical concerns and privacy regulations
prevent free sharing of this data. Encryption techniques
such as fully homomorphic encryption (FHE) enable eval-
uation over encrypted data. Using FHE, machine learn-
ing models such as deep learning, decision trees, and
naive Bayes have been implemented for privacy-preserving
applications using medical data. These applications in-
clude classifying encrypted data and training models on
encrypted data. FHE has also been shown to enable secure
genomic algorithms, such as paternity and ancestry testing
and privacy-preserving applications of genome-wide asso-
ciation studies, [WNK20]

Homomorphic encryption is a form of encryption
which allows various types of computations to be car-
ried out on ciphertext and generate an encrypted result
which, when decrypted, matches the result of operations

performed on the plaintext. Homomorphic encryption
allows, in particular, chaining together different services
without exposing the data to each of those services; this
property is important to blockchain technology.

There are several known cryptosystems (e.g., unpadded
RSA, ElGamal, Goldwasser–Micali) that allow homomor-
phic computation of only one operation (either addition
or multiplication) on plaintexts. A cryptosystem that sup-
ports both addition and multiplication (thereby preserv-
ing the ring structure of the plaintexts) is known as fully
homomorphic encryption (FHE) and is far more power-
ful. Using such a scheme, any circuit can be homomor-
phically evaluated, effectively allowing the construction of
programs which may be run on encryptions of their inputs
to produce an encryption of their output. A fully homo-
morphic encryption function 𝐸 encrypts elements of a ring
and respects both ring operations: 𝐸(𝑔1𝑔2) = 𝐸(𝑔1)𝐸(𝑔2)
and 𝐸(𝑔1 + 𝑔2) = 𝐸(𝑔1) + 𝐸(𝑔2) for any two elements 𝑔1, 𝑔2
of the ring in question. Alternatively, one can encrypt
boolean circuits, and then a fully homomorphic encryp-
tion function 𝐸 should respect both AND and OR oper-
ations. The most widely known existing solution to the
homomorphic encryption problem appeared originally in
the thesis of Craig Gentry, was subsequently improved,
and the relevant software is currently being developed by
IBM. The security of this solution relies on variants of the
“bounded-distance decoding” problem that has the prop-
erty of “random self-reducibility,” which basically means
that it is about as hard on average as it is in the worst case.
While this property is indeed a good evidence of security,
the resulting homomorphic encryption algorithm is too in-
efficient to be practical. Very informally, the reason is that,
to provide semantic security, encryption has to be random-
ized, but on the other hand, a homomorphism should
map zero to zero. To resolve this conflict, the ciphertext
zero is “masked by noise.” The problem now is that during
any computation on encrypted data, this “noise” tends to
accumulate and has to be occasionally reduced by recryp-
tion (also known as bootstrapping), a process that produces
the equivalent ciphertext but with less noise. Recryption is
an expensive procedure, and its results in real-life compu-
tationwith thismethod (or a similar one) are prohibitively
slow.
3.2. An efficient and secure FHE scheme. Kahrobaei, Sh-
pilrain, Grigov and Lam [KLS19], proposed an efficient
FHE scheme using combinatorial algebra. Here we give
some ideas about the scheme.

We emphasize that this FHE is private-key.

1. Plaintexts are elements of a (private) ring 𝑅.
2. Ciphertexts are elements of a public ring 𝑆, such that

𝑅 ⊂ 𝑆 is a subring of 𝑆. The ring 𝑆 also has a (pri-
vate) ideal 𝐼 such that 𝑆/𝐼 = 𝑅′, where the ring 𝑅′ is
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isomorphic to 𝑅. (The ring 𝑅′ may be just equal to 𝑅,
in which case 𝑅 is called a retract of 𝑆.)

3. Given 𝑢 ∈ 𝑅,the encryption is 𝐸(𝑢) = 𝑢 + 𝐸(0), where
𝐸(0) is a random element of the private ideal 𝐼 of the
ring 𝑆.

This encryption function is a homomorphism; it
obviously respects addition, and formultiplicationwe
have: 𝐸(𝑢)𝐸(𝑣) = (𝑢 + 𝑗1)(𝑣 + 𝑗2) = 𝑢𝑣 + 𝑗1𝑢 + 𝑢𝑗2 +
𝑗1𝑗2 = 𝑢𝑣 + 𝑗3 = 𝐸(𝑢𝑣), where 𝑗1, 𝑗2, 𝑗3 ∈ 𝐼.

4. Private decryption key is a map 𝜌 from 𝑆 to 𝑅′ that
takes every element of 𝐼 to 0, followed by an isomor-
phism 𝜑 ∶ 𝑅′ → 𝑅.

Here is a diagram to “visualize” this general scheme:

𝑅 𝐸−→ 𝑆 𝜌−→ 𝑅′ 𝜑−→ 𝑅.

Note that when we say “a public ring 𝑆,” this means that
we give to the public a collection of rules for adding and
multiplying elements of 𝑆. Typically, this can be a (finite)
set of elements that span 𝑆 as a linear vector space over
some ℤ𝑁 , together with the multiplication table for 𝑆 with
respect to this set of elements.

Below is a diagram of the whole encryption process
starting with a real-life database 𝐷,

𝐷 𝛼−→ 𝑅 𝐸−→ 𝑆 𝜌−→ 𝑅′ 𝜑−→ 𝑅 𝛽−→ 𝐷,

where 𝛽(𝛼(𝑥)) = 𝑥 for any 𝑥 ∈ 𝐷.

4. Open Problems
To finish our exposition and at the same time motivate the
interested reader, we review several important algorithmic
group-theoretic problems motivated by cryptography:

• Solving the hidden subgroup problem for various
classes of groups. Different instances of groups,
mainly finite, have already been considered in this
context, namely abelian groups, dihedral groups, sym-
metric groups, wreath products or the Heisenberg
group.

• Complexity analysis of various algorithmic group the-
oretic problems used in cryptography. According to
above, both efficiency and non-efficiency results can
be useful in the context, as depending on the situation
we may be interested in quick or very difficult decryp-
tion.

• Designing machine learning algorithms to solve the
algorithmic problems in group theory. This gives rise
to heuristic algorithms for the cryptanalysis.

• Cryptographic security analysis for the proposed
group-based cryptosystems, including study, simula-
tion and prevention of the possible attacks that the
cryptosystem can suffer.

• Searching for more group-based cryptosystems.

• Implementation of the proposed group-theoretic cryp-
tosystems for the real life applications.
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